共查询到20条相似文献,搜索用时 15 毫秒
1.
A crystalline form of bovine liver catalase has been found in which one of the molecular 2-fold axes is incorporated into the crystal symmetry. 相似文献
2.
3.
Denis Crane Roger Holmes Colin Masters 《Biochemical and biophysical research communications》1982,104(4):1567-1572
When catalase was immunoprecipitated from different subfractions of mouse liver homogenates, the enzyme which was obtained from extracts of the large granular fraction exhibited a lower molecular weight than that from either the cytosol or purified peroxisomal fractions, as judged by sodium dodecyl sulphate polyacrylamide gel electrophoresis. This modification of the enzyme could be prevented by the addition of proteolytic inhibitors to extraction buffers; and consequently, unmodified catalase was able to be purified in the presence of 5 mM iodoacetamide. Electrophoretic comparison of the catalases against standards of known molecular sizes indicated that the unmodified enzyme had a subunit mass approximately 2,000 daltons larger than the modified enzyme. The significance of these proteolytic modifications has been discussed in relation to the involvements of catalase and peroxisome turnover. 相似文献
4.
In order to elucidate the possible roles of histidine and tyrosine residues of catalase [EC 1.11.1.6] in maintaining the quaternary structure and catalatic activity, diethylpyrocarbonate modification experiments were carried out. A method for the estimation of N-ethoxyformyl (EF)-His at pH 5--7 and of O-ethoxyformyl (EF)-Tyr in alkaline solution by measuring A 242 nm (ximM = 3.2) and A278 nm (ximM = 1.16), respectively, was developed. The formation of EF-His and EF-Tyr was an electrophilic reaction and was dependent on pH, exhibiting pK values of 6.8 and 9.9, respectively. The maximal yield of EF-His at pH 6.0 was 49% of the total histidine content, but no inactivation nor unfolding of the enzyme was observed. The formation of 12 EF-Tyr residues per mole of catalase at pH 8.1 did not cause any inactivation, but the formation of 8 more EF-Tyr residues at pH 8.9 resulted in both inactivation and unfolding. Nearly complete inactivation and partial splitting of catalase were observed when 43-46 EF-Tyr residues per mole were produced at pH 10.0. More EF-His residues were formed by the reaction of diethyl pyrocarbonate with cyanoethylated (CE)-catalase monomer (subunit) than with CE-catalase tetramer. The CE-catalase tetramer and monomer were extensively O-ethoxyformylated, reaching 100% EF-Tyr formation. These results indicate that a half of the histidine residues may lie outside the protein core and that three-quarters of the tyrosine residues are probably in the protein core of the enzyme. The production of 2--3 EF-Tyr residues per mole of the monomer by ethoxyformylation at pH 7.0 was accompanied by a decrease in the magnitude of the Soret peak. A possible interaction of those tyrosine residues with porphyrin of the heme group is discussed. 相似文献
5.
Koodathingal Prakash Shashi Prajapati Atta Ahmad S.K. Jain Vinod Bhakuni 《Protein science : a publication of the Protein Society》2002,11(1):46-57
Catalases, although synthesized from single genes and built up from only one type of subunit, exist in heterogeneous form with respect to their conformations and association states in biological systems. This heterogeneity is not of genetic origin, but rather reflects the instability of this oligomeric heme enzyme. To understand better the factors that stabilize the various association states of catalase, we performed studies on the multimeric intermediates that are stabilized during guanidine-hydrochloride- and urea-induced unfolding of bovine liver catalase (BLC). For the first time, we have observed an enzymatically active, folded dimer of native BLC. This dimer has slightly higher enzymatic activity and altered structural properties compared to the native tetramer. Comparative studies of the effect of NaCl, GdmCl, and urea on BLC show that cation binding to negatively charged groups present in amino acid side chains of the enzyme leads to stabilization of an enzymatically active, folded dimer of BLC. Besides the folded dimer, an enzymatically active expanded tetramer and a partially unfolded, enzymatically inactive dimer of BLC were also observed. A complete recovery of native enzyme was observed on refolding of expanded tetramers and folded dimers; however, a very low recovery (maximum of approximately 5%) of native enzyme was observed on refolding of partially unfolded dimers and fully unfolded monomers. 相似文献
6.
Stabilization of quaternary structure and activity of bovine liver catalase through encapsulation in liposomes 总被引:1,自引:0,他引:1
Makoto Yoshimoto Hideyuki Sakamoto Noriko Yoshimoto Ryoichi Kuboi Katsumi Nakao 《Enzyme and microbial technology》2007,41(6-7):849-858
Bovine liver catalase was encapsulated in an aqueous phase of the phospholipid vesicle (liposome) to improve the stability of its tetrameric structure and activity. The catalase-containing liposomes (CALs) prepared were 30, 50 and 100 nm in mean diameters (CAL30, CAL50 and CAL100, respectively). The CAL100 included the types I, II and III based on the amounts of catalase encapsulated. The CAL30, CAL50 and CAL100-I contained one catalase molecule per liposome, and the CAL100-II and CAL100-III on average 5.2 and 17 molecules, respectively. The storage stability of catalase in either CAL system was significantly increased compared to that of free catalase at 4 °C in a buffer of pH 7.4. At 55 °C, free catalase was much more deactivated especially with decreasing its concentration predominantly due to enhanced dissociation of catalase into subunits while it was so done at excessively high enzyme concentration mainly due to enhanced formation of catalase intermolecular aggregates. Among the three types of CAL100, the CAL100-II showed the highest thermal stability, indicating that an excess amount of catalase in the CAL100-III was also disadvantageous to maintain an active form of the catalase even in liposome. In the CAL100-III, however, the stability of catalase was significantly improved compared to that of free catalase at the same concentration. The CAL thermal stability was little affected by the liposome size as observed in the CAL30, CAL50 and CAL100-I. An intrinsic tryptophan fluorescence of the catalase recovered from the CAL100-II thermally treated at 55 °C revealed that a partially denatured catalase molecule was stabilized through its hydrophobic interaction with liposome membrane. This interaction depressed not only dissociation of catalase into subunits but also formation of an inactive intermolecular aggregate between the catalase molecules in a liposome. Furthermore, either type of CAL100 showed a higher stability than free catalase in the successive decompositions of 10 mM H2O2 at 25 °C mainly because the H2O2 concentration was kept low inside liposomes due to the permeation barrier of the lipid membrane to H2O2. 相似文献
7.
8.
A rotation function study of bovine liver catalase at 10 Å resolution has shown the enzyme to have at least one 2-fold axis, although a molecular symmetry of 222 is likely and the molecular point group 4 is possible. The orientation of the molecular axes with respect to the crystallographic axes has also been determined. 相似文献
9.
10.
Walter A. Schroeder J.Roger Shelton Joan B. Shelton Barbara Robberson Gerald Apell Richard S. Fang Joseph Bonaventura 《Archives of biochemistry and biophysics》1982,214(1):397-421
The data upon which the sequence of the 506 residues in the subunit of bovine liver catalase (BLC) is based are presented in detail. A partial sequence of bovine erythrocyte catalase (BEC) which accounts for 493 residues shows complete concordance with the BLC data. On the other hand, BEC has at least 517 residues, that is, an extension beyond the C terminus of the BLC data. Although normally BLC has only 506 residues, there is evidence that, at some point in its history, it also had the C-terminal extension. It is speculated that this extension is lost in BLC either through a different processing of the molecule in liver than in erythrocytes or by partial degradation in the first stages of catabolism. 相似文献
11.
12.
13.
Absorption, circular dichroism (CD) and magnetic circular dichroism (MCD) spectra of beef liver catalase at pH 5.0 and 6.9, and its complexes with NaF, KCNO, NaCNS, NaN3 and NaCN, have been measured between 250 nm and 700 nm at room temperature. The pH 6.9 native catalase MCD shows the presence of several additional transitions not resolved in the absorption spectrum. While these bands can be seen in the spectra of all the derivatives, with the exception of the cyanide, their relative intensities changes considerably between complexes. Of special interest in the MCD of ferric hemes is the signal intensity at about 400 nm and 620 nm. The data indicate that the MCD intensity at 620 nm increases as the high spin iron porphyrin fraction increases, reaching a maximum with the fluoride complex. The 430 nm band intensity increases as the proportion of low spin iron increases, reaching a maximum with the cyanide complex. The MCD spectra also indicate clearly the existence of spin mixtures in the complexes with CNO-, CNS-, and N3-, where both the 430 nm and 620 nm bands have appreciable intensity. It is significant that despite almost identical absorption spectra the CNS- complex has higher fraction of low spin iron than either the CNO- or the N3- species. The differences between the pH 5 and 6.9 MCD spectra of the native catalase suggest that the environment of the heme centre is sensitive to protonation. 相似文献
14.
Bovine liver catalase suffered a biphasic inactivation when exposed to NH2Cl. A rapid and irreversible phase of activity loss was followed by a much slower and reversible inactivation. Removal of tightly bound NADPH from the enzyme decreased the extent of the rapid phase; whereas addition of NADPH augmented it. The catalase from Aspergillus niger, which does not contain bound NADPH, was not nearly as sensitive toward NH2Cl as was the liver enzyme and was not sensitized by added NADPH. NADPH is oxidized by NH2Cl, as evidenced by loss of the 340-nm absorption band, but the product of this oxidation was not NADP+. The rapid inactivation of liver catalase by NH2Cl was accompanied by some bleaching of the bands in the visible, while the slow inactivation was coincident with the appearance of a new band at 570 nm. A tentative explanation for these observations is proposed. 相似文献
15.
F M Megli D van Loon A A Barbuti E Quagliariello K W Wirtz 《European journal of biochemistry》1985,149(3):585-590
The role of methionine residues in the interaction of the phosphatidylcholine transfer protein from bovine liver with phospholipid vesicles was investigated by specific modification of these residues with iodoacetamide. The modified protein was digested with cyanogen bromide in order to determine which methionine residues had become resistant to this cleavage. Automated Edman degradation on the digest indicated that after 72 h of reaction, Met-1 was modified for 80%, Met-73 for 50%, Met-109 for 20%, whilst Met-173 and Met-203 were found to be unmodified. This distinct modification did not result in any loss of phosphatidylcholine transfer activity. The interaction of the phosphatidylcholine transfer protein with phospholipid vesicles was investigated by making use of electron spin resonance spectroscopy. The interaction of unmodified protein with vesicles composed of phosphatidylcholine/phosphatidic acid/spin-labeled phosphatidylethanolamine (79:16:5, mol%) or composed of phosphatidylserine/spin-labeled phosphatidylethanolamine (95:5, mol%), gave an increase of about 50% in the rotation correlation time. A similar increase was observed with the modified protein. This interaction was further investigated by labeling Met-1 and Met-73 in the transfer protein with iodoacetamidoproxyl spin-label. Spin-labeling did not inactivate the transfer protein. In addition, the electron spin resonance spectra of the spin-labeled protein were not affected upon addition of vesicles composed of phosphatidylcholine/phosphatidic acid (80:20, mol%). These experiments strongly suggest that Met-1 and Met-73 are not part of the site that interacts with the membrane. 相似文献
16.
Rat liver S-adenosylhomocysteinase (EC 3.3.1.1) is inactivated by phenylglyoxal following pseudo-first order kinetics. The dependence of the apparent first order rate constant for inactivation on the phenylglyoxal concentration shows that the inactivation is second order in reagent. This fact together with the reversibility of inactivation upon removal of excess reagent and the lack of reaction at residues other than arginine as revealed by amino acid analysis and incorporation of phenylglyoxal into the protein indicate that the inactivation is due to the modification of arginine residue. The substrate adenosine largely but not completely protects the enzyme against inactivation. Although the modification of two arginine residues/subunit is required for complete inactivation, the relationship between loss of enzyme activity and the number of arginine residues modified, and the comparison of the numbers of phenylglyoxal incorporated into the enzyme in the presence and absence of adenosine indicate that one residue which reacts very rapidly with the reagent compared with the other is critical for activity. Although the phenylglyoxal treatment does not result in alteration of the molecular size of the enzyme or dissociation of the bound NAD+, the intrinsic protein fluorescence is largely lost upon modification. The equilibrium binding study shows that the modified enzyme apparently fails to bind adenosine. 相似文献
17.
18.
Seixas FA da Silva MR Murakami MT Tosqui P Colombo MF 《Protein and peptide letters》2011,18(9):879-885
Catalase is an enzyme that occurs in almost all aerobic organisms. Its main metabolic function is to prevent oxidative damage to tissues induced by hydrogen peroxide which is a strong oxidizing agent. Catalase is very effective in performing this task, since it has the highest turnover rate among all the enzymes. The properties of catalase have been investigated extensively for many years; however, the role of the solvent molecules in the catalytic reaction of this enzyme has not yet been investigated. Therefore, the objective of this work was to investigate the contribution of the solvent molecules on the catalytic reaction of bovine liver catalase with its substrate H2O2 by the osmotic stress method. As a probe for protein structural changes in solution, the differential number of water molecules released during the transition from free to bound form of the enzyme was measured. These assays were correlated with protein structural data provided by the SAXS technique and crystallographic structures of free and CN(-) bonded enzymes. The results showed that the difference in surface accessible area of the crystal structures does not reflect the variation that is observed in solution. Moreover, catalase is not influenced by the solvent during the catalytic reaction, which represents a lower energy barrier to be crossed in the overall energetics of the reaction, a fact that contributes to the high turnover rate of catalase. 相似文献
19.
Nieuwenhuizen WF Dekker HL Gröneveld T de Koster CG de Jong GA 《Biotechnology and bioengineering》2004,85(3):248-258
Bovine beta-lactoglobulin (BLG) is a major component in whey and its physical properties are important for the texture of many dairy-based foods. Modification of proteins with transglutaminase from Streptoverticillium mobaraense (MTGase) can be used to alter their physical properties. MTGase-mediated modification of native BLG was until now, however, not effective. Here we report a method that allows for the enzymatic modification of native BLG with MTGase. Lysines 8, 77, and 141 were modified with alpha-N-carbobenzyloxy-glutamine-glycine and glutamines 35, 59, 68,and 155 were modified with 6-aminohexanoic acid under nonreducing and nondenaturing conditions. MTGase-mediated BLG crosslinking is hampered by the low reactivity of the lysines and enzymatic deamidation of the glutamines prevails. Modification of BLG with poly-lysine yields a BLG derivative with increased affinity for the water-air interface and stronger surface tension lowering capacities than normal BLG. Hence, this modification method offers the opportunity to change the functional properties of BLG and to prepare novel protein foods. 相似文献
20.
The amino acid sequence of bovine liver catalase: a preliminary report 总被引:12,自引:0,他引:12
W A Schroeder J R Shelton J B Shelton B Robberson G Apell 《Archives of biochemistry and biophysics》1969,131(2):653-655