首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the presence of a glucose concentration of 1.5 g/1, ATP provokes a biphasic stimulation of insulin secretion from the isolated and perfused rat pancreas. For ATP concentrations ranging from 0.5 mg/1 to 200 mg/1, the increase in insulin secretion presents a linear relation with the logarithm of the concentration. Lowering the temperature from 37.5 degrees C to 28 degrees C provokes a decrease in insulin secretion induced by glucose (1.5 g/1). In response to the stimulation by ATP, the increase in insulin secretion measured during the first phase is weaker at 28 degrees C than at 37.5 degrees C when estimated in ng/min; however, when evaluated in percentage in relation to the baseline value, this increase is more important at the lower temperature.  相似文献   

2.
Leptin is an adipocyte-derived hormone participating in the regulation of food intake and energy balance. Its secretion from fat cells is potentiated by insulin and by substrates providing ATP, whereas factors increasing cAMP level attenuate hormone release stimulated by insulin and glucose. The present experiments were aimed to determine the effect of cAMP on leptin secretion stimulated by glucose, alanine or leucine in the presence of insulin. Moreover, the effect of protein kinase A inhibition on leptin secretion was tested. To stimulate leptin secretion, isolated rat adipocytes were incubated for 2 h in the buffer containing 5 mmol/l glucose, 10 mmol/l alanine or 10 mmol/l leucine, all in the presence of 10 nmol/l insulin. Inhibition of protein kinase A (PKA) by H-89 (50 micromol/l) slightly enhanced leptin release stimulated by glucose and leucine but not by alanine. Activation of this enzyme by dibutyryl-cAMP (1 mmol/l) substantially restricted leptin secretion stimulated by glucose, alanine and leucine. The inhibitory influence of dibutyryl-cAMP on leptin secretion was totally (in the case of stimulation induced by glucose) or partially (in the case of stimulation by alanine and leucine) suppressed by H-89. These results demonstrate that leptin secretion induced by glucose, alanine and leucine is profoundly attenuated by cAMP in PKA-dependent manner. Therefore, the action of different stimulators of leptin secretion may be restricted by agents increasing the cAMP content in adipocytes. Moreover, it has also been shown that inhibition of PKA evokes the opposite effect and enhances leptin release.  相似文献   

3.
Our experiments were carried out on the isolated perfused rat pancreas. The effect of extracellular ATP (8 microM) on insulin secretion induced by tolbutamide (0.04 mM) was studied in the presence of substimulating glucose concentration 4.2 mM (0.75 g/l). ATP (8 microM), ineffective per se at this concentration, highly potentiated the insulin secretion induced by tolbutamide (0.04 mM).  相似文献   

4.
AMP-activated protein kinase (AMPK) is an important signaling effector that couples cellular metabolism and function. The effects of AMPK activation on pancreatic beta-cell function remain unresolved. We used 5-amino-imidazole carboxamide riboside (AICAR), an activator of AMPK, to define the signaling mechanisms linking the activation of AMPK with insulin secretion. Application of 300 microM AICAR to mouse islets incubated in 5-14 mM glucose significantly increased AMPK activity and potentiated insulin secretion. AICAR inhibited ATP-sensitive K(+) (K(ATP)) channels and increased the frequency of glucose-induced calcium oscillations in islets incubated in 8-14 mM glucose. At lower glucose concentration (5mM) AICAR did not affect K(ATP) activity or intracellular ([Ca(2+)](i)). AICAR also did not inhibit (86)Rb(+) efflux from islets isolated from Sur1(-/-) mice that lack K(ATP) channels yet significantly potentiated glucose stimulated insulin secretion. Our data suggest that AICAR stimulates insulin secretion by both K(ATP) channel-dependent and -independent pathways.  相似文献   

5.
Previous studies showed that biotin enhanced glucose-induced insulin secretion. Changes in the cytosolic ATP/ADP ratio in the pancreatic islets participate in the regulation of insulin secretion by glucose. In the present study we investigated whether biotin regulates the cytosolic ATP/ADP ratio in glucose-stimulated islets. When islets were stimulated with glucose plus biotin, the ATP/ADP ratio increased to approximately 160% of the ATP/ADP ratio in islets stimulated with glucose alone. The rate of glucose oxidation, assessed by CO(2) production, was also about 2-fold higher in islets treated with biotin. These increasing effects of biotin were proportional to the effects seen in insulin secretion. There are no previous reports of vitamins, such as biotin, directly affecting ATP synthesis. Our data indicate that biotin enhances ATP synthesis in islets following the increased rate of substrate oxidation in mitochondria and that, as a consequence of these events, glucose-induced insulin release is reinforced by biotin.  相似文献   

6.
1,5-Anhydroglucitol stimulates insulin release in insulinoma cell lines   总被引:2,自引:0,他引:2  
Concentrations of 1,5-anhydroglucitol (1,5-AG), which is a major circulating polyol, decrease in patients with diabetes mellitus. In both insulinoma-derived RINr and MIN6 cells, 1,5-AG stimulated insulin release within the range of 0.03-0.61 mM in a dose-dependent manner. Insulin release was maximally stimulated by 1,5-AG to levels that reached 25% and 100% greater than that of control (1,5-AG-free group) in RINr and MIN6 cells, respectively. A physiological concentration of 1,5-AG stimulated insulin release after a 5-min incubation and this action was maintained for 60 min. In addition, at approximately 1/200 the concentration of glucose, 1,5-AG had additive action with 20 mM glucose. The action of 1,5-AG on insulin secretion with other types of saccharides and polyol was similarly additive. Mannnoheptulose and diazoxide suppressed the stimulative action of 1,5-AG on insulin release. The secretagogue action of 1,5-AG seemed to be independent on an increase in the intracellular content of cAMP and ATP. These results suggest that 1,5-AG can stimulate insulin secretion through a mechanism that completely differs from that of glucose.  相似文献   

7.
The effects of adenosine on insulin and glucagon secretions were studied using the isolated perfused rat pancreas. The secretion of glucagon was stimulated by adenosine at concentrations ranging from 1.65 to 165 mumol/l, in the presence of glucose 0.5 g/l; the stimulation was immediate, but transient and was dose-dependent. Insulin secretion was not changed by adenosine in the presence of glucose 0.5 g/l; in the presence of glucose 1.5 g/l, adenosine at 1.65 and 16.5 mumol/l did not significantly modify insulin secretion. But at 165 mumol/l adenosine induced a progressive increase in time after the 5th minute. The A cell appears then to be much more sensitive to adenosine than the B cell.  相似文献   

8.
In normal beta-cells glucose induces insulin secretion by activating both a triggering pathway (closure of K(ATP) channels, depolarization, and rise in cytosolic [Ca(2+)](i)) and an amplifying pathway (augmentation of Ca(2+) efficacy on exocytosis). It is unclear if and how nutrients can regulate insulin secretion by beta-cells lacking K(ATP) channels (Sur1 knockout mice). We compared glucose- and amino acid-induced insulin secretion and [Ca(2+)](i) changes in control and Sur1KO islets. In 1 mm glucose (non-stimulatory for controls), the triggering signal [Ca(2+)](i) was high (loss of regulation) and insulin secretion was stimulated in Sur1KO islets. This "basal" secretion was decreased or increased by imposed changes in [Ca(2+)](i) and was dependent on ATP production, indicating that both triggering and amplifying signals are involved. High glucose stimulated insulin secretion in Sur1KO islets, by an unsuspected, transient increase in [Ca(2+)](i) and a sustained activation of the amplifying pathway. Unlike controls, Sur1KO islets were insensitive to diazoxide and tolbutamide, which rules out effects of either drug at sites other than K(ATP) channels. Amino acids potently increased insulin secretion by Sur1KO islets through both a further electrogenic rise in [Ca(2+)](i) and a metabolism-dependent activation of the amplifying pathway. After sulfonylurea blockade of their K(ATP) channels, control islets qualitatively behaved like Sur1KO islets, but their insulin secretion rate was consistently lower for a similar or even higher [Ca(2+)](i). In conclusion, fuel secretagogues can control insulin secretion in beta-cells without K(ATP) channels, partly by an unsuspected influence on the triggering [Ca(2+)](i) signal and mainly by the modulation of a very effective amplifying pathway.  相似文献   

9.
Our previous work has demonstrated that islet depolarization with KCl opens connexin36 hemichannels in β-cells of mouse pancreatic islets allowing the exchange of small metabolites with the extracellular medium. In this study, the opening of these hemichannels has been further characterized in rat islets and INS–1 cells. Taking advantage of hemicannels’opening, the uptake of extracellular ATP and its effect on insulin release were investigated. 70 mM KCl stimulated light emission by luciferin in dispersed rat islets cells transduced with the fire-fly luciferase gene: it was suppressed by 20 mM glucose and 50 μM mefloquine, a specific connexin36 inhibitor. Extracellular ATP was taken up or released by islets depolarized with 70 mM KCl at 5 mM glucose, depending on the external ATP concentration. 1 mM ATP restored the loss of ATP induced by the depolarization itself. ATP concentrations above 5 mM increased islet ATP content and the ATP/ADP ratio. No ATP uptake occurred in non-depolarized or KCl-depolarized islets simultaneously incubated with 50 μM mefloquine or 20 mM glucose. Extracellular ATP potentiated the secretory response induced by 70 mM KCl at 5 mM glucose in perifused rat islets: 5 mM ATP triggered a second phase of insulin release after the initial peak triggered by KCl-depolarization itself; at 10 mM, it increased both the initial, KCl-dependent, peak and stimulated a greater second phase of secretion than at 5 mM. These stimulatory effects of extracellular ATP were almost completely suppressed by 50 μM mefloquine. The magnitude of the second phase of insulin release due to 5 mM extracellular ATP was decreased by addition of 5 mM ADP (extracellular ATP/ADP ratio = 1). ATP acts independently of KATP channels closure and its intracellular concentration and its ATP/ADP ratio seems to regulate the magnitude of both the first (triggering) and second (amplifying) phases of glucose-induced insulin secretion.  相似文献   

10.
BACKGROUND: The objective was to compare signal transduction pathways exploited by glucose and cell swelling in stimulating insulin secretion. METHODS: Isolated rat (Wistar) pancreatic islets were stimulated in vitro by 20 mmol/l glucose or 30% hypotonic medium (202 mOsm/kg) in various experimental conditions. RESULTS: Glucose did not stimulate insulin release in calcium free medium. Cell swelling-induced insulin release in calcium free medium, even in the presence of the membrane permeable calcium chelator BAPTA/AM (10 micromol/l). Protein kinase C (PKC) inhibitor bisindolylmaleimide VIII (1 micromol/l) abolished the stimulation of insulin secretion by glucose but did not affect the swelling-induced insulin release. PKC activator phorbol 12-13-dibutyrate (1 micromol/l) stimulated insulin secretion in medium containing Ca2+ and did not potentiate insulin secretion stimulated by hypotonic extracellular fluid. Dilution of the medium (10-30%) had an additive effect on the glucose-induced insulin secretion. Noradrenaline (1 micromol/l) abolished glucose-induced insulin secretion but did not inhibit hypotonic stimulation either in presence or absence of Ca2+. CONCLUSION: Glucose- and swelling-induce insulin secretion through separate signal transduction pathways. Hyposmotic stimulation is independent from both the extracellular and intracellular Ca2+, does not involve PKC activation, and could not be inhibited by noradrenaline. These data indicate a novel signaling pathway for stimulation of insulin secretion exploited by cell swelling.  相似文献   

11.
A signaling role of glutamine in insulin secretion   总被引:7,自引:0,他引:7  
Children with hypoglycemia due to recessive loss of function mutations of the beta-cell ATP-sensitive potassium (K(ATP)) channel can develop hypoglycemia in response to protein feeding. We hypothesized that amino acids might stimulate insulin secretion by unknown mechanisms, because the K(ATP) channel-dependent pathway of insulin secretion is defective. We therefore investigated the effects of amino acids on insulin secretion and intracellular calcium in islets from normal and sulfonylurea receptor 1 knockout (SUR1-/-) mice. Even though SUR1-/- mice are euglycemic, their islets are considered a suitable model for studies of the human genetic defect. SUR1-/- islets, but not normal islets, released insulin in response to an amino acid mixture ramp. This response to amino acids was decreased by 60% when glutamine was omitted. Insulin release by SUR1-/- islets was also stimulated by a ramp of glutamine alone. Glutamine was more potent than leucine or dimethyl glutamate. Basal intracellular calcium was elevated in SUR1-/- islets and was increased further by glutamine. In normal islets, methionine sulfoximine, a glutamine synthetase inhibitor, suppressed insulin release in response to a glucose ramp. This inhibition was reversed by glutamine or by 6-diazo-5-oxo-l-norleucine, a non-metabolizable glutamine analogue. High glucose doubled glutamine levels of islets. Methionine sulfoximine inhibition of glucose stimulated insulin secretion was associated with accumulation of glutamate and aspartate. We hypothesize that glutamine plays a critical role as a signaling molecule in amino acid- and glucose-stimulated insulin secretion, and that beta-cell depolarization and subsequent intracellular calcium elevation are required for this glutamine effect to occur.  相似文献   

12.
AMPK regulates many metabolic pathways including fatty acid and glucose metabolism, both of which are closely associated with insulin secretion in pancreatic β-cells. Insulin secretion is regulated by metabolic coupling factors such as ATP/ADP ratio and other metabolites generated by the metabolism of nutrients such as glucose, fatty acid and amino acids. However, the connection between AMPK activation and insulin secretion in β-cells has not yet been fully elucidated at a metabolic level. To study the effect of AMPK activation on glucose stimulated insulin secretion, we applied the pharmacological activator 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) to an INS-1 (832/13) β-cell line. We measured the change in 66 metabolites in the presence or absence of AICAR using different stable isotopic labeled nutrients to probe selected pathways. AMPK activation by AICAR increased basal insulin secretion and reduced the glucose stimulation index. Although ATP/ADP ratios were not strongly affected by AICAR, several other metabolites and pathways important for insulin secretion were affected by AICAR treatment including long-chain CoAs, malonyl-CoA, 3-hydroxy-3 methylglutaryl CoA, diacylglycerol, and farnesyl pyrophosphate. Tracer studies using 13C-glucose revealed lower glucose flux in the purine and pyrimidine pathway and in the glycerolipid synthesis pathway. Untargeted metabolomics revealed reduction in ceramides caused by AICAR that may explain the beneficial role of AMPK in protecting β-cells from lipotoxicity. Taken together, the results provide an overall picture of the metabolic changes associated with AICAR treatment and how it modulates insulin secretion and β-cell survival.  相似文献   

13.
The NADH shuttle system is composed of the glycerol phosphate and malate-aspartate shuttles. We generated mice that lack mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH), a rate-limiting enzyme of the glycerol phosphate shuttle. Application of aminooxyacetate, an inhibitor of the malate-aspartate shuttle, to mGPDH-deficient islets demonstrated that the NADH shuttle system was essential for coupling glycolysis with activation of mitochondrial ATP generation to trigger glucose-induced insulin secretion. The present study revealed that blocking the NADH shuttle system severely suppressed closure of the ATP-sensitive potassium (K(ATP)) channel and depolarization of the plasma membrane in response to glucose in beta cells, although properties of the K(ATP) channel on the excised beta cell membrane were unaffected. In mGPDH-deficient islets treated with aminooxyacetate, Ca(2+) influx through the plasma membrane induced by a depolarizing concentration of KCl in the presence of the K(ATP) channel opener diazoxide restored insulin secretion. However, the level of the secretion was only approximately 40% of wild-type controls. Thus, glucose metabolism through the NADH shuttle system leading to efficient ATP generation is pivotal to activation of both the K(ATP) channel-dependent pathway and steps distal to an elevation of cytosolic Ca(2+) concentration in glucose-induced insulin secretion.  相似文献   

14.
Insulin secretion from pieces of pancreas of rabbits aged 6 weeks or 1 day, or of 24-day foetuses was studied in vitro in response to glucose, glucagon and theophylline. Glucose did not stimulate insulin release from foetal pancreas but was effective postnatally. Glucagon in medium containing 3.0 mg glucose/ml stimulated insulin secretion equally at each stage of development. Theophylline in medium containing 0.6 or 3.0 mg glucose/ml stimulated insulin secretion from foetal pancreas but was effective on postnatal pancreas only in the presence of 3.0 mg glucose/ml. Glucose potentiated the action of theophylline on the foetal β cell and theophylline potentiated the action of glucose on the adult β cell.  相似文献   

15.
To investigate the effects of chronic exposure to ketone bodies on glucose-induced insulin secretion, we evaluated insulin release, intracellular Ca2+ and metabolism, and Ca2+ efficacy of the exocytotic system in rat pancreatic islets. Fifteen-hour exposure to 5 mM d-beta-hydroxybutyrate (HB) reduced high glucose-induced insulin secretion and augmented basal insulin secretion. Augmentation of basal release was derived from promoting the Ca2+-independent and ATP-independent component of insulin release, which was suppressed by the GDP analog. Chronic exposure to HB affected mostly the second phase of glucose-induced biphasic secretion. Dynamic experiments showed that insulin release and NAD(P)H fluorescence were lower, although the intracellular Ca2+ concentration ([Ca2+](i)) was not affected 10 min after exposure to high glucose. Additionally, [Ca2+](i) efficacy in exocytotic system at clamped concentrations of ATP was not affected. NADH content, ATP content, and ATP-to-ADP ratio in the HB-cultured islets in the presence of high glucose were lower, whereas glucose utilization and oxidation were not affected. Mitochondrial ATP production shows that the respiratory chain downstream of complex II is not affected by chronic exposure to HB, and that the decrease in ATP production is due to decreased NADH content in the mitochondrial matrix. Chronic exposure to HB suppresses glucose-induced insulin secretion by lowering the ATP level, at least partly by inhibiting ATP production by reducing the supply of NADH to the respiratory chain. Glucose-induced insulin release in the presence of aminooxyacetate was not reduced, which implies that chronic exposure to HB affects the malate/aspartate shuttle and thus reduces NADH supply to mitochondria.  相似文献   

16.
Tacrolimus is widely used for immunosuppressant therapy, including various organ transplantations. One of its main side effects is hyperglycemia due to reduced insulin secretion, but the mechanism remains unknown. We have investigated the metabolic effects of tacrolimus on insulin secretion at a concentration that does not influence insulin content. Twenty-four-hour exposure to 3 nM tacrolimus reduced high glucose (16.7 mM)-induced insulin secretion (control 2.14 +/- 0.08 vs. tacrolimus 1.75 +/- 0.02 ng.islet(-1).30 min(-1), P < 0.01) without affecting insulin content. In dynamic experiments, insulin secretion and NAD(P)H fluorescence during a 20-min period after 10 min of high-glucose exposure were reduced in tacrolimus-treated islets. ATP content and glucose utilization of tacrolimus-treated islets in the presence of 16.7 mM glucose were less than in control (ATP content: control 9.69 +/- 0.99 vs. tacrolimus 6.52 +/- 0.40 pmol/islet, P < 0.01; glucose utilization: control 103.8 +/- 6.9 vs. tacrolimus 74.4 +/- 5.1 pmol.islet(-1).90 min(-1), P < 0.01). However, insulin release from tacrolimus-treated islets was similar to that from control islets in the presence of 16.7 mM alpha-ketoisocaproate, a mitochondrial fuel. Glucokinase activity, which determines glycolytic velocity, was reduced by tacrolimus treatment (control 65.3 +/- 3.4 vs. tacrolimus 49.9 +/- 2.8 pmol.islet(-1).60 min(-1), P < 0.01), whereas hexokinase activity was not affected. These results indicate that glucose-stimulated insulin release is decreased by chronic exposure to tacrolimus due to reduced ATP production and glycolysis derived from reduced glucokinase activity.  相似文献   

17.
18.
Adenosine is known to influence different kinds of cells, including beta-cells of the pancreas. However, the role of this nucleoside in the regulation of insulin secretion is not fully elucidated. In the present study, the effects of adenosine A(1) receptor antagonism on insulin secretion from isolated rat pancreatic islets were tested using DPCPX, a selective adenosine A(1) receptor antagonist. It was demonstrated that pancreatic islets stimulated with 6.7 and 16.7 mM glucose and exposed to DPCPX released significantly more insulin compared with islets incubated with glucose alone. The insulin-secretory response to glucose and low forskolin appeared to be substantially potentiated by DPCPX, but DPCPX was ineffective in the presence of glucose and high forskolin. Moreover, DPCPX failed to change insulin secretion stimulated by the combination of glucose and dibutyryl-cAMP, a non-hydrolysable cAMP analogue. Studies on pancreatic islets also revealed that the potentiating effect of DPCPX on glucose-induced insulin secretion was attenuated by H-89, a selective inhibitor of protein kinase A. It was also demonstrated that formazan formation, reflecting metabolic activity of cells, was enhanced in islets exposed to DPCPX. Moreover, DPCPX was found to increase islet cAMP content, whereas ATP was not significantly changed. These results indicate that adenosine A(1) receptor blockade in rat pancreatic islets potentiates insulin secretion induced by both physiological and supraphysiological glucose concentrations. This effect is proposed to be due to increased metabolic activity of cells and increased cAMP content.  相似文献   

19.
The action of testosterone on the 45Ca2+ uptake and insulin secretion was studied in short-term experiments using isolated pancreatic islets of Langerhans. Testosterone (1 microM) stimulated 45Ca2+ uptake within 60 seconds of incubation on similar proportion than tolbutamide. Also, the hormone rapidly increased insulin release (34%; 180 seconds) on the presence of non-stimulatory concentrations of glucose (3 mM). Impermeant testosterone-BSA significantly stimulated the secretion of insulin to a lower percentage (10%). The action of the hormone is specific--neither 17beta-E2 nor progesterone stimulated insulin secretion in the presence of 3 mM glucose. The action of testosterone on insulin secretion was dose-dependent, and at rat plasma physiological concentrations (25 nM), stimulus was 17% (p < 0.05). In conclusion, in isolated pancreatic islets experiments, physiological concentration of testosterone rapidly stimulate insulin secretion and 45Ca2+ uptake through a membrane bound mechanism.  相似文献   

20.
The effect of somatostatin on glucose-induced insulin secretion and cyclic AMP accumation in isolated islets from obese, hyperglycemic ob/ob mice was studied in a microperifusion system. The normal biphasic pattern of insulin release as well as the inhibitory pattern of insulin release produced by somatostatin (0.5–1 μg/ml) was matched by similar changes in the intracellular concentration of cyclic AMP. When islets were stimulated by glucose (3 mg/ml) plus 3-isobutyl-1-methylxanthine (0.1 mM), somatostatin (0.5 μg/ml) failed to inhibit insulin secretion or cyclic AMP formation in the second phase whereas in the first phase both parameters were significantly reduced by somatostatin (0.5 μg/ml). In batch-type incubations it was shown that addition of excess calcium (to 6 mM) reversed this inhibition. In the second phase calcium potentiated the (glucose + 3-isobutyl-1-methylxanthine)-stimulated insulin secretion without affecting the cyclic AMP production. This potentiation was inhibited by somatostatin (0.1 μg/ml). Somatostatin (1 μg/ml) inhibited adenylate cyclase activity in islet homogenates. No effect of somatostatin on islet glucose utilization could be demonstrated.The results indicate a dual action of somatostatin in the inhibition of insulin release, one involving the islet adenylate cyclase and one affecting the islet uptake of calcium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号