首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
量化森林土壤呼吸及其组分对温度的响应对准确评估未来气候变化背景下陆地生态系统的碳平衡极其重要。该文通过对神农架海拔梯度上常绿阔叶林、常绿落叶阔叶混交林、落叶阔叶林以及亚高山针叶林4种典型森林土壤呼吸的研究发现: 4种森林类型的年平均土壤呼吸速率和年平均异养呼吸速率分别为1.63、1.79、1.74、1.35 μmol CO2·m-2·s-1和1.13、1.12、1.12、0.80 μmol CO2·m-2·s-1。该地区的土壤呼吸及其组分呈现出明显的季节动态, 夏季最高, 冬季最低。4种森林类型中, 阔叶林的土壤呼吸显著高于针叶林, 但阔叶林之间的土壤呼吸差异不显著。土壤温度是影响土壤呼吸及其组分的主要因素, 二者呈显著的指数关系; 土壤含水量与土壤呼吸之间没有显著的相关关系。4种典型森林土壤呼吸的Q10值分别为2.38、2.68、2.99和4.24, 随海拔的升高土壤呼吸对温度的敏感性增强, Q10值随海拔的升高而增加。  相似文献   

2.
量化森林土壤呼吸(RS)及其组分对准确地评估森林土壤碳吸存极其重要。该文以鼎湖山南亚热带季风常绿阔叶林及其演替系列针阔叶混交林和马尾松(Pinus massoniana)林为研究对象, 采用挖壕沟法结合静态气室CO2测定法对这3种林分类型的RS进行分离量化。结果表明: 鼎湖山3种森林演替系列上的森林RS及其组分(自养呼吸RA、异养呼吸RH)均呈现出明显的季节动态, 表现为夏季最高、冬季最低的格局。在呼吸总量上, 季风常绿阔叶林显著高于针阔叶混交林和马尾松林, 但混交林与马尾松林之间差异不显著; RA除季风常绿阔叶林显著大于针阔叶混交林外, 其余林分之间差异不显著; 对于RH来说, 3个林分之间均无显著差异。随着森林正向演替的进行, 由马尾松林至针阔叶混交林至季风常绿阔叶林, RA对土壤总呼吸的年平均贡献率分别为(39.48 ± 15.49)%、(33.29 ± 17.19)%和(44.52 ± 10.67)%, 3个林分之间差异不显著。方差分析结果表明, 土壤温度是影响RS及其组分的主要环境因子, 温度与RS及其组分呈显著的指数关系; 土壤含水量对RS的影响不显著, 甚至表现为轻微的抑制现象, 但未达到显著性水平。对温度敏感性指标Q10值的分析表明, 3个林分均为RA的温度敏感性最大, RH的温度敏感性最小。  相似文献   

3.
Separating the components of soil respiration and understanding the roles of abiotic factors at a temporal scale among different forest types are critical issues in forest ecosystem carbon cycling. This study quantified the proportions of autotrophic (RA) and heterotrophic (RH) in total soil (RT) respiration using trenching and litter removal. Field studies were conducted in two typical subtropical forest stands (broadleaf and needle leaf mixed forest; bamboo forest) at Jinyun Mountain, near the Three Georges Reservoir in southwest China, during the growing season (Apr.–Sep.) from 2010 to 2012. The effects of air temperature (AT), soil temperature (ST) and soil moisture (SM) at 6cm depth, solar radiation (SR), pH on components of soil respiration were analyzed. Results show that: 1) SR, AT, and ST exhibited a similar temporal trend. The observed abiotic factors showed slight interannual variability for the two forest stands. 2) The contributions of RH and RA to RT for broadleaf and needle leaf mixed forest were 73.25% and 26.75%, respectively, while those for bamboo forest were 89.02% and 10.98%, respectively; soil respiration peaked from June to July. In both stands, CO2 released from the decomposition of soil organic matter (SOM), the strongest contributor to RT, accounted for over 63% of RH. 3) AT and ST were significantly positively correlated with RT and its components (p<0.05), and were major factors affecting soil respiration. 4) Components of soil respiration were significantly different between two forest stands (p<0.05), indicating that vegetation types played a role in soil respiration and its components.  相似文献   

4.
The basal respiration rate at 10°C (R10) and the temperature sensitivity of soil respiration (Q10) are two premier parameters in predicting the instantaneous rate of soil respiration at a given temperature. However, the mechanisms underlying the spatial variations in R10 and Q10 are not quite clear. R10 and Q10 were calculated using an exponential function with measured soil respiration and soil temperature for 11 mixed conifer-broadleaved forest stands and nine broadleaved forest stands at a catchment scale. The mean values of R10 were 1.83 µmol CO2 m−2 s−1 and 2.01 µmol CO2 m−2 s−1, the mean values of Q10 were 3.40 and 3.79, respectively, for mixed and broadleaved forest types. Forest type did not influence the two model parameters, but determinants of R10 and Q10 varied between the two forest types. In mixed forest stands, R10 decreased greatly with the ratio of coniferous to broadleaved tree species; whereas it sharply increased with the soil temperature range and the variations in soil organic carbon (SOC), and soil total nitrogen (TN). Q10 was positively correlated with the spatial variances of herb-layer carbon stock and soil bulk density, and negatively with soil C/N ratio. In broadleaved forest stands, R10 was markedly affected by basal area and the variations in shrub carbon stock and soil phosphorus (P) content; the value of Q10 largely depended on soil pH and the variations of SOC and TN. 51% of variations in both R10 and Q10 can be accounted for jointly by five biophysical variables, of which the variation in soil bulk density played an overwhelming role in determining the amplitude of variations in soil basal respiration rates in temperate forests. Overall, it was concluded that soil respiration of temperate forests was largely dependent on soil physical properties when temperature kept quite low.  相似文献   

5.
菌根是由土壤中的菌根菌与植物根系形成的互惠共生体, 在植物生产力和生态系统碳循环过程中发挥着重要的作用。该文基于全球森林数据库, 建立了包括全球森林菌根类型、净初级生产力(net primary productivity, NPP)和年平均气温等指标的新数据库。在此基础上, 分析了6种菌根类型(丛枝菌根(arbuscular mycorrhiza, AM)、AM +外生菌根(ectomycorrhiza, ECM)、AM + ECM +内外生菌根(ectendomycorrhiza, EEM)、ECM、ECM + EEM和ECM + EEM +无菌根(nonmycorrhiza, NM))森林的总NPP、地上和地下NPP、树木主干NPP、树叶NPP, 以及树木细根NPP对年平均气温变化的响应。结果表明, 不同菌根类型的森林总NPP、地上和地下NPP虽然都随气温的升高呈现上升的趋势, 但其响应程度因菌根类型的不同而有所差异。除AM和AM + ECM + EEM类型的森林外, 其他4种菌根类型的森林总NPP都随年平均气温的增加而显著增加; 随着菌根类型的不同, 地上和地下NPP对年平均气温变化的响应程度也存在差异, 在AM + ECM类型的森林中, 气温对地上NPP变异的解释率最高, 达到57.27%, 而地下NPP仅在ECM类型和ECM + EEM类型的森林中呈现出与年平均气温显著的回归关系。树木主干、树叶和细根的NPP则随菌根类型的不同而变化, 与气温变化呈现正、负相关关系。从AM与ECM类型的森林的NPP来看, 无论是总NPP还是各个组成部分的NPP, ECM类型的森林的NPP对气温的响应总是较AM类型更为敏感。可见, 不同类型的菌根通过影响森林不同部分的NPP对气温变化的响应程度而影响到森林NPP对气温变化的响应。这表明菌根类型是预测气温变化对森林NPP影响的重要指标。  相似文献   

6.
武夷山不同林龄甜槠林土壤呼吸特征及影响因素   总被引:1,自引:0,他引:1  
为揭示中亚热带常绿阔叶林群落优势种一甜槠天然林不同林龄林下土壤呼吸(Soil respiration,RS)差异及影响因素,采用LI-8100开路式土壤碳通量系统对武夷山自然保护区不同林龄(18、36、54、72 a)天然甜槠林进行了1年的野外原位测定。结果表明:(1)不同林龄甜槠林RS季节动态呈现明显的单峰趋势,林龄对冬季RS影响并不显著(P>0.05),秋季18 a甜槠林RS与其他3种林龄差异显著(P<0.05),林龄对土壤含水率的季节变化没有显著影响(P>0.05);(2)不同林龄甜槠林5 cm深土壤温度与RS拟合R2明显高于土壤含水率与RS拟合R2,随着林龄增大,RS温度敏感性指数Q10值呈上升趋势,依次为1.551、1.589、1.640、1.664,且54、72 a甜槠林RS温度敏感性指数Q10值显著高于18、36 a(P<0.05);(3)土壤含水率与5 cm深土壤温度共同解释了RS变异的86%—90.3%;0—60 cm土层根系生物量与5 cm深土壤温度共同解释了RS变异的88.3%—91.8%,由此可见,生物因子与非生物因子双因素拟合可以更好地解释不同林龄RS差异。在对未来森林植被土壤呼吸及碳汇功能进行研究时,应在考虑林龄及季节差异的基础上,加强对生物因子的测定。  相似文献   

7.
Berbeco  Minda R.  Melillo  Jerry M.  Orians  Colin M. 《Plant and Soil》2012,352(1-2):405-417

Aims

There is evidence that increased N inputs to boreal forests, via atmospheric deposition or intentional fertilization, may impact negatively on ectomycorrhizal (ECM) fungi leading to a reduced flux of plant-derived carbon (C) back to the atmosphere via ECM. Our aim was to investigate the impact of N fertilization of a Pinus sylvestris (L.) forest stand on the return of recently photoassimilated C via the ECM component of soil respiration.

Methods

We used an in situ, large-scale, 13C-CO2 isotopic pulse labelling approach and monitored the 13C label return using soil gas efflux chambers placed over three different types of soil collar to distinguish between heterotrophic (RH), autotrophic (RA; partitioned further into contributions from ECM hyphae and total RA) and total (RS) soil respiration.

Results

The impact of N fertilization was to significantly reduce RA, particularly respiration via extramatrical ECM hyphae. ECM hyphal flux in control plots showed substantial spatial variability, resulting in mean flux estimates exceeding estimates of total RA, while ECM contributions to RA in N treated plots were estimated at around 30%.

Conclusion

Significant impacts on soil C cycling may be caused by reduced plant C allocation to ECM fungi in response to increased N inputs to boreal forests; ecosystem models so far lack this detail.  相似文献   

8.
To assess the relative influence of edaphoclimatic gradients and stand replacing disturbance on the soil respiration of Oregon forests, we measured annual soil respiration at 36 independent forest plots arranged as three replicates of four age classes in each of three climatically distinct forest types. Annual soil respiration for the year 2001 was computed by combining periodic chamber measurements with continuous soil temperature measurements, which were used along with site-specific temperature response curves to interpolate daily soil respiration between dates of direct measurement. Results indicate significant forest type, age, and type × age interaction effects on annual soil respiration. Average annual soil respiration was 1100–1600, 1500–2100, and 500–900 g C m−2 yr−1 for mesic spruce, montane Douglas-fir, and semi-arid pine forests respectively. Age related trends in annual soil respiration varied between forest types. The variation in annual soil respiration attributable to the climatic differences between forest types was 48%(CV). Once weighted by the age class distribution for each forest type, the variation in annual soil respiration attributable to stand replacing disturbance was 15%(CV). Sensitivity analysis suggests that the regional variation in annual soil respiration is most dependent on summer base rates (i.e. soil respiration normalized to a common temperature) and much less dependent on the site-specific temperature response curves (to which annual rates are relatively insensitive) and soil degree-days (which vary only 10% among plots).  相似文献   

9.
Supply-side controls on soil respiration among Oregon forests   总被引:3,自引:0,他引:3  
To test the hypothesis that variation in soil respiration is related to plant production across a diverse forested landscape, we compared annual soil respiration rates with net primary production and the subsequent allocation of carbon to various ecosystem pools, including leaves, fine roots, forests floor, and mineral soil for 36 independent plots arranged as three replicates of four age classes in three climatically distinct forest types. Across all plots, annual soil respiration was not correlated with aboveground net primary production (R2=0.06, P>0.1) but it was moderately correlated with belowground net primary production (R2=0.46, P<0.001). Despite the wide range in temperature and precipitation regimes experienced by these forests, all exhibited similar soil respiration per unit live fine root biomass, with about 5 g of carbon respired each year per 1 g of fine root carbon (R2=0.45, P<0.001). Annual soil respiration was only weakly correlated with dead carbon pools such as forest floor and mineral soil carbon (R2=0.14 and 0.12, respectively). Trends between soil respiration, production, and root mass among age classes within forest type were inconsistent and do not always reflect cross‐site trends. These results are consistent with a growing appreciation that soil respiration is strongly influenced by the supply of carbohydrates to roots and the rhizosphere, and that some regional patterns of soil respiration may depend more on belowground carbon allocation than the abiotic constraints imposed on subsequent metabolism.  相似文献   

10.
The effect of soil water content on efflux of CO2 from soils has been described by linear, logarithmic, quadratic, and parabolic functions of soil water expressed as matric potential, gravimetric and volumetric water content, water holding capacity, water-filled pore space, precipitation indices, and depth to water table. The effects of temperature and water content are often statistically confounded. The objectives of this study are: (1) to analyze seasonal variation in soil water content and soil respiration in the eastern Amazon Basin where seasonal temperature variation is minor; and (2) to examine differences in soil CO2 emissions among primary forests, secondary forests, active cattle pastures, and degraded cattle pastures. Rates of soil respiration decreased from wet to dry seasons in all land uses. Grasses in the active cattle pasture were productive in the wet season and senescent in the dry season, resulting in the largest seasonal amplitude of CO2 emissions, whereas deep-rooted forests maintained substantial soil respiration during the dry season. Annual emissions were 2.0, 1.8, 1.5, and 1.0 kg C m-2 yr-1 for primary forest, secondary forest, active pasture, and degraded pasture, respectively. Emissions of CO2 were correlated with the logarithm of matric potential and with the cube of volumetric water content, which are mechanistically appropriate functions for relating soil respiration at below-optimal water contents. The parameterization of these empirical functions was not consistent with those for a temperate forest. Relating rates of soil respiration to water and temperature measurements made at some arbitrarily chosen depth of the surface horizons is simplistic. Further progress in defining temperature and moisture functions may require measurements of temperature, water content and CO2 production for each soil horizon.  相似文献   

11.
How global warming will affect soil respiration (R S) and its source components is poorly understood despite its importance for accurate prediction of global carbon (C) cycles. We examined the responses of R S, heterotrophic respiration (R H), autotrophic respiration (R A), nitrogen (N) availability, and fine-root biomass to increased temperature in an open-field soil warming experiment. The experiment was conducted in a cool-temperate deciduous forest ecosystem in northern Japan. As this forest is subjected to strong temporal variation in temperature, on scales ranging from daily to seasonal, we also investigated the temporal variation in the effects of soil warming on R S, R H, and R A. Soil temperature was continuously elevated by about 4.0°C from 2007 to 2014 using heating wires buried in the soil, and we measured soil respiratory processes in all four seasons from 2012 to 2014. Soil warming increased annual R S by 32–45%, but the magnitude of the increase was different between the components: R H and R A were also stimulated, and increased by 39–41 and 17–18%, respectively. Soil N availability during the growing season and fine-root biomass were not remarkably affected by the warming treatment. We found that the warming effects varied seasonally. R H increased significantly throughout the year, but the warming effect showed remarkable seasonal differences, with the maximum stimulation in the spring. This suggests that warmer spring temperature will produce a greater increase in CO2 release than warmer summer temperatures. In addition, we found that soil warming reduced the temperature sensitivity (Q 10) of R S. Although the Q 10 of both R H and R A tended to be reduced, the decrease in the Q 10 of R S was caused mainly by a decrease in the response of R A to warming. These long-term results indicate that a balance between the rapid and large response of soil microbes and the acclimation of plant roots both play important roles in determining the response of R S to soil warming, and must be carefully considered to predict the responses of soil C dynamics under future temperature conditions.  相似文献   

12.
Soil surface CO2 flux (RS) is overwhelmingly the product of respiration by roots (autotrophic respiration, RA) and soil organisms (heterotrophic respiration, RH). Many studies have attempted to partition RS into these two components, with highly variable results. This study analyzes published data encompassing 54 forest sites and shows that RA and RH are each strongly (R2>0.8) correlated to annual RS across a wide range of forest ecosystems. Monte Carlo simulation showed that these correlations were significantly stronger than any correlation introduced as an artefact of measurement method. Biome type, measurement method, mean annual temperature, soil drainage, and leaf habit were not significant. For sites with available data, there was a significant (R2=0.56) correlation between total detritus input and RH, while RA was unrelated to net primary production. We discuss why RA and RH might be related to each other on large scales, as both ultimately depend on forest carbon balance and photosynthate supply. Limited data suggest that these or similar relationships have broad applicability in other ecosystem types. Site‐specific measurements are always more desirable than the application of inferred broad relationships, but belowground measurements are difficult and expensive, while measuring RS is straightforward and commonly done. Thus the relationships presented here provide a useful method that can help constrain estimates of terrestrial carbon budgets.  相似文献   

13.

Aims and Background

While the temperature response of soil respiration (RS) has been well studied, the partitioning of heterotrophic respiration (RH) by soil microbes from autotrophic respiration (RA) by roots, known to have distinct temperature sensitivities, has been problematic. Further complexity stems from the presence of roots affecting RH, the rhizosphere priming effect. In this study the short-term temperature responses of RA and RH in relation to rhizosphere priming are investigated.

Methods

Temperature responses of RA, RH and rhizosphere priming were assessed in microcosms of Poa cita using a natural abundance δ13C discrimination approach.

Results

The temperature response of RS was found to be regulated primarily by RA, which accounted for 70 % of total soil respiration. Heterotrophic respiration was less sensitive to temperature in the presence of plant roots, resulting in negative priming effects with increasing temperature.

Conclusions

The results emphasize the importance of roots in regulating the temperature response of RS, and a framework is presented for further investigation into temperature effects on heterotrophic respiration and rhizosphere priming, which could be applied to other soil and vegetation types to improve models of soil carbon turnover.  相似文献   

14.
Intensification of the Earth's hydrological cycle amplifies the interannual variability of precipitation, which will significantly impact the terrestrial carbon (C) cycle. However, it is still unknown whether previously observed relationship between soil respiration (Rs) and precipitation remains applicable under extreme precipitation change. By analyzing the observations from a much larger dataset of field experiments (248 published papers including 151 grassland studies and 97 forest studies) across a wider range of precipitation manipulation than previous studies, we found that the relationship of Rs response with precipitation change was highly nonlinear or asymmetric, and differed significantly between grasslands and forests, between moderate and extreme precipitation changes. Response of Rs to precipitation change was negatively asymmetric (concave‐down) in grasslands, and double‐asymmetric in forests with a positive asymmetry (concave‐up) under moderate precipitation changes and a negative asymmetry (concave‐down) under extreme precipitation changes. In grasslands, the negative asymmetry in Rs response was attributed to the higher sensitivities of soil moisture, microbial and root activities to decreased precipitation (DPPT) than to increased precipitation (IPPT). In forests, the positive asymmetry was predominantly driven by the significant increase in microbial respiration under moderate IPPT, while the negative asymmetry was caused by the reductions in root biomass and respiration under extreme DPPT. The different asymmetric responses of Rs between grasslands and forests will greatly improve our ability to forecast the C cycle consequences of increased precipitation variability. Specifically, the negative asymmetry of Rs response under extreme precipitation change suggests that the soil C efflux will decrease across grasslands and forests under future precipitation regime with more wet and dry extremes.  相似文献   

15.
For secondary forests, the major forest resources in China (accounting for more than 50% of the national total), soil respiration (R S) and the relationship between R S and various biotic/abiotic factors are poorly understood. The objectives of the present study were to examine seasonal variations in soil respiration during the growing season, and to explore the factors affecting the variation in soil respiration rates for three forest types (Mongolian oak, Manchurian walnut and mixed forests) of temperate secondary forest in Northeast China. The results showed that (1) the maximum total R S rate occurred in July, following a bell-shaped curve with season, (2) for all forest types, the total R S was significantly influenced by soil temperature (< 0.01), and did not significantly correlate with soil moisture, (3) compared with fine root biomass, coarse root biomass was more closely related with the root respiration in mixed forest (R 2 = 0.711, = 0.017) and in Manchurian walnut forest (R 2 = 0.768, = 0.010), and (4) microbial biomass carbon (MBC) and nitrogen were significantly correlated with heterotrophic R S in Mongolian oak forest (R 2 = 0.664, = 0.026; R 2 = 0.784, = 0.008, respectively) and in mixed forest (R 2 = 0.918, = 0.001; R 2 = 0.967, = 0.001, respectively). We can conclude that in temperate secondary forests: (1) the R S rate and the relationships between R S and abiotic/biotic factors change greatly with forest types, and (2) R S is strongly influenced by soil temperature, MBC, microbial biomass nitrogen and coarse root biomass in temperate secondary forests.  相似文献   

16.
Wang  Yunbo  Wang  Deli  Shi  Baoku  Sun  Wei 《Plant and Soil》2020,447(1-2):581-598
Background and aims

Understanding the influences of environmental variation and anthropogenic disturbance on soil respiration (RS) is critical for accurate prediction of ecosystem C uptake and release. However, surprisingly, little is known about how soil respiration and its components respond to grazing in the context of global climate change (i.e., precipitation or nitrogen deposition increase).

Methods

We conducted a field manipulative grazing experiment with water and nitrogen addition treatments in a meadow grassland on the Songnen Plain, China, and assessed the combined influences of grazing and global change factors on RS, autotrophic respiration (RA), and heterotrophic respiration (RH).

Results

Compared with the control plots, RS, RA and RH all exhibited positive responses to water or nitrogen addition in the wet year, while a similar effect occurred only for RH in the dry year. The responses of RS to precipitation regimes were dominated by both frequency and amount. However, grazing significantly inhibited both soil respiration and its components in all subplots. Further analysis demonstrated that the plant root/shoot ratio, belowground biomass and microbial biomass played dominant roles in shaping these C exchange processes.

Conclusion

These findings suggest that changes in precipitation regimes, nitrogen deposition, and land utilization may significantly alter soil respiration and its component processes by affecting local carbon users (roots and soil microorganism) and carbon substrate supply in meadow steppe grasslands. The future soil carbon sequestration in the studied meadow steppe will be benefited more by the moderate grazing disturbance.

  相似文献   

17.
We warmed the top soil of a mature coniferous forest stand by means of heating cables on control and trenched plots within 24 h by 10°C at 1 cm soil depth (9°C at 5 cm depth) and measured the effect on the autotrophic (RA) and heterotrophic (RH) component of total soil CO2 efflux (RS). The short time frame of warming enabled us to exclude confounding fluctuations in soil moisture and carbon (C) flow from the canopy. The results of the field study were backed up by a lab soil incubation experiment. During the first 12 h of warming, RA strongly responded to soil warming; The Q 10 values were 5.61 and 6.29 for 1 and 5 cm soil depth temperature. The Q 10 values for RA were almost twice as high as the Q 10 values of RH (3.04 and 3.53). Q 10 values above 5 are above reasonable plant physiological values for root respiration. We see interactions of roots, mycorrhizae and heterotrophic microbes, combined with fast substrate supply to the rhizosphere as an explanation for the high short-term temperature response of RA. When calculated over the whole duration (24 h) of the field soil-warming experiment, temperature sensitivities of RA and RH were similar (no significant difference at P < 0.05); Q 10 values were 3.16 and 3.96 for RA and 2.94 and 3.35 for RH calculated with soil temperatures at 1 and 5 cm soil depth, respectively. Laboratory incubation showed that different soil moisture contents of trenched and control plots affected rates of RH, but did not affect the temperature sensitivity of RH. We conclude that a single parameter is sufficient to describe the temperature sensitivity of RS in soil C models which operate on larger temporal and spatial scales. The strong short-term response of RA may be of relevance in soils suspected to experience increasingly strong diurnal temperature variations.  相似文献   

18.
Mangrove forests cover large areas of tropical and subtropical coastlines. They provide a wide range of ecosystem services that includes carbon storage in above- and below ground biomass and in soils. Carbon dioxide (CO2) emissions from soil, or soil respiration is important in the global carbon budget and is sensitive to increasing global temperature. To understand the magnitude of mangrove soil respiration and the influence of forest structure and temperature on the variation in mangrove soil respiration I assessed soil respiration at eleven mangrove sites, ranging from latitude 27°N to 37°S. Mangrove soil respiration was similar to those observed for terrestrial forest soils. Soil respiration was correlated with leaf area index (LAI) and aboveground net primary production (litterfall), which should aid scaling up to regional and global estimates of soil respiration. Using a carbon balance model, total belowground carbon allocation (TBCA) per unit litterfall was similar in tall mangrove forests as observed in terrestrial forests, but in scrub mangrove forests TBCA per unit litter fall was greater than in terrestrial forests, suggesting mangroves allocate a large proportion of their fixed carbon below ground under unfavorable environmental conditions. The response of soil respiration to soil temperature was not a linear function of temperature. At temperatures below 26°C Q10 of mangrove soil respiration was 2.6, similar to that reported for terrestrial forest soils. However in scrub forests soil respiration declined with increasing soil temperature, largely because of reduced canopy cover and enhanced activity of photosynthetic benthic microbial communities.  相似文献   

19.
Nitrogen (N) added through atmospheric deposition or as fertilizer to boreal and temperate forests reduces both soil decomposer activity (heterotrophic respiration) and the activity of roots and mycorrhizal fungi (autotrophic respiration). However, these negative effects have been found in studies that applied relatively high levels of N, whereas the responses to ambient atmospheric N deposition rates are still not clear. Here, we compared an unfertilized control boreal forest with a fertilized forest (100 kg N ha?1 yr?1) and a forest subject to N‐deposition rates comparable to those in Central Europe (20 kg N ha?1 yr?1) to investigate the effects of N addition rate on different components of forest floor respiration and the production of ectomycorrhizal fungal sporocarps. Soil collars were used to partition heterotrophic (Rh) and autotrophic (Ra) respiration, which was further separated into respiration by tree roots (Rtr) and mycorrhizal hyphae (Rm). Total forest floor respiration was twice as high in the low N plot compared to the control, whereas there were no differences between the control and high N plot. There were no differences in Rh respiration among plots. The enhanced forest floor respiration in the low N plot was, therefore, the result of increased Ra respiration, with an increase in Rtr respiration, and a doubling of Rm respiration. The latter was corroborated by a slightly greater ectomycorrhizal (EM) fungal sporocarp production in the low N plot as compared to the control plot. In contrast, EM fungal sporocarp production was nearly eliminated, and Rm respiration severely reduced, in the high N plot, which resulted in significantly lower Ra respiration. We thus found a nonlinear response of the Ra components to N addition rate, which calls for further studies of the quantitative relations among N addition rate, plant photosynthesis and carbon allocation, and the function of EM fungi.  相似文献   

20.
Forests play a critical role in the global carbon cycle, being considered an important and continuing carbon sink. However, the response of carbon sequestration in forests to global climate change remains a major uncertainty, with a particularly poor understanding of the origins and environmental responses of soil CO2 efflux. For example, despite their large biomass, the contribution of ectomycorrhizal (EM) fungi to forest soil CO2 efflux and responses to changes in environmental drivers has, to date, not been quantified in the field. Their activity is often simplistically included in the ‘autotrophic’ root respiration term. We set up a multiplexed continuous soil respiration measurement system in a young Lodgepole pine forest, using a mycorrhizal mesh collar design, to monitor the three main soil CO2 efflux components: root, extraradical mycorrhizal hyphal, and soil heterotrophic respiration. Mycorrhizal hyphal respiration increased during the first month after collar insertion and thereafter remained remarkably stable. During autumn the soil CO2 flux components could be divided into ∼60% soil heterotrophic, ∼25% EM hyphal, and ∼15% root fluxes. Thus the extraradical EM mycelium can contribute substantially more to soil CO2 flux than do roots. While EM hyphal respiration responded strongly to reductions in soil moisture and appeared to be highly dependent on assimilate supply, it did not responded directly to changes in soil temperature. It was mainly the soil heterotrophic flux component that caused the commonly observed exponential relationship with temperature. Our results strongly suggest that accurate modelling of soil respiration, particularly in forest ecosystems, needs to explicitly consider the mycorrhizal mycelium and its dynamic response to specific environmental factors. Moreover, we propose that in forest ecosystems the mycorrhizal CO2 flux component represents an overflow ‘CO2 tap’ through which surplus plant carbon may be returned directly to the atmosphere, thus limiting expected carbon sequestration from trees under elevated CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号