首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
植物功能性状与环境和生态系统功能   总被引:58,自引:2,他引:56       下载免费PDF全文
植物性状反映了植物对生长环境的响应和适应,将环境、植物个体和生态系统结构、过程与功能联系起来(所谓的“植物功能性状”)。该文介绍了植物功能性状的分类体系,综述了国内外植物功能性状与气候(包括气温、降水、光照)、地理空间变异(包括地形地貌、生态梯度、海拔)、营养、干扰(包括火灾、放牧、生物入侵、土地利用)等环境因素,以及与生态系统功能之间关系的研究进展,探讨了全球变化(气候变化和CO2浓度升高)对个体和群落植物功能性状的影响。植物功能性状的研究已经取得很多成果,并应用于全球变化、古植被恢复和古气候定量重建、环境监测与评价、生态保护和恢复等研究中,但大尺度、多生境因子下的植物功能性状研究仍有待于加强,同时需要改进性状的测量手段;我国的植物功能性状研究还需要更加明朗化和系统化。  相似文献   

2.
植物功能性状对土壤保持的影响研究述评   总被引:3,自引:0,他引:3  
王晶  赵文武  刘月  贾立志 《生态学报》2019,39(9):3355-3364
植被对土壤保持具有重要的影响,但是从植物功能性状的角度总结评述植被对土壤保持影响的研究并不多见。总结评述了植物地上功能性状、地下功能性状对土壤保持功能的影响以及植物地上、地下功能性状的关系,认为:(1)植被地上部分功能性状对土壤保持的作用主要体现在对溅蚀、面蚀的影响及间接改变土壤理化性质等方面,其功能性状指标主要包括叶面积、叶长、叶宽、枝数、植被高度等;(2)植被地下部分功能性状对土壤保持的作用主要体现在固持土壤、提高土壤抗剪切强度、提高土壤抗侵蚀能力、增强土壤渗透性,植物根系固持土壤与根系抗拉能力密切相关,植物根系土壤的物理和水文性质,与细根比例、根长密度、根表面积等性状密切相关;(3)可以通过植物地上部分功能性状间接反映地下部分功能性状,但是现有研究多为定性认识;(4)在植物功能性状对土壤保持的研究中亟待加强植被地上地下功能性状的长期定位监测,深化植被功能性状尤其是根系特征与土壤保持的作用机理,加强植被地上部分、地下部分功能性状的定量表达,建立植被功能性状与土壤保持功能的定量关系,实现植被功能性状与土壤保持功能特征的动态链接。  相似文献   

3.
4.
研究水分和养分添加对植物功能性状的影响, 对于揭示植物对环境变化的响应和适应规律至关重要。该文采用盆栽试验的方法, 进行不同水平水分处理(增水50%, 减水50%, 以498 mm降水量作为对照)和养分添加(无养分添加, 单施氮肥, 单施磷肥, 氮磷共施), 研究羊草(Leymus chinensis)的10种功能性状和地上生物量对水分和养分添加的响应。得出以下结论: (1)双因素方差分析结果表明, 水分主效应对羊草株高、分蘖数、茎生物量、叶生物量、叶面积、叶质量、净光合速率、蒸腾速率、水分利用效率存在显著影响; 养分主效应对羊草分蘖数、茎生物量、净光合速率、蒸腾速率、水分利用效率存在显著影响; 水分和养分的交互作用对羊草分蘖数、茎生物量、蒸腾速率、水分利用效率存在显著影响。(2)各功能性状对降水量的响应在不同养分添加水平是不同的, 分蘖数和叶面积在单施氮肥和氮磷共施条件下随降水量增加而增加, 而在无养分添加和单施磷肥条件下无显著变化; 茎生物量在无养分添加、单施氮肥和单施磷肥条件下随降水量增加而增加, 而在氮磷共施条件下无增加趋势; 比叶面积在单施氮肥条件下增水处理显著低于对照组, 而在其他养分添加条件下无明显变化。(3)短期氮磷处理显著影响羊草叶片光合生理性状, 而对叶形态性状影响不显著。(4)羊草地上生物量随降水量的增加呈现上升趋势, 并且在单施氮肥条件下, 增水处理使地上生物量达到最高, 为522.55 g·m -2。总之, 羊草的功能性状对降水量增加表现出明显的响应, 响应格局在不同养分条件下不同, 反映了其对水肥环境变化的适应。  相似文献   

5.

Background and Aims

Global environmental change will affect non-native plant invasions, with profound potential impacts on native plant populations, communities and ecosystems. In this context, we review plant functional traits, particularly those that drive invader abundance (invasiveness) and impacts, as well as the integration of these traits across multiple ecological scales, and as a basis for restoration and management.

Scope

We review the concepts and terminology surrounding functional traits and how functional traits influence processes at the individual level. We explore how phenotypic plasticity may lead to rapid evolution of novel traits facilitating invasiveness in changing environments and then ‘scale up’ to evaluate the relative importance of demographic traits and their links to invasion rates. We then suggest a functional trait framework for assessing per capita effects and, ultimately, impacts of invasive plants on plant communities and ecosystems. Lastly, we focus on the role of functional trait-based approaches in invasive species management and restoration in the context of rapid, global environmental change.

Conclusions

To understand how the abundance and impacts of invasive plants will respond to rapid environmental changes it is essential to link trait-based responses of invaders to changes in community and ecosystem properties. To do so requires a comprehensive effort that considers dynamic environmental controls and a targeted approach to understand key functional traits driving both invader abundance and impacts. If we are to predict future invasions, manage those at hand and use restoration technology to mitigate invasive species impacts, future research must focus on functional traits that promote invasiveness and invader impacts under changing conditions, and integrate major factors driving invasions from individual to ecosystem levels.  相似文献   

6.
植物功能性状对全球气候变化的指示作用研究进展   总被引:1,自引:0,他引:1  
以大气CO2浓度升高、大气温度升高、干旱胁迫加剧及紫外辐射增强为特征的全球变化对陆地生态系统产生巨大影响,植物作为陆地生态系统的重要组成部分,其功能性状对全球变化的指示作用为探寻全球变化规律、减缓气候变化提供了科学依据。该文主要综述了植物生理功能性状改变(形态变化、气孔调节、光合结构及光合途径改变和植物光合、呼吸速率及水分生理变化等)和物候功能性状改变对全球变化的指示作用,以及植物群落物种丰富度或数量增加等群落特征变化对全球气候变暖的指示作用。最后指出,完善植物功能性状指标和建立从植物个体、群落到生态系统功能的网络指示系统是今后植物功能性状指示研究的发展方向。  相似文献   

7.
The functional biogeography of tropical forests is expressed in foliar chemicals that are key physiologically based predictors of plant adaptation to changing environmental conditions including climate. However, understanding the degree to which environmental filters sort the canopy chemical characteristics of forest canopies remains a challenge. Here, we report on the elevation and soil‐type dependence of forest canopy chemistry among 75 compositionally and environmentally distinct forests in nine regions, with a total of 7819 individual trees representing 3246 species collected, identified and assayed for foliar traits. We assessed whether there are consistent relationships between canopy chemical traits and both elevation and soil type, and evaluated the general role of phylogeny in mediating patterns of canopy traits within and across communities. Chemical trait variation and partitioning suggested a general model based on four interconnected findings. First, geographic variation at the soil‐Order level, expressing broad changes in fertility, underpins major shifts in foliar phosphorus (P) and calcium (Ca). Second, elevation‐dependent shifts in average community leaf dry mass per area (LMA), chlorophyll, and carbon allocation (including nonstructural carbohydrates) are most strongly correlated with changes in foliar Ca. Third, chemical diversity within communities is driven by differences between species rather than by plasticity within species. Finally, elevation‐ and soil‐dependent changes in N, LMA and leaf carbon allocation are mediated by canopy compositional turnover, whereas foliar P and Ca are driven more by changes in site conditions than by phylogeny. Our findings have broad implications for understanding the global ecology of humid tropical forests, and their functional responses to changing climate.  相似文献   

8.
Increasing drought is one of the most critical challenges facing species and ecosystems worldwide, and improved theory and practices are needed for quantification of species tolerances. Leaf water potential at turgor loss, or wilting (π(tlp) ), is classically recognised as a major physiological determinant of plant water stress response. However, the cellular basis of π(tlp) and its importance for predicting ecological drought tolerance have been controversial. A meta-analysis of 317 species from 72 studies showed that π(tlp) was strongly correlated with water availability within and across biomes, indicating power for anticipating drought responses. We derived new equations giving both π(tlp) and relative water content at turgor loss point (RWC(tlp) ) as explicit functions of osmotic potential at full turgor (π(o) ) and bulk modulus of elasticity (ε). Sensitivity analyses and meta-analyses showed that π(o) is the major driver of π(tlp) . In contrast, ε plays no direct role in driving drought tolerance within or across species, but sclerophylly and elastic adjustments act to maintain RWC(tlp,) preventing cell dehydration, and additionally protect against nutrient, mechanical and herbivory stresses independent of drought tolerance. These findings clarify biogeographic trends and the underlying basis of drought tolerance parameters with applications in comparative assessments of species and ecosystems worldwide.  相似文献   

9.
Invasive alien plants in China: role of clonality and geographical origin   总被引:8,自引:0,他引:8  
Biological invasions have become a significant threat to the global environment. Unfortunately, to date there is no consensus on invasion mechanisms and predictive models. Controversies range from whether we can reliably predict which species may become invasive to which species characteristics (e.g., life history, taxonomic groups, or geographic origin) contribute to the invasion processes. We examined 126 invasive alien plant species in China to understand the role of clonality and geographical origin in their invasion success. These species were categorized into three groups (I, II, III) based on their invasiveness in terms of current spatial occupation and the degree of damage to invaded habitats. Clonal plants consisted of almost half (44%) of the 126 invasive species studied, and consisted of 66% of 32 the most invasive alien plant species (Group I). There was a significant positive relationship between clonality and species invasiveness. A 68% of the 126 species studied originated in the continent of America (North and/or South America). These preliminary findings support that America is the primary geographical origin of invasive alien plant species in China and that clonality of the invasive plant species contributed significantly to the their invasiveness. The results suggest an urgent need at the global scale to investigate the mechanisms whereby plant clonal growth influences plant invasions, and the need for a focus at regional scale to examine factors affecting the exchange of invasive plant species between America and China.  相似文献   

10.
郑颖  温仲明  宋光  丁曼 《生态学报》2015,35(17):5834-5845
不同退耕年限退耕地的环境差异以及不同生物间的相互作用导致各阶段植物功能型物种数量不同。研究退耕地植被自然恢复过程中不同植物功能型适应策略及功能型物种数量随退耕年限的变化,对于理解植物对环境的响应机制及植物的适应策略具有重要意义。采用空间序列代替时间序列的方法,以延河流域森林草原区不同退耕年限、自然恢复的植物群落为研究对象,调查了不同退耕年限的植物群落33个,共44种植物,涉及16个科35个属,分别测定了每个物种的叶厚度、比叶面积、叶组织密度、叶片氮含量、比根长、根组织密度、细根氮含量等7项能够反映植物生存对策且易于测量的功能性状。依据这7项植物功能性状,采用数量分类方法将全部物种划分为3个功能型。结果表明:(1)根据C-S-R理论,功能型Ⅰ植物用于防御的投资较多,生长速率处于中间水平,偏向于"胁迫-干扰型",功能型Ⅱ植物能够通过维持体内的养分平衡的方式对抗资源贫瘠或干旱的环境,偏向于"胁迫-竞争型"对策,而功能型Ⅲ植物吸收大量的营养和资源用于生长,偏向于"竞争型";(2)功能型Ⅰ在整个植被恢复时间序列中占据优势地位(61%—80%),并呈增加趋势,功能型Ⅱ则由恢复初期的25%降低为恢复后期的15%,功能型Ⅲ从恢复初期的14%降低到恢复后期的5%。同时,在功能型Ⅰ内部,优势物种也发生着相应的相互替代。虽然土壤养分含量整体上随着植被自然恢复时间的延长而呈上升趋势,但是植物的生存环境并未改善到不存在干扰与胁迫的程度。因此,在植被恢复初期的四、五十年内,"胁迫-干扰型"策略的植物占据着绝对优势。随着植被恢复时间的延长,能够高效利用资源且抗胁迫能力强的物种代替了以快速生长和传播为适应策略的物种。  相似文献   

11.
受人类活动和气候变化的影响,湖泊湖滨带退化速度显著加快。植物功能性状的方法可以量化植物特征,预测植物对外界环境干扰的反应,有助于理解退化湖滨带湿地植物应对环境变化所表现出的适应机制,对湖泊湖滨湿地生态系统植被的恢复与重建具有重要意义。在内蒙古高原典型湖泊湖滨湿地选取芦苇(Phragmites australis)、赖草(Leymus secalinus)、毛茛(Ranunculus japonicus)、鹅绒委陵菜(Potentilla anserina)、碱蓬(Suaeda glauca)、盐角草(Salicornia europaea)和拂子茅(Calamagrostis epigeios)7种优势植物的叶片和根系作为研究对象,对不同湿地植物的11种功能性状变化规律及其与环境因子的关系进行研究。旨在探究环境变化影响下湖滨带湿地植物的物种分布和功能性状的差异,以及湿地植物在不同湖滨带湿地生境下的适应策略。在评估植物功能性状差异基础上,采用环境矩阵连接性状矩阵(RLQ)结合第四角分析(Fourth-Corner)的方法分析环境因子对植物功能性状的影响。结果表明,内蒙古湖滨带湿地中7种优势植物为了适应不同的环境的影响,植物的功能性状均产生不同程度的种间与种内变异,在湖滨带湿地中植物的植株高度、叶片碳含量、叶片氮含量、叶片碳氮比、比根长、根组织密度、根氮含量对环境变化的响应比较敏感,土壤pH与叶片干物质含量呈显著负相关;土壤盐分与植株高度、叶片碳含量和叶碳氮比显著负相关,与叶片氮含量、根组织密度显著正相关;土壤的总氮含量与植株高度显著正相关,与比根长显著负相关;土壤碳氮比与植株高度和叶片碳含量显著负相关,与植物比根长显著正相关;土壤容重与根氮含量显著负相关。研究表明内蒙古高原湖滨带湿地植物的功能性状受环境的作用强烈,植物采取了不同的性状策略来适应环境。  相似文献   

12.
The distribution of species and communities in relation to environmental heterogeneity is a central focus in ecology. Co‐occurrence of species with similar functional traits is an indication that communities are determined in part by environmental filters. However, few studies have been designed to test how functional traits are selectively filtered by environmental conditions at local scales. Exploring the relationship between soil characteristics and plant traits is a step toward understanding the filtering hypothesis in determining plant distribution at local scale. Toward this end, we mapped all individual trees (diameter >1 cm) in a one‐ha subtropical forest of China in 2007 and 2015. We measured topographic and detailed soil properties within the field site, as well as plant leaf functional traits and demographic rates of the seven most common tree species. A second one‐ha study plot was established in 2015, to test and validate the general patterns that were drawn from first plot. We found that variation in species distribution at local scale can be explained by soil heterogeneity and plant functional traits. (From first plot). (1) Species dominant in habitats with high soil ammonium nitrogen and total phosphorus tended to have high specific leaf area (SLA) and relative growth rate (RGR). (2) Species dominant in low‐fertility habitats tended to have high leaf dry matter content (LDMC), ratio of chlorophyll a and b (ratioab), and leaf thickness (LT). The hypothesis that functional traits are selected in part by environmental filters and determine plant distribution at local scale was confirmed by the data of the first plot and a second regional site showed similar species distribution patterns.  相似文献   

13.
Despite the appeal of the iso/anisohydric framework for classifying plant drought responses, recent studies have shown that such classifications can be strongly affected by a plant's environment. Here, we present measured in situ drought responses to demonstrate that apparent isohydricity can be conflated with environmental conditions that vary over space and time. In particular, we (a) use data from an oak species (Quercus douglasii) during the 2012–2015 extreme drought in California to demonstrate how temporal and spatial variability in the environment can influence plant water potential dynamics, masking the role of traits; (b) explain how these environmental variations might arise from climatic, topographic, and edaphic variability; (c) illustrate, through a “common garden” thought experiment, how existing trait‐based or response‐based isohydricity metrics can be confounded by these environmental variations, leading to Type‐1 (false positive) and Type‐2 (false negative) errors; and (d) advocate for the use of model‐based approaches for formulating alternate classification schemes. Building on recent insights from greenhouse and vineyard studies, we offer additional evidence across multiple field sites to demonstrate the importance of spatial and temporal drivers of plants' apparent isohydricity. This evidence challenges the use of isohydricity indices, per se, to characterize plant water relations at the global scale.  相似文献   

14.
植物生长调节剂通过克隆整合对空心莲子草顶端和基部生长的不同作用 入侵植物不仅对全球生物多样性造成了巨大的威胁,同时也严重影响了农业生产与粮食安全。克隆整合使得相连植株进行资源共享,能促进入侵植物的生长从而获得优势。然而,入侵杂草 在植物调节剂(plant growth regulators, PGRs)影响下的克隆整合作用则很少有报道。PGRs被广泛应用于 农作物生产上,并能通过土壤淋溶、侵蚀和径流作用,影响分布在作物附近的农田杂草的生长。本 研究采用两种PGRs赤霉素(gibberellins, GA)和多效唑(paclobutrazol,PAC)处理恶性入侵杂草空心莲子草 (Alternanthera philoxeroides)基端,并保持或者通过剪切达到控制基端与顶端的连通,从而探究克隆整合作用在空心莲子草响应两种农业常用PGRs中的作用。研究结果表明,GA和PAC对空心莲子草生长的作用相反。GA通过克隆整合作用显著促进顶端植株的地上生长。相反地,PAC显著抑制基端和顶端的地 上生长,但是能够通过克隆整合作用显著促进基端和顶端的地下生长。这些研究结果解释了克隆整合作用能促进PGRs对空心莲子草生长的促进作用,这很可能是外来杂草能够成功入侵人为干扰较多的农业生态系统的重要原因之一。  相似文献   

15.
16.
Antioxidant enzymes protect cells against oxidative stress and are associated with stress tolerance and longevity. In animals, variation in their activities has been shown to relate to species ecology, but in plants, comparative studies with wild species are rare. We investigated activities of five antioxidant enzymes – ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), peroxidase (POX), and superoxide dismutase (SOD) – in roots of four perennial graminoid wetland species over a growing season to find out whether differences in root turnover or habitat preferences would be associated with variation in seasonal patterns of antioxidant enzyme activities. The investigated species differ in their root turnover strategies (fine roots senesce in the fall or fine roots survive the winter) and habitat preferences (nutrient‐poor vs. productive wetlands). Roots were collected both in the field and from garden‐grown plants. Antioxidant enzyme activities were higher and lipid peroxidation rates lower in species with annual root systems, and for species of the nutrient‐poor wetland, compared with perennial roots and species of productive wetlands, respectively. There was variation in the activities of individual antioxidant enzymes, but discriminant analyses with all enzymes revealed a clear picture, indicating consistent associations of antioxidant enzyme activities with the type of root turnover strategy and with the preferred habitat. We conclude that antioxidant enzyme activities in plant roots are associated with the species' ecological strategies and can be used as traits for the characterization of the species' position along plant economics spectrum.  相似文献   

17.
Plant growth-promoting rhizobacteria (PGPR) can help plants to resist drought stress. However, the mechanisms of how PGPR inoculation affect plant status under drought remain incompletely understood. We performed a meta-analysis of plant response to PGPR inoculation by compiling data from 57 PGPR-inoculation studies, including 2, 387 paired observations on morphological, physiological and biochemical parameters under drought and well-watered conditions. We compare the PGPR effect on plants performances among different groups of controls and treatments. Our results reveal that PGPR enables plants to restore themselves from drought-stressed to near a well-watered state, and that C4 plants recover better from drought stress than C3 plants. Furthermore, PGPR is more effective underdrought than well-watered conditions in increasing plant biomass, enhancing photosynthesis and inhibiting oxidant damage, and the responses of C4 plants to the PGPR effect was stronger than that of C3 plants under drought conditions. Additionally, PGPR belonging to different taxa and PGPR with different functional traits have varying degrees of drought-resistance effects on plants. These results are important to improve our understanding of the PGPR beneficial effects on enhanced drought-resistance of plants.  相似文献   

18.
当前人口激增、环境污染、生态破坏等问题层出不穷。改良农艺性状,如提高产量、增强逆境耐受能力,是作物遗传改良的重要目标,是推动农业高质量发展的基础。泛素-蛋白酶体系统(UPS)是一种快速的选择性水解植物体产生的冗余蛋白和被损坏蛋白的体系。目前,研究发现泛素-蛋白酶系统影响植物的发育、生殖和重要的农艺性状:如应对环境胁迫、开花诱导和种子大小等。综述了近年来的研究成果,阐述了蛋白酶体UPS组分和各亚基的重要功能,并描述了泛素-蛋白酶系统是如何影响植物农艺性状的。最后,讨论了未来的研究热点和利用UPS改良作物的潜力。  相似文献   

19.
Many plant traits are not randomly distributed among families. The question considered here is ‘are rarity and commonness of vascular plants in Fennoscandia randomly distributed among families?’ If more rare or more common species are found within a family, this may give some initial indications about which traits may predict rarity and commonness of species. A species was defined as rare or common based on its abundance and on the number of grid squares it occupies. 1521 naturally occurring species in 229 75×75 km grid squares were used. Permutation tests were performed to assess statistically if rarity and commonness are randomly distributed among families. Several families can be identified as having more rare or more common species than would be expected under a random allocation model. However, there are little deviations from what would be expected if rarity and commonness were randomly distributed among families in the whole Fennoscandian flora. It is proposed that the arbitrary geographical limits of the study area may account for the lack of any clear patterns of rarity and commonness among and between families.  相似文献   

20.
Considerable uncertainty surrounds the impacts of anthropogenic climate change on the composition and structure of Amazon forests. Building upon results from two large‐scale ecosystem drought experiments in the eastern Brazilian Amazon that observed increases in mortality rates among some tree species but not others, in this study we investigate the physiological traits underpinning these differential demographic responses. Xylem pressure at 50% conductivity (xylem‐P50), leaf turgor loss point (TLP), cellular osmotic potential (πo), and cellular bulk modulus of elasticity (ε), all traits mechanistically linked to drought tolerance, were measured on upper canopy branches and leaves of mature trees from selected species growing at the two drought experiment sites. Each species was placed a priori into one of four plant functional type (PFT) categories: drought‐tolerant versus drought‐intolerant based on observed mortality rates, and subdivided into early‐ versus late‐successional based on wood density. We tested the hypotheses that the measured traits would be significantly different between the four PFTs and that they would be spatially conserved across the two experimental sites. Xylem‐P50, TLP, and πo, but not ε, occurred at significantly higher water potentials for the drought‐intolerant PFT compared to the drought‐tolerant PFT; however, there were no significant differences between the early‐ and late‐successional PFTs. These results suggest that these three traits are important for determining drought tolerance, and are largely independent of wood density—a trait commonly associated with successional status. Differences in these physiological traits that occurred between the drought‐tolerant and drought‐intolerant PFTs were conserved between the two research sites, even though they had different soil types and dry‐season lengths. This more detailed understanding of how xylem and leaf hydraulic traits vary between co‐occuring drought‐tolerant and drought‐intolerant tropical tree species promises to facilitate a much‐needed improvement in the representation of plant hydraulics within terrestrial ecosystem and biosphere models, which will enhance our ability to make robust predictions of how future changes in climate will affect tropical forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号