首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Sheep scrapie is a prototypical transmissible spongiform encephalopathy (TSE), and the most widespread of these diseases. Experimental study of TSE infectious agents from sheep and other species essentially depends on bioassays in rodents. Transmission of natural sheep scrapie to conventional mice commonly requires one or two years. In an effort to develop laboratory models in which investigations on the sheep TSE agent would be facilitated, we have established mice and cell lines that were genetically engineered to express ovine PrP protein and examined their susceptibility to the infection. A series of transgenic mice lines (tgOv) expressing the high susceptibility allele (VRQ) of the ovine PrP gene from different constructs was expanded. Following intracerebral inoculation with natural scrapie isolates, all animals developed typical TSE neurological signs and accumulated abnormal PrP in their brain. The survival time in the highest expressing tgOv lines ranged from 2 to 7 months, depending on the isolate. It was inversely related to the brain PrP content, and essentially unchanged on further passaging. Ovine PrP transgene expression thus enhanced scrapie disease transmission from sheep to mice. Such tgOv mice may bring new opportunities for analysing the natural variation of scrapie strains and measuring infectivity. As no relevant cell culture models for agents of naturally-occurring TSE exist, we have explored various strategies in order to obtain stable cell lines that would propagate the sheep agent ex vivo without prior adaptation to rodent. In one otherwise refractory rabbit epithelial cell line, a regulable expression of ovine PrP was achieved and found to enable an efficient replication of the scrapie agent in inoculated cultures. Cells derived from sheep embryos or from tgOv mice were also used in an attempt to establish permissive cell lines derived from the nervous system. Cells engineered to express PrP proteins of a specified sequence may thus represent a promising strategy to further explore, at the cellular level, various aspects of TSE diseases.  相似文献   

2.
Transmissible spongiform encephalopathies (TSEs) are caused by an infectious agent that is thought to consist of only misfolded and aggregated prion protein (PrP). Unlike conventional micro-organisms, the agent spreads and propagates by binding to and converting normal host PrP into the abnormal conformer, increasing the infectious titre. Synthetic prions, composed of refolded fibrillar forms of recombinant PrP (rec-PrP) have been generated to address whether PrP aggregates alone are indeed infectious prions. In several reports, the development of TSE disease has been described following inoculation and passage of rec-PrP fibrils in transgenic mice and hamsters. However in studies described here we show that inoculation of rec-PrP fibrils does not always cause clinical TSE disease or increased infectious titre, but can seed the formation of PrP amyloid plaques in PrP-P101L knock-in transgenic mice (101LL). These data are reminiscent of the “prion-like” spread of misfolded protein in other models of neurodegenerative disease following inoculation of transgenic mice with pre-formed amyloid seeds. Protein misfolding, even when the protein is PrP, does not inevitably lead to the development of an infectious TSE disease. It is possible that most in vivo and in vitro produced misfolded PrP is not infectious and that only a specific subpopulation is associated with infectivity and neurotoxicity.  相似文献   

3.
Naturally occurring transmissible spongiform encephalopathy (TSE) diseases such as bovine spongiform encephalopathy in cattle are probably transmitted by oral or other peripheral routes of infection. While prion protein (PrP) is required for susceptibility, the mechanism of spread of infection to the brain is not clear. Two prominent possibilities include hematogenous spread by leukocytes and neural spread by axonal transport. In the present experiments, following oral or intraperitoneal infection of transgenic mice with hamster scrapie strain 263K, hamster PrP expression in peripheral nerves was sufficient for successful infection of the brain, and cells of the spleen were not required either as a site of amplification or as transporters of infectivity. The role of tissue-specific PrP expression of foreign PrP in interference with scrapie infection was also studied in these transgenic mice. Peripheral expression of heterologous PrP completely protected the majority of mice from clinical disease after oral or intraperitoneal scrapie infection. Such extensive protection has not been seen in earlier studies on interference, and these results suggested that gene therapy with mutant PrP may be effective in preventing TSE diseases.  相似文献   

4.
5.
Transgenic mice are an effective model to study gene function in vivo; however, position effects can complicate tissue-specific transgene analysis. To facilitate precise targeting of a transgenic construct into the mouse genome, we combined the Cre/lox and Flp/FRT recombination systems to allow for rapid transgene replacement and conditional transgene expression from the endogenous beta-actin locus. Flp/FRT recombination was used to rapidly exchange FRT-flanked transgene cassettes by recombinase-mediated cassette exchange in embryonic stem cells, while transgene expression can be activated in mice after Cre-mediated excision of a floxed STOP cassette. To validate our system, we analyzed the expression profile of an EGFP reporter gene after integration into the beta-actin locus and Cre-mediated excision of the floxed STOP cassette. Breeding of EGFP reporter mice with various Cre mouse lines resulted in the expected expression profiles, demonstrating the feasibility of the model to facilitate predictable and strong transgene expression in a spatially and temporally controlled manner.  相似文献   

6.
7.
8.
The expression of the prion protein (PrP) is essential for transmissible spongiform encephalopathy (TSE) or prion diseases to occur, but the underlying mechanism of infection remains unresolved. To address the hypothesis that glycosylation of host PrP is a major factor influencing TSE infection, we have inoculated gene-targeted transgenic mice that have restricted N-linked glycosylation of PrP with three TSE strains. We have uniquely demonstrated that mice expressing only unglycosylated PrP can sustain a TSE infection, despite altered cellular location of the host PrP. Moreover we have shown that brain material from mice infected with TSE that have only unglycosylated PrPSc is capable of transmitting infection to wild-type mice, demonstrating that glycosylation of PrP is not essential for establishing infection within a host or for transmitting TSE infectivity to a new host. We have further dissected the requirement of each glycosylation site and have shown that different TSE strains have dramatically different requirements for each of the glycosylation sites of host PrP, and moreover, we have shown that the host PrP has a major role in determining the glycosylation state of de novo generated PrPSc.  相似文献   

9.
The prion protein (PrP) is crucially involved in transmissible spongiform encephalopathies (TSE), but neither its exact role in disease nor its physiological function are known. Here we show for mice, using histological, immunochemical and PCR-based methods, that stimulation of innate resistance was followed by appearance of numerous endogenous retroviruses and ensuing PrP up-regulation in germinal centers of the spleen. Subsequently, the activated retroviruses disappeared in a PrP-dependent manner. Our results reveal the regular involvement of endogenous retroviruses in murine immune responses and provide evidence for an essential function of PrP in the control of the retroviral activity. The interaction between PrP and ubiquitous endogenous retroviruses may allow new interpretations of TSE pathophysiology and explain the evolutionary conservation of PrP.  相似文献   

10.
Retinoic acid, the active vitamin A derivative, has pleiotropic functions during vertebrate development and postnatal life. Retinaldehyde dehydrogenase 2 (RALDH2) acts as the main retinoic acid-synthesizing enzyme during development. Mouse Raldh2 germline null mutants are early embryonic lethal and exhibit complex abnormalities that include defective heart looping morphogenesis. To investigate later functions of this enzyme, we have engineered a "floxed" (loxP-flanked) allele allowing Cre-mediated somatic gene inactivations. Mice heterozygous or homozygous for the floxed Raldh2 allele are viable and fertile. We tested whether the novel Raldh2 allele behaves as a null mutation after Cre-mediated in vivo excision by crossing the conditional mutants with CMV-Cre transgenic mice. An embryonic lethal phenotype indistinguishable from that of germline mutants was obtained. The conditional allele described herein is a genetic tool for studying tissue-specific, RALDH2-dependent functions of retinoic acid during development and in adult life.  相似文献   

11.
Central to understanding the nature TSE agents (or prions) is how their genetic information is distinguished from the host. Are TSEs truly infectious diseases with host-independent genomes, or are they aberrations of a host component derived from the host genome? Recent experiments tested whether glycosylation of host PrP affects TSE strain characteristics. Wild-type mice were infected with 3 TSE strains passaged through transgenic mice with PrP devoid of glycans at 1 or both N-glycosylation sites. Strain-specific characteristics of 1 TSE strain changed but did not change for 2 others. Changes resulted from the selection of mutant TSE strains in a novel replicative environment. In general the properties of established TSEs support the genetic independence of TSE agents from the host, and specifically the primary structure of PrP does not directly encode TSE agent properties. However sporadic TSEs, challenge this independency. The prion hypothesis explains emerging TSEs relatively successfully but poorly accounts for the diversity and mutability of established TSE strains, or how many different infectious conformations are sustained thermodynamically. Research on early changes in RNA expression and events at the ribosome may inform the debate on TSE agent properties and their interaction with host cell machinery.  相似文献   

12.
A mutation equivalent to P102L in the human PrP gene, associated with Gerstmann-Straussler syndrome (GSS), has been introduced into the murine PrP gene by gene targeting. Mice homozygous for this mutation (101LL) showed no spontaneous transmissible spongiform encephalopathy (TSE) disease, but had incubation times dramatically different from wild-type mice following inoculation with different TSE sources. Inoculation with GSS produced disease in 101LL mice in 288 days. Disease was transmitted from these mice to both wild-type (226 days) and 101LL mice (148 days). In contrast, 101LL mice infected with ME7 had prolonged incubation times (338 days) compared with wild-type mice (161 days). The 101L mutation does not, therefore, produce any spontaneous genetic disease in mice but significantly alters the incubation time of TSE infection. Additionally, a rapid TSE transmission was demonstrated despite extremely low levels of disease-associated PrP.  相似文献   

13.
The agents responsible for transmissible spongiform encephalopathies (TSEs), or prion diseases, contain as a major component PrPSc, an abnormal conformer of the host glycoprotein PrPC. TSE agents are distinguished by differences in phenotypic properties in the host, which nevertheless can contain PrPSc with the same amino‐acid sequence. If PrP alone carries information defining strain properties, these must be encoded by post‐translational events. Here we investigated whether the glycosylation status of host PrP affects TSE strain characteristics. We inoculated wild‐type mice with three TSE strains passaged through transgenic mice with PrP devoid of glycans at the first, second or both N‐glycosylation sites. We compared the infectious properties of the emerging isolates with TSE strains passaged in wild‐type mice by in vivo strain typing and by the standard scrapie cell assay in vitro. Strain‐specific characteristics of the 79A TSE strain changed when PrPSc was devoid of one or both glycans. Thus infectious properties of a TSE strain can be altered by post‐translational changes to PrP which we propose result in the selection of mutant TSE strains.  相似文献   

14.
Conditional gene targeting using the Cre/loxP technology generally includes integration of a selection marker cassette flanked by loxP recognition sites (floxed) in the target gene locus. Subsequent marker removal avoids possible impairment of gene expression or mosaicism due to partial and total deletions after Cre-mediated recombination in vivo. The use of deleter Cre mice for in vivo marker removal in floxed connexin43 mice revealed considerable mosaicism, but no selective marker removal. In addition, we noted that several Cre transgenic lines displayed spontaneous ectopic activity, reminiscent of deleter Cre mice, and required the confirmation of cell type-specific deletion in every individual mouse. When we used myosin heavy chain promoter Cre (alphaMyHC-Cre) mice for cardiomyocyte specific deletion, we observed, in addition to cardiomyocyte-restricted or complete excision, selective marker removal in a subgroup of mice as well. Thus, selective marker removal can be achieved as a byproduct of cell-type restricted deletion.  相似文献   

15.
The PrP gene of the host exerts a major influence over the outcome of transmissible spongiform encephalopathy (TSE) disease, but the mechanism by which this is achieved is not understood. We have introduced a specific mutation into the endogenous murine PrP gene using gene targeting to produce transgenic mice with a single amino acid alteration (proline to leucine) at amino acid position 101 in their PrP protein (P101L). The effect of this alteration on incubation time, targeting and PrP(Sc) formation has been studied in TSE-infected animals. Transgenic mice carrying the P101L mutation in PrP have remarkable differences in incubation time and targeting of central nervous system pathology compared with wild-type littermates, following inoculation with infectivity from human, hamster, sheep and murine sources. This single mutation can alter incubation time across three species barriers in a strain-dependent manner. These findings suggest a critical role for the structurally 'flexible' region of PrP in agent replication and targeting of TSE pathology.  相似文献   

16.
Transmissible Spongiform Encephal-opathies (TSE) or prion diseases are a threat to food safety and to human and animal health. The molecular mechanisms responsible for prion diseases share similarities with a wider group of neurodegenerative disorders including Alzheimer disease and Parkinson disease and the central pathological event is a disturbance of protein folding of a normal cellular protein that is eventually accompanied by neuronal cell death and the death of the host. Prion protein (PrP) is a constituent of most normal mammalian cells and its presence is essential in the pathogenesis of TSE. However, the function of this normal cellular protein remains unclear. The prevention of PRNP gene expression in mammalian species has been undramatic, implying a functional redundancy. Yet PrP is conserved from mammals to fish. Recent studies of PrP in zebrafish have yielded novel findings showing that PrP has essential roles in early embryonic development. The amenability of zebrafish to global technologies has generated data indicating the existence of “anchorless” splice variants of PrP in the early embryo. This paper will discuss the possibility that the experimentalist''s view of PrP functions might be clearer at a greater phylogenetic distance.Key words: prion protein, zebrafish, gene expression, embryo development, neurogenesis  相似文献   

17.
The disease-associated prion protein (PrP(TSE)), the probable etiological agent of the transmissible spongiform encephalopathies (TSEs), is resistant to degradation and can persist in the environment. Lichens, mutualistic symbioses containing fungi, algae, bacteria and occasionally cyanobacteria, are ubiquitous in the environment and have evolved unique biological activities allowing their survival in challenging ecological niches. We investigated PrP(TSE) inactivation by lichens and found acetone extracts of three lichen species (Parmelia sulcata, Cladonia rangiferina and Lobaria pulmonaria) have the ability to degrade prion protein (PrP) from TSE-infected hamsters, mice and deer. Immunoblots measuring PrP levels and protein misfolding cyclic amplification indicated at least two logs of reductions in PrP(TSE). Degradative activity was not found in closely related lichen species or in algae or a cyanobacterium that inhabit lichens. Degradation was blocked by Pefabloc SC, a serine protease inhibitor, but not inhibitors of other proteases or enzymes. Additionally, we found that PrP levels in PrP(TSE)-enriched preps or infected brain homogenates are also reduced following exposure to freshly-collected P. sulcata or an aqueous extract of the lichen. Our findings indicate that these lichen extracts efficiently degrade PrP(TSE) and suggest that some lichens could have potential to inactivate TSE infectivity on the landscape or be a source for agents to degrade prions. Further work to clone and characterize the protease, assess its effect on TSE infectivity and determine which organism or organisms present in lichens produce or influence the protease activity is warranted.  相似文献   

18.
Transmissible spongiform encephalopathies (TSE) or prion diseases are neurodegenerative disorders associated with conversion of normal host prion protein (PrP) to a misfolded, protease-resistant form (PrPres). Genetic variations of prion protein in humans and animals can alter susceptibility to both familial and infectious prion diseases. The N171S PrP polymorphism is found mainly in humans of African descent, but its low incidence has precluded study of its possible influence on prion disease. Similar to previous experiments of others, for laboratory studies we created a transgenic model expressing the mouse PrP homolog, PrP-170S, of human PrP-171S. Since PrP polymorphisms can vary in their effects on different TSE diseases, we tested these mice with four different strains of mouse-adapted scrapie. Whereas 22L and ME7 scrapie strains induced typical clinical disease, neuropathology and accumulation of PrPres in all transgenic mice at 99-128 average days post-inoculation, strains RML and 79A produced clinical disease and PrPres formation in only a small subset of mice at very late times. When mice expressing both PrP-170S and PrP-170N were inoculated with RML scrapie, dominant-negative inhibition of disease did not occur, possibly because interaction of strain RML with PrP-170S was minimal. Surprisingly, in vitro PrP conversion using protein misfolding cyclic amplification (PMCA), did not reproduce the in vivo findings, suggesting that the resistance noted in live mice might be due to factors or conditions not present in vitro. These findings suggest that in vivo conversion of PrP-170S by RML and 79A scrapie strains was slow and inefficient. PrP-170S mice may be an example of the conformational selection model where the structure of some prion strains does not favor interactions with PrP molecules expressing certain polymorphisms.  相似文献   

19.
Regulator of telomere length (RTEL) is a DNA helicase-like protein that has recently been demonstrated to be required for the maintenance of telomere length and genomic stability. Rtel null mice are embryonic lethal with the defects in the nervous system, the heart, the vasculature, and extra-embryonic tissues. Rtel could also be important for the postnatal development as its expression is strongly induced in the proliferating adult cells. To further characterize the role of RTEL in adult tissue function and homeostasis, we have generated the floxed (loxP-flanked) alleles allowing to inactivate RTEL through Cre-mediated recombination in a cell- or tissue-specific manner and also to circumvent the embryonic lethality of the Rtel null allele. Mice heterozygous or homozygous for these alleles are viable and fertile. Crossing the floxed Rtel allele with a ubiquitous Cre transgenic line resulted in embryonic defects identical to those previously described for the Rtel null embryos. These conditional alleles will therefore be the important genetic tools for dissecting the spatial and temporal roles of RTEL in the regulation of telomere length and genomic stability during postnatal development and tumorigenesis.  相似文献   

20.
The study of the prion protein (PrP) physiological functions or its specific role in transmissible spongiform encephalopathies (TSE) requires new tools, particularly those able to induce PrP overexpression in a large range of cells, in vivo as well as in vitro. Here we describe the construction of two recombinant adenoviruses encoding the human PrP either with a valine at position 129 (AdTRVal) or a methionine (AdTRMet). Both genes were put under the control of the tetracycline-responsive promoter, allowing tight regulation of PrP expression. AdTRVal and AdTRMet induced high expression of the human PrP in CHO-KI cells and in organotypic brain slices in culture. The proteins expressed from these viruses exhibited a glycosylphosphatidyl inositol (GPI) anchor, proper glycosylation and sensitivity to proteinase K digestion. AdTRVal and AdTRMet will allow future studies on the human PrP and on the role of the codon 129 polyphormism in human TSE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号