首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Yuan X  Liu N 《遗传学报》2011,38(5):193-200
Advanced glycation end products (AGEs) play an important role in vascular complications of diabetes, including fibrinolytic abnormalities.Pioglitazone, a peroxisome proliferator-activated receptor gamma (PPARΥ) agonist, has recently been shown to reduce circulating plasminogen activator inhibitor-1 (PAI-1) levels in diabetes mellitus. In the present study, we investigated the effects of pioglitazone on the expression of local PAI-1 in rat vascular smooth muscle cells (VSMCs) induced by AGEs and the underlying mechanism. The result showed that AGEs could enhance the PAI-1 expression by 5.1-fold in mRNA and 2.7-fold in protein level, as evaluated by real-time RT-PCR and Western blotting,respectively. Pioglitazone was found to down-regulate the AGE-stimulated PAI-1 expression in VSMCs. However, these inhibitory effects were partially attenuated by the PPARΥ antagonist, GW9662. Furthermore, we found that AGEs induced a rapid increase in phosphorylation and activation of extracellular signal-regulated protein kinase 1/2 (ERK 1/2). The ERK kinase inhibitor, UO126, partially prevented the induction of PAI-1 by AGEs. Moreover, pioglitazone was also found to inhibit the phosphorylation of ERKi/2. Taken together, it was concluded that pioglitazone could inhibit AGE-induced PAI-1 expression, which was mediated by the ERK1/2 and PPARΥ pathways. Our findings suggestedpioglitazone had a therapeutic potential in improving fibrinolytic activity, and consequently preventing thromboembolic complications of diabetes and cardiovascular disease.  相似文献   

3.
4.
5.
Kanda Y  Watanabe Y 《Life sciences》2007,80(15):1409-1414
Cigarette smoke has been firmly established as an independent risk factor for atherosclerosis and other vascular diseases. The proliferation and migration of vascular smooth muscle cells (VSMC) induced by growth factors have been proposed to play an important role in the progression of atherosclerosis. In the present study, we investigated the effects of nicotine, which is one of the important constituents of cigarette smoke, on vascular endothelial growth factor (VEGF) release, in rat VSMC. The stimulation of cells with nicotine resulted in a time- and concentration-dependent release of VEGF. Hexamethonium, an antagonist of nicotinic acetylcholine receptor (nAChR), inhibited nicotine-induced VEGF release. We next investigated the mechanisms by which nicotine induces VEGF release in the cells. The nicotine-induced VEGF release was inhibited by treatment with U0126, a selective inhibitor of MEK, which attenuated the nicotine-induced ERK phosphorylation. Nicotine induced a transient phosphorylation of ERK. Furthermore, AG1478, a selective inhibitor of epidermal growth factor receptor (EGFR) kinase, inhibited nicotine-induced ERK phosphorylation and VEGF release. These data suggest that nicotine releases VEGF through nAChR in VSMC. Moreover, VEGF release induced by nicotine is mediated by an EGFR-ERK pathway in VSMC. VEGF may contribute to the risk of cardiovascular diseases in cigarette smokers.  相似文献   

6.
7.
Increased expression of plasminogen activator inhibitor type 1 (PAI-1) is associated with decreased apoptosis of neoplastic cells. We sought to determine whether PAI-1 alters apoptosis in vascular smooth muscle cells (VSMC) and, if so, by what mechanisms. A twofold increase in the expression of PAI-1 was induced in VSMC from transgenic mice with the use of the SM-22alpha gene promoter (SM22-PAI+). Cultured VSMC from SM22-PAI+ mice were more resistant to apoptosis induced by tumor necrosis factor plus phorbol myristate acetate or palmitic acid compared with VSMC from negative control littermates. Both wild type (WT) and a stable active mutant form of PAI-1 (Active) inhibited caspase-3 amidolytic activity in cell lysates while a serpin-defective mutant (Mut) PAI-1 did not. Similarly, both WT and Active PAI-1 decreased amidolytic activity of purified caspase-3, whereas Mut PAI-1 did not. WT but not Mut PAI-1 decreased the cleavage of poly-[ADP-ribose]-polymerase (PARP), the physiological substrate of caspase-3. Noncovalent physical interaction between caspase-3 and PAI-1 was demonstrable with the use of both qualitative and quantitative in vitro binding assays. High affinity binding was eliminated by mutations that block PAI-1 serpin activity. Accordingly, attenuated apoptosis resulting from elevated expression of PAI-1 by VSMC may be attributable, at least in part, to reversible inhibition of caspase-3 by active PAI-1.  相似文献   

8.
PAI-1, the physiological inhibitor of tissue-type and urokinase-type plasminogen activator, is a unique member of the serpins as it exists in three distinct conformations: an active inhibitory conformation, a non-inhibitory substrate conformation, and a non-reactive latent conformation. Proline substitution of single residues in the P16-P20 region (situated at the proximal hinge of the reactive site loop) of wild-type PAI-1 (wtPAI-1) and a stabilized PAI-1-variant (PAI-1-stab; N150H, K154T, Q301P, Q319L, and M354I, t(1/2)=150), respectively, resulted in two series of PAI-1-variants with different properties. In wtPAI-1 only substitution at P18 resulted in a pronounced u-PA specificity and substrate behaviour towards t-PA. In contrast, in PAI-1-stab substitution at either P18, P19 or P20 resulted in a u-PA specificity and a significantly increased substrate behaviour towards t-PA and u-PA. Importantly, analysis of the kinetics of inhibition did not reveal any differences in the second-order rate constants of inhibition (k approximately 10(7)M(-1)s(-1)). The pronounced differences observed for identical mutations in wtPAI-1 vs PAI-1-stab demonstrate that not merely the sequence of the reactive loop but also intramolecular interactions between the hF/s3A-loop and the main part of the molecule govern the functional and conformational behaviour of PAI-1.  相似文献   

9.
In this review, the pathological alteration and clinical relevance of voltage-gated K+ (Kv) channels and their specific regulation by protein kinase-dependent signaling in vascular smooth muscle cells are described, particularly focusing on the pulmonary vasculature. The physiological relevance, channel characteristics, pharmacological modulation, and expression of Kv channels vary between different arterial beds and between subdivisions of arteries within those vascular beds. Although detailed signaling cascades regulating Kv channels are not clearly elucidated, it is known that the Kv channels in vascular smooth muscle cells can be tightly regulated by protein kinases C (PKC) and A (PKA). Alterations in Kv channel expression and function has been noted in pathological and pathophysiological conditions including hypertension (pulmonary and systemic), in diabetes and in individuals subjected to prolonged hypoxia (high altitude living). Vascular Kv channels are potential therapeutic targets in diseases such as pulmonary arterial hypertension and, therefore, it is important to understand the specific pharmacological modulation of Kv channel isoforms in different vascular beds.  相似文献   

10.
Oishi K  Ohkura N  Amagai N  Ishida N 《FEBS letters》2005,579(17):3555-3559
Diabetes is associated with an excess risk of cardiac events, and one of the risk factors for infarction is the elevated-levels of plasminogen activator inhibitor-1 (PAI-1). To evaluate how the molecular clock mechanism is involved in the diabetes-induced circadian augmentation of PAI-1 gene expression, we examined the expression profiles of PAI-1 mRNA in the hearts of Clock mutant mice with streptozotocin-induced diabetes. Circadian expression of PAI-1 mRNA was blunted to low levels under both normal and diabetic conditions in Clock mutant mice, although the expression rhythm was augmented in diabetic wild-type (WT) mice. Furthermore, plasma PAI-1 levels became significantly higher in WT mice than in Clock mutant mice after STZ administration. Our results suggested that the circadian clock component, CLOCK, is involved in the diabetes-induced circadian augmentation of PAI-1 expression in the mouse heart.  相似文献   

11.
Liao XB  Zhou XM  Li JM  Yang JF  Tan ZP  Hu ZW  Liu W  Lu Y  Yuan LQ 《Amino acids》2008,34(4):525-530
Vascular calcification develops within atherosclerotic lesions and results from a process similar to osteogenesis. Taurine is a free β-amino acid and plays an important physiological role in mammals. We have recently demonstrated that vascular smooth muscle cells (VSMCs) express a functional taurine transporter. To evaluate the possible role of taurine in vascular calcification, we assessed its effects on osteoblastic differentiation of VSMCs in vitro. The results showed that taurine inhibited the β-glycerophosphate-induced osteoblastic differentiation of VSMCs as evidenced by both the decreasing alkaline phosphate (ALP) activity and expression of the core binding factor α1 (Cbfα1). Taurine also activated the extracellular signal-regulated protein kinase (ERK) pathway. Inhibition of ERK pathway reversed the effect of taurine on ALP activity and Cbfα1 expression. These results suggested that taurine inhibited osteoblastic differentiation of vascular cells via the ERK pathway.  相似文献   

12.
Numerous studies have shown that both vasoconstrictive peptide endothelin-1 (ET-1) and inflammatory marker C-reactive protein (CRP) are implicated in the inflammatory process of atherosclerosis. The purpose of the present study was to observe effect of ET-1 on CRP production and the molecular mechanisms in rat vascular smooth muscle cells (VSMCs). The results showed that ET-1 was capable of stimulating VSMCs to produce CRP both in protein and in mRNA levels in vitro and in vivo. ETA receptor antagonist BQ123, but not ETB receptor antagonist BQ788, inhibited CRP production in VSMCs. In addition, ET-1 was able to elicit reactive oxygen species (ROS) generation and mitogen-activated protein kinase (MAPK) activation, and antioxidant pyrrolidine dithiocarbamate and p38MAPK inhibitor SB203580 inhibited ET-1-induced CRP expression. The results demonstrate that ET-1 induces CPR production in VSMCs via ETA receptor followed by ROS and MAPK signal pathway, which may contribute to better understanding of the role of ET-1 in inflammatory activation of the vessel wall during atherogenesis.  相似文献   

13.
Morphological adaptations of vascular smooth muscle cells (VSMC) to the mechanically active environment in which they reside, are mediated by direct interactions with the extracellular matrix (ECM) which induces physiological changes at the intracellular level. This study aimed to analyze the effects of the ECM on RhoA-induced mechanical signaling that controls actin organization and focal adhesion formation. VSMC were transfected with RhoA constructs (wild type, dominant negative or constitutively active) and plated on different ECM proteins used as substrate (fibronectin, collagen IV, collagen I, and laminin) or poly-l-lysine as control. Morphological changes of the VSMC were detected by fluorescence confocal microscopy and total internal reflection fluorescence (TIRF) microscopy, and were independently verified using adhesion assays and Western blot analysis. Our results showed that the ECM has an important role in cell spreading, adhesion and morphology with a direct effect on modulating RhoA signaling. RhoA activity significantly affected the stress fibers and focal adhesions reorganization, but in a context imposed by the ECM. Thus, RhoA activity modulation in VSMC induced an increased activation of stress fibers and FA formation at 5 h, while a significant inhibition was recorded at 24 h after plating on the different ECM. Our findings provide biophysical evidence that ECM modulates VSMC response to mechanical stimuli inducing intracellular biochemical signaling involved in cellular adaptation to the local microenvironment.  相似文献   

14.
Novel plasminogen activator inhibitor-1 (PAI-1) inhibitors with highly improved oral bioavailability were discovered by structure-activity relationship studies on N-acyl-5-chloroanthranilic acid derivatives. Because lipophilic N-acyl groups seemed to be important for the anthranilic acid derivatives to strongly inhibit PAI-1, synthesis of compounds in which 5-chloroanthranilic acid was bound to a variety of highly lipophilic moieties with appropriate linkers was investigated. As the result it appeared that some of the derivatives possessing aryl- or heteroaryl-substituted phenyl groups in the acyl chain had potent in vitro PAI-1 inhibitory activity. Oral absorbability of typical compounds was also evaluated in rats, and compounds 40, 55, 60 and 76 which have diverse chemical structure with each other were selected for further pharmacological evaluation.  相似文献   

15.
Huang CD  Chen HH  Wang CH  Chou CL  Lin SM  Lin HC  Kuo HP 《Life sciences》2004,74(20):2479-2492
Neutrophils and their derived elastase are abundant in chronic inflammatory responses of asthma. This study aimed to investigate the mitogenic effect of elastase on airway smooth muscle (ASM) cells and the implicated signal transduction pathway. Near confluent cultured human ASM cells were treated with human neutrophil elastase (HNE, 0.01 to 0.5 microg/ml) or vehicle for 24 hours with or without extracellular signal-regulated kinase (ERK) inhibitor (PD98059, 30 microM), p38 kinase inhibitor (SB203580, 10 microM) or elastase inhibitor II (100 microg/ml). The ASM cell numbers were counted by a hemocytometer and DNA synthesis was assessed by flowcytometry. Western blots analysis for the expression of ERK, p38 and cyclin D1 was determined. HNE dose-dependently increased ASM cell numbers and the percentage of cells entering S-phase of cell cycle. This response was abolished by neutrophil elastase inhibitors and attenuated by PD98059, but not SB203580. HNE increased ERK phosphorylation and cyclin D1 expression. Pretreatment with PD98059 significantly inhibited elastase-induced cyclin D1 activity. The increased ASM cellular gap and cell shape change by proteolytic activity of HNE may be contributory to ERK activation and therefore cell proliferation. Our results demonstrate that HNE is mitogenic for ASM cells by increasing cyclin D1 activity through ERK signaling pathway.  相似文献   

16.
17.
The ATP-binding cassette transporter A1 (ABCA1) regulates lipid efflux from peripheral cells to High-density lipoprotein. The platelet-derived growth factor (PDGF) is a potent mitogen that enables vascular smooth muscle cells to participate in atherosclerosis. In this report, we showed that PDGF suppressed endogenous expression of ABCA1 in cultured vascular smooth muscle cells. Exposure of CRL-208 cells to PDGF elicited a rapid phosphorylation of a kinase downstream from PI3-K, Akt. The constitutively active form of both p110, a subunit of PI3-K, and Akt inhibited activity of the ABCA1 promoter. In conclusion, PI3-K-Akt pathways participate in PDGF-suppression of ABCA1 expression.  相似文献   

18.
In order to elucidate the relationship between homocysteine and the fibrinolytic system, we examined the effect of homocysteine on plasminogen activator inhibitor-1 (PAI-1) and tissue-type plasminogen activator (tPA) gene expression and protein secretion in cultured human vascular endothelial and smooth muscle cells in vitro. PAI-1 mRNA and secreted protein levels were both enhanced by homocysteine in a dose dependent manner, with significant stimulation of PAI-1 secretion observed at concentrations greater than 0.5 mM homocysteine. In contrast, secretion and mRNA expression of tPA were not significantly altered by homocysteine stimulation. Secretion of TGFbeta (transforming growth factor beta) and TNFalpha (tumor necrosis factor alpha), possible regulators of PAI-1 expression and secretion, were not stimulated by treatment with 1.0 mM homocysteine. These results suggests that hyperhomocysteinemia-induced atherosclerosis and/or thrombosis may be caused by homocysteine-induced stimulation of PAI-1 gene expression and secretion in the vasculatures by a mechanism independent from paracrine-autocrine activity of TGFbeta and TNFalpha.  相似文献   

19.
We aimed to study the relation between plasma levels of stress-induced heat shock protein 70 (HSPA1A) with plasminogen activator inhibitor-1 (PAI-1) and high-density lipoprotein cholesterol (HDL-C), apolipoprotein A1 (Apo-A1), and HDL-C/Apo-A1 ratio. In a matched case-control study on patients with diabetes (40 patients with albuminuria and 40 without albuminuria matched for age, sex, and body mass index), we observed that plasma levels of HSPA1A and PAI-1 are increased in patients with albuminuria (0.55 ± 0.02 vs. 0.77 ± 0.04 ng/ml, p value <0.001 for HSPA1A; 25.9 ± 2 vs. 31.8 ± 2.4 ng/ml, p value <0.05 for PAI-1). There was a significant correlation between HSPA1A and PAI-1 in diabetic patients without albuminuria (r = 0.28; p value = 0.04), but not in those with albuminuria (r = 0.07; p value = 0.63). No association was found between HSPA1A and HDL-C, between HSPA1A and Apo-A1, or between HSPA1A and HDL-C/Apo-A1 ratio. We concluded that there is a direct correlation between plasma HSPA1A and PAI-1 levels in patients with diabetes, which is lost when they develop albuminuria.  相似文献   

20.
Plasminogen activator inhibitor-1 (PAI-1), together with its physiological target urokinase-type plasminogen activator (uPA), plays a pivotal role in fibrinolysis, cell migration, and tissue remodeling and is currently recognized as being among the most extensively validated biological prognostic factors in several cancer types. PAI-1 specifically and rapidly inhibits uPA and tissue-type PA (tPA). Despite extensive structural/functional studies on these two reactions, the underlying structural mechanism has remained unknown due to the technical difficulties of obtaining the relevant structures. Here, we report a strategy to generate a PAI-1·uPA(S195A) Michaelis complex and present its crystal structure at 2.3-Å resolution. In this structure, the PAI-1 reactive center loop serves as a bait to attract uPA onto the top of the PAI-1 molecule. The P4–P3′ residues of the reactive center loop interact extensively with the uPA catalytic site, accounting for about two-thirds of the total contact area. Besides the active site, almost all uPA exosite loops, including the 37-, 60-, 97-, 147-, and 217-loops, are involved in the interaction with PAI-1. The uPA 37-loop makes an extensive interaction with PAI-1 β-sheet B, and the 147-loop directly contacts PAI-1 β-sheet C. Both loops are important for initial Michaelis complex formation. This study lays down a foundation for understanding the specificity of PAI-1 for uPA and tPA and provides a structural basis for further functional studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号