共查询到20条相似文献,搜索用时 0 毫秒
1.
Characterization of nerve growth factor-dependent herpes simplex virus latency in neurons in vitro. 总被引:4,自引:11,他引:4 下载免费PDF全文
Primary sympathetic neuronal cultures were maintained for up to 5 weeks after inoculation with herpes simplex virus (HSV) without evidence of viral infection. Treatment with acyclovir for the first 7 days after viral inoculation prevented lytic infections in 100% of the cultures and resulted in viral latency in 100% of the cultures; reactivation occurred as the result of nerve growth factor (NGF) deprivation. Treatment of the cultures with several different inhibitors of viral DNA polymerase (acyclovir, aphidicolin, and phosphonoacetic acid) for 7 days after viral inoculation did not prevent the establishment of latency, which suggests that viral DNA replication was not required. During the latent phase of the infection, viral antigens were not detected with HSV-specific immunohistochemistry. However, 24 h after NGF deprivation, viral antigens were detected in essentially all of the neurons, indicating that the majority of neurons harbored latent HSV. The establishment of latency was not strain or type specific since latency was established with HSV type 2 and four strains of HSV type 1 and reactivation occurred in response to NGF deprivation. 相似文献
2.
Gamma interferon can prevent herpes simplex virus type 1 reactivation from latency in sensory neurons 总被引:6,自引:0,他引:6 下载免费PDF全文
We recently demonstrated that CD8(+) T cells could block herpes simplex virus type 1 (HSV-1) reactivation from latency in ex vivo trigeminal ganglion (TG) cultures without destroying the infected neurons. Here we establish that CD8(+) T-cell prevention of HSV-1 reactivation from latency is mediated at least in part by gamma interferon (IFN-gamma). We demonstrate that IFN-gamma was produced in ex vivo cultures of dissociated latently infected TG by CD8(+) T cells that were present in the TG at the time of excision. Depletion of CD8(+) T cells or neutralization of IFN-gamma significantly enhanced the rate of HSV-1 reactivation from latency in TG cultures. When TG cultures were treated with acyclovir for 4 days to insure uniform latency, supplementation with recombinant IFN-gamma blocked HSV-1 reactivation in 80% of cultures when endogenous CD8(+) T cells were present and significantly reduced and delayed HSV-1 reactivation when CD8(+) T cells or CD45(+) cells were depleted from the TG cultures. The effectiveness of recombinant IFN-gamma in blocking HSV-1 reactivation was lost when its addition to TG cultures was delayed by more than 24 h after acyclovir removal. We propose that when the intrinsic ability of neurons to inhibit HSV-1 gene expression is compromised, HSV-specific CD8(+) T cells are rapidly mobilized to produce IFN-gamma and perhaps other antiviral cytokines that block the viral replication cycle and maintain the viral genome in a latent state. 相似文献
3.
4.
5.
Quiescent infection of cultured cells with herpes simplex virus type 1 (HSV-1) provides an important, amenable means of studying the molecular mechanics of a nonproductive state that mimics key aspects of in vivo latency. To date, establishing high-multiplicity nonproductive infection of human cells with wild-type HSV-1 has proven challenging. Here, we describe simple culture conditions that established a cell state in normal human diploid fibroblasts that supported efficient quiescent infection using wild-type virus and exhibited many important properties of the in vivo latent state. Despite the efficient production of immediate early (IE) proteins ICP4 and ICP22, the latter remained unprocessed, and viral late gene products were only transiently and inefficiently produced. This low level of virus activity in cultures was rapidly suppressed as the nonproductive state was established. Entry into quiescence was associated with inefficient production of the viral trans-activating protein ICP0, and the accumulation of enlarged nuclear PML structures normally dispersed during productive infection. Lytic replication was rapidly and efficiently restored by exogenous expression of HSV-1 ICP0. These findings are in agreement with previous models in which quiescence was established with HSV mutants disrupted in their expression of IE gene products that included ICP0 and, importantly, provide a means to study cellular mechanisms that repress wild-type viral functions to prevent productive replication. We discuss this model in relation to existing systems and its potential as a simple tool to study the molecular mechanisms of quiescent infection in human cells using wild-type HSV-1. 相似文献
6.
Uncoating the herpes simplex virus genome 总被引:2,自引:0,他引:2
Initiation of infection by herpes simplex virus (HSV-1) involves a step in which the parental virus capsid docks at a nuclear pore and injects its DNA into the nucleus. Once "uncoated" in this way, the virus DNA can be transcribed and replicated. In an effort to clarify the mechanism of DNA injection, we examined DNA release as it occurs in purified capsids incubated in vitro. DNA ejection was observed following two different treatments, trypsin digestion of capsids in solution, and heating of capsids after attachment to a solid surface. In both cases, electron microscopic analysis revealed that DNA was ejected as a single double helix with ejection occurring at one vertex presumed to be the portal. In the case of trypsin-treated capsids, DNA release was found to correlate with cleavage of a small proportion of the portal protein, UL6, suggesting that UL6 cleavage may be involved in making the capsid permissive for DNA ejection. In capsids bound to a solid surface, DNA ejection was observed only when capsids were warmed above 4 degrees C. The proportion of capsids releasing their DNA increased as a function of incubation temperature with nearly all capsids ejecting their DNA when incubation was at 37 degrees C. The results demonstrate heterogeneity among HSV-1 capsids with respect to their sensitivity to heat-induced DNA ejection. Such heterogeneity may indicate a similar heterogeneity in the ease with which capsids are able to deliver DNA to the infected cell nucleus. 相似文献
7.
Prolongation of herpes simplex virus latency in cultured human cells by temperature elevation. 下载免费PDF全文
F J O''''Neill 《Journal of virology》1977,24(1):41-46
Treatment of herpes simplex virus type 2 (HSV-2)-infected human fibroblast cells with cytosine arabinoside (ara-C) at 25 microgram/ml resulted in complete inhibition of virus replication. Removal of ara-C after 7 days of treatment ultimately resulted in renewed virus replication, but after a delay of at least 5 days. If however, the temperature was elevated from 37 degrees C to 39.5 to 40 degrees C at the time of ara-C reversal, infectious HSV-2 did not reappear. As long as the cultures were maintained at 39.5 to 40 degrees C (up to at least 128 days), HSV-2 was latent and infectious virus was undetectable. If the temperature was reduced to 37 degrees C at any time during the latent period, infectious virus was always reactivated, but only after a period of incubation at 37 degrees C of a least 11 days. Infectious-center assays performed with latent cultures indicated that only a very small fraction of cells could reactivate virus. The infectious-center titer did not show significant changes during much of the period of latency. This seemed to argue against the possibility that the latent cultures were synthesizing very small amounts of infectious virus. Additional studies were aimed at determining the minimum incubation period at 37 degrees C required to reactivate infectious HSV-2. Latent cultures reduced from 39.5 to 40 degrees C to 37 degrees C for less than 96 h did not yield infectious HSV-2, but those incubated at 37 degrees C for 96 h or more did. 相似文献
8.
9.
Mahiet C Ergani A Huot N Alende N Azough A Salvaire F Bensimon A Conseiller E Wain-Hobson S Labetoulle M Barradeau S 《Journal of virology》2012,86(16):8592-8601
Herpes simplex virus 1 (HSV-1) is a human pathogen that leads to recurrent facial-oral lesions. Its 152-kb genome is organized in two covalently linked segments, each composed of a unique sequence flanked by inverted repeats. Replication of the HSV-1 genome produces concatemeric molecules in which homologous recombination events occur between the inverted repeats. This mechanism leads to four genome isomers (termed P, IS, IL, and ILS) that differ in the relative orientations of their unique fragments. Molecular combing analysis was performed on DNA extracted from viral particles and BSR, Vero, COS-7, and Neuro-2a cells infected with either strain SC16 or KOS of HSV-1, as well as from tissues of experimentally infected mice. Using fluorescence hybridization, isomers were repeatedly detected and distinguished and were accompanied by a large proportion of noncanonical forms (40%). In both cell and viral-particle extracts, the distributions of the four isomers were statistically equivalent, except for strain KOS grown in Vero and Neuro-2a cells, in which P and IS isomers were significantly overrepresented. In infected cell extracts, concatemeric molecules as long as 10 genome equivalents were detected, among which, strikingly, the isomer distributions were equivalent, suggesting that any such imbalance may occur during encapsidation. In vivo, for strain KOS-infected trigeminal ganglia, an unbalanced distribution distinct from the one in vitro was observed, along with a considerable proportion of noncanonical assortment. 相似文献
10.
11.
M P Merville-Louis C Sadzot-Delvaux P Delre J Piette G Moonen B Rentier 《Journal of virology》1989,63(7):3155-3160
12.
13.
Comprehensive quantification of herpes simplex virus latency at the single-cell level. 总被引:1,自引:7,他引:1 下载免费PDF全文
N M Sawtell 《Journal of virology》1997,71(7):5423-5431
To date, characterization of latently infected tissue with respect to the number of cells in the tissue harboring the viral genome and the number of viral genomes contained within individual latently infected cells has not been possible. This level of cellular quantification is a critical step in determining (i) viral or host cell factors which function in the establishment and maintenance of latency, (ii) the relationship between latency burden and reactivation, and (iii) the effectiveness of vaccines or antivirals in reducing or preventing the establishment of latent infections. Presented here is a novel approach for the quantitative analysis of nucleic acids within the individual cells comprising complex solid tissues. One unique feature is that the analysis reflects the nucleic acids within the individual cells as they were in the context of the intact tissue-hence the name CXA, for contextual analysis. Trigeminal ganglia latently infected with herpes simplex virus (HSV) were analyzed by CXA of viral DNA. Both the type and the number of cells harboring the viral genome as well as the number of viral genomes within the individual latently infected cells were determined. Here it is demonstrated that (i) the long-term repository of HSV-1 DNA in the ganglion is the neuron, (ii) the viral-genome copy number within individual latently infected neurons is variable, ranging over 3 orders of magnitude from <10 to >1,000, (iii) there is a direct correlation between increasing viral input titer and the number of neurons in which latency is established in the ganglion, (iv) increasing viral input titer results in more neurons with greater numbers of viral-genome copies, (v) treatment with acyclovir (ACV) during acute infection reduces the number of latently infected ganglionic neurons 20-fold, and (vi) ACV treatment results in uniformly low (<10)-copy-number latency. This report represents the first comprehensive quantification of HSV latency at the level of single cells. Beyond viral latency, CXA has the potential to advance many studies in which rare cellular events occur in the background of a complex solid tissue mass, including microbial pathogenesis, tumorigenesis, and analysis of gene transfer. 相似文献
14.
Isolated restriction endonuclease fragments of the herpes simplex virus type 1 (HSV-1) genome were introduced into hamster embryo cells to identify DNA sequences capable of transforming the cells with respect to acquisition of properties correlated with tumorigenicity. One of the fragments generated by cleavage of HSV-1 DNA with the restriction endonuclease Xba I was found to induce transformation at a frequency of about 10 colonies per quantity of fragment recovered from 1 μg of uncut DNA; fractions containing the other Xba I fragments failed to induce transformation reproducibly, although occasional colonies were detected. The fragment with transforming activity (Xba I-F) is 15.5 × 106 daltons in molecular weight and is located between 0.30 and 0.45 map units on the HSV-1 genome. The Xba I-F transformants obtained were selected for their ability to replicate in low concentrations of serum; in addition, they were found to attain high saturation densities in the presence of 10% serum and to form colonies in semisolid medium. Moreover, the transformed cells produced at least one of the viral gene products (a membrane glycoprotein) encoded in the fragment used for transformation, indicating not only that viral DNA was incorporated into the cells, but also that viral genes were expressed. 相似文献
15.
16.
17.
Herpes simplex virus type 1 immediate-early protein Vmw110 reactivates latent herpes simplex virus type 2 in an in vitro latency system. 总被引:6,自引:27,他引:6
Reactivation of latent herpes simplex virus type 2 (HSV-2) by the immediate-early protein Vmw110 was studied by using an in vitro latency system. Adenovirus recombinants that express Vmw110 reactivated latent HSV-2. An HSV-1 mutant possessing a deletion in a carboxy-terminal region of Vmw110 reactivated latent HSV-2, whereas mutant FXE, which has a deletion in the second exon, did not. Therefore, Vmw110 alone is required to reactivate latent HSV-2 in vitro, and the region of Vmw110 defined by the deletion in FXE is important for this process. 相似文献
18.
The present study was designed to determine the extent to which herpes simplex virus (HSV) may be utilized to study the repair of DNA damaged by ionizing radiation. We investigated the survival of 60Co-irradiated HSV in cell strains derived from 2 normal controls and 13 patients with a broad range of diseases associated with possible DNA repair deficiencies. Irradiation was performed under two conditions to vary the type of damage incurred by the virus. HSV survival was greatly enhanced when the virus was irradiated in such a way that the indirect effects of ionizing radiation were minimized. We found no correlation between cellular hypersensitivity to ionizing radiation and survival of irradiated HSV. Reduced levels of virus survival were found in only 1 cell strain. When cells were treated with ionizing radiation or UV light prior to infection, no enhancement of virus survival was observed. 相似文献
19.
20.
An abrupt concommitant increase in total cellular RNA and protein was observed as cultured human diploid fibroblasts entered the senescent phase of their in vitro lifespan. DNA content remained stable from early to final passages. Fractionation of cellular RNAs by polyacrylamide gel electrophoresis demonstrated an increase in both 28S and 18S ribosomal and 4S transfer RNAs in these senescent cells. Separation of poly(A) RNA (mRNA) by oligo(dT)-cellulose chromatography suggests an increase in this group of RNAs. However, the ratios of 28S to 18S rRNAs, tRNA to rRNA, and mRNA to total cellular RNA were not significantly different in cells before and after senescence, indicating that the overall increases in total cellular RNA was not due to an accumulation of a single RNA class. 相似文献