首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The family of glycogen phosphorylases: structure and function   总被引:20,自引:0,他引:20  
Glycogen phosphorylase plays a central role in the mobilization of carbohydrate reserves in a wide variety of organisms and tissues. While rabbit muscle phosphorylase remains the most studied and best characterized of phosphorylases, recombinant DNA techniques have led to the recent appearance of primary sequence data for a wide variety of phosphorylase enzymes. The functional properties of rabbit muscle phosphorylases are reviewed and then compared to properties of phosphorylases from other tissues and organisms. Tissue expression patterns and the chromosomal localization of mammalian phosphorylases are described. Differences in functional properties among phosphorylases are related to new structural information. Evolutionary relationships among phosphorylases as afforded by comparative analysis of proteins and gene sequences are discussed.  相似文献   

2.
The α-glucan phosphorylases of the glycosyltransferase family are important enzymes of carbohydrate metabolism in prokaryotes and eukaryotes. The plant α-glucan phosphorylase, commonly called starch phosphorylase (EC 2.4.1.1), is largely known for the phosphorolytic degradation of starch. Starch phosphorylase catalyzes the reversible transfer of glucosyl units from glucose-1-phosphate to the nonreducing end of α-1,4-d-glucan chains with the release of phosphate. Two distinct forms of starch phosphorylase, plastidic phosphorylase and cytosolic phosphorylase, have been consistently observed in higher plants. Starch phosphorylase is industrially useful and a preferred enzyme among all glucan phosphorylases for phosphorolytic reactions for the production of glucose-1-phosphate and for the development of engineered varieties of glucans and starch. Despite several investigations, the precise functional mechanisms of its characteristic multiple forms and the structural details are still eluding us. Recent discoveries have shed some light on their physiological substrates, precise biological functions, and regulatory aspects. In this review, we have highlighted important developments in understanding the role of starch phosphorylases and their emerging applications in industry.  相似文献   

3.
6-Fluoropyridoxal phosphate (6-FPLP) has been synthesized. Its properties were studied, and it was used, along with 6-fluoropyridoxal (6-FPAL), to reconstitute apophosphorylase b. Kinetic studies of the resulting enzymes showed that phosphorylases reconstituted with 6-FPLP and 6-FPAL have characteristics similar to those of native and pyridoxal enzymes, respectively, except that the former two enzymes have lower Vmax values. 19F NMR and UV spectra of 6-FPLP phosphorylase showed that the coenzyme forms a neutral enolimine Schiff base. Because the UV and fluorescence spectra of 6-FPLP phosphorylase are comparable to those obtained with native phosphorylase, it further confirms the postulate that pyridoxal phosphate forms a neutral enolimine Schiff base in phosphorylase. The results suggest that the 3-OH group is protonated and the pyridine nitrogen unprotonated in both 6-FPLP phosphorylase and native enzyme. 19F NMR study of 6-FPLP- and 6-FPAL-reconstituted phosphorylases in the inactive and active states indicates that the protein structure near the coenzyme binding site undergoes certain changes when these enzymes are activated by the substrates and AMP. The comparison of the properties of 6-FPLP-reconstituted and native phosphorylases implies that the ring nitrogen of the coenzyme PLP in phosphorylase may interact with the protein during catalysis, and this interaction is important for efficient catalysis by phosphorylase.  相似文献   

4.
Phosphorylases I and II of Maize Endosperm   总被引:4,自引:4,他引:0       下载免费PDF全文
Two phosphorylases have been found in the endosperm of Zea mays. Phosphorylase I is found through all stages of endosperm development and seed germination investigated. The other enzyme, phosphorylase II appears only at the stage of rapid starch biosynthesis and is not found during germination. At 22 days after pollination, the activity of phosphorylase II is 10 times that of phosphorylase I. These 2 phosphorylases are separable by column chromatography and behave differently in several respects.  相似文献   

5.
Summary The presence of a second purine nucleoside phosphorylase in wild-type strains of E. coli K-12 after growth on xanthosine has been demonstrated. Like other purine nucleoside phosphorylases it is able to carry out both phosphorylosis and synthesis of purine deoxy- and ribonucleosides whilst pyrimidine nucleosides cannot act as substrates. In contrast to the well characterised purine nucleoside phosphorylase of E. coli K-12 (encoded by the deoD gene) this new enzyme could act on xanthosine and is hence called xanthosine phosphorylase. Studies of its substrate specificity showed that xanthosine phosphorylase, like the mammalian purine nucleoside phosphorylases, has no activity towards adenine and the corresponding nucleosides. Determinations of K m and gel filtration behaviour was carried out on crude dialysed extracts. The presence of xanthosine phosphorylase enables E. coli to grow on xanthosine as carbon source. Xanthosine was the only compound found which induced xanthosine phosphorylase. No other known nucleoside catabolising enzyme was induced by xanthosine. The implications of non-linear induction kinetics of xanthosine phosphorylase is discussed.  相似文献   

6.
Running rings around RNA: a superfamily of phosphate-dependent RNases.   总被引:18,自引:0,他引:18  
The exosome of Saccharomyces cerevisiae and the degradosome of Escherichia coli are multienzyme complexes involved in the degradation of mRNA. Both contain enzymes that are similar to the phosphate-dependent exoribonuclease RNase PH. These enzymes are phosphorylases that degrade RNA from the 3'-end. A recent X-ray crystallographic study of the polynucleotide phosphorylase (PNPase) from Streptomyces antibioticus reveals, for the first time, the atomic structure of a member of the RNase PH superfamily. Here, information from the structure of PNPase is used to address two related issues. First, the structure supports the idea that PNPase, which is a trimer of multidomain subunits, arose by duplication of a gene encoding an RNase PH-like enzyme. Second, the structure might explain how RNase PH-like enzymes associate into oligomeric rings that degrade RNA in a processive reaction.  相似文献   

7.
Activities and properties of phosphorylases of cytosol and mitochondrial fractions are studied in free-living turbellarias Phagocata sibirica and cestodes Bothriocephalus scorpii. The phosphorylase activities in P. sibirica and B. scorpii differ significantly both in form and in total activity of this enzyme. Dependence of the phosphorylase reaction rate on substrate concentration is studied. The high activity of phosphorylase as compared with that of hexokinase suggests glycogen to be the main energy source of the studied flatworms. Action of various effectors on activities of the cytosol and mitochondrial phosphorylases has been studied.  相似文献   

8.
Polymer formation is arguably one of the essential factors that allowed the emergence, stabilisation and spread of life on Earth. Consequently, studies concerning biopolymers could shed light on the origins of life itself. Of particular interest are RNA and polysaccharide polymers, the archetypes of the contrasting proposed evolutionary scenarios and their respective polymerases. Nucleic acid polymerases were hypothesised, before their discovery, to have a functional similarity with glycogen phosphorylase. Further identification and characterisation of nucleic acid polymerases; particularly of polynucleotide phosphorylase (PNPase), provided experimental evidence for the initial premise. Once discovered, frequent similarities were found between PNPase and glycogen phosphorylase, in terms of catalytic features and biochemical properties. As a result, PNPase was seen as a model of primitive polymerase and used in laboratory precellular systems. Paradoxically, however, these similarities were not sufficient as an argument in favour of an ancestral common polymerisation mechanism prior to polysaccharides and polyribonucleotides. Here we present an overview of the common features shared by polymer phosphorylases, with new proposals for the emergence of polysaccharide and RNA polymers.  相似文献   

9.
The anabolism of pyrimidine ribo- and deoxyribonucleosides from uracil and thymine was investigated in phytohemagglutinin-stimulated human peripheral blood lymphocytes and in a Burkitt's lymphoma-derived cell line (Raji). We studied the ability of these cells to synthesize pyrimidine nucleosides by ribo- and deoxyribosyl transfer between pyrimidine bases or nucleosides and the purine nucleosides inosine and deoxyinosine as donors of ribose 1-phosphate and deoxyribose 1-phosphate, respectively: these reactions involve the activities of purine-nucleoside phosphorylase, and of the two pyrimidine-nucleoside phosphorylases (uridine phosphorylase and thymidine phosphorylase). The ability of the cells to synthesize uridine was estimated from their ability to grow on uridine precursors in the presence of an inhibitor of pyrimidine de novo synthesis (pyrazofurin). Their ability to synthesize thymidine and deoxyuridine was estimated from the inhibition of the incorporation of radiolabelled thymidine in cells cultured in the presence of unlabelled precursors. In addition to these studies on intact cells, we determined the activities of purine- and pyrimidine-nucleoside phosphorylases in cell extracts. Our results show that Raji cells efficiently metabolize preformed uridine, deoxyuridine and thymidine, are unable to salvage pyrimidine bases, and possess a low uridine phosphorylase activity and markedly decreased (about 1% of peripheral blood lymphocytes) thymidine phosphorylase activity. Lymphocytes have higher pyrimidine-nucleoside phosphorylases activities, they can synthesize deoxyuridine and thymidine from bases, but at high an non-physiological concentrations of precursors. Neither type of cell is able to salvage uracil into uridine. These results suggest that pyrimidine-nucleoside phosphorylases have a catabolic, rather than an anabolic, role in human lymphoid cells. The facts that, compared to peripheral blood lymphocytes, lymphoblasts possess decreased pyrimidine-nucleoside phosphorylases activities, and, on the other hand, more efficiently salvage pyrimidine nucleosides, are consistent with a greater need of these rapidly proliferating cells for pyrimidine nucleotides.  相似文献   

10.
Although glycogen and other alpha-1,4-D-glucan storage polysaccharides are present in many bacteria, only few glucan phosphorylases from bacteria have been identified and characterised on the protein or gene level. All bacterial phosphorylases follow the same catalytic mechanisms as their plant and vertebrate counterparts, but differ considerably in terms of their substrate specificity and regulation. The catalytic domains are highly conserved while the regulatory sites are only poorly conserved. The degree of conservation between bacterial and mammalian phosphorylases is comparable to that of other non-mammalian and mammalian alpha-glucan phosphorylases. Only for maltodextrin phosphorylase from E. coli the physiological role of the enzyme in the utilisation of maltodextrins is known in detail; that of all other phosphorylases remains still unclear. Roles in regulation of endogenous glycogen metabolism in periods of starvation, and sporulation, stress response or quick adaptation to changing environments are imaginable.  相似文献   

11.
Ribosyl and Deoxyribosyl Transfer by Bacterial Enzyme Systems   总被引:3,自引:4,他引:3       下载免费PDF全文
The enzymatic transfer of ribose and deoxyribose residues in pyrimidine nucleosides to purines was catalyzed by cell-free extracts of various bacteria. Almost all the strains belonging to Enterobacteriaceae were capable of catalyzing the transfer reactions. The transfer activities were also detected among some bacterial strains of other families: Pseudomonadaceae, Corynebacteriaceae, Micrococcaceae, Bacteriaceae, and Bacillaceae. The rates of the transfer reactions were greatly enhanced in the presence of phosphate ion, and the participation of nucleoside phosphorylases in the reactions was suggested. Uridine phosphorylase, thymidine phosphorylase, and purine nucleoside phosphorylase were purified from cell-free extract of Aerobacter aerogenes IFO 3321. The ribosyl transfer from uridine to hypoxanthine was found to be catalyzed by the coupled reactions of uridine and purine nucleoside phosphorylases and the deoxyribosyl transfer from thymidine to hypoxanthine by the coupled reactions of thymidine and purine nucleoside phosphorylases.  相似文献   

12.
13.
M. Steup  C. Schächtele 《Planta》1986,168(2):222-231
Peptide patterns and immunological properties of the cytoplasmic and chloroplastic -1,4-glucan phosphorylase (EC 2.4.1.1) from spinach leaves have been studied and were compared with those of phosphorylases from other sources. The two spinach leaf phosphorylases were immunologically different; a limited cross-reactivity was observed only at high antigen or antibody concentrations. Peptide mapping of the two enzymes resulted in complex patterns composed of more than 20 fragments; but no peptide was electrophoretically identical in both proteins. Approximately 13 to 15 of the fragments exhibited antigeneity but no cross-reactivity of any peptide was observed. Therefore, the two compartment-specific phosphorylase forms from spinach leaves represent isoenzymes possessing different primary structures. Peptide patterns of potato tuber and rabbit muscle phosphorylase were different from those of the two spinach leaf enzymes. Although the potato tuber phosphorylase resides in the plastidic compartment and is kinetically closely related to the chloroplastic spinach enzyme, it reacted more strongly with the anti-cytoplasmic-phosphorylase immunoglobulin G. Similar results were obtained with rabbit muscle phosphorylase. These observations support the assumption that the chloroplast-specific phosphorylase isoenzyme has a higher structural diversity than does the cytoplasmic counterpart.Abbreviations EDTA ethylenediaminetetraacetic acid - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - PEG polyethylene glycol (approx. MW 8000) I=Schächtele and Steup 1986  相似文献   

14.
Amino acid sequences of enzymes that catalyze hydrolysis or phosphorolysis of the N-glycosidic bond in nucleosides and nucleotides (nucleosidases and phosphoribosyltransferases) were explored using computer methods for database similarity search and multiple alignment. Two new families, each including bacterial and eukaryotic enzymes, were identified. Family I consists of Escherichia coli AMP hydrolase (Amn), uridine phosphorylase (Udp), purine phosphorylase (DeoD), uncharacterized proteins from E. coli and Bacteroides uniformis, and, unexpectedly, a group of plant stress-inducible proteins. It is hypothesized that these plant proteins have evolved from nucleosidases and may possess nucleosidase activity. The proteins in this new family contain 3 conserved motifs, one of which was found also in eukaryotic purine nucleosidases, where it corresponds to the nucleoside-binding site. Family II is comprised of bacterial and eukaryotic thymidine phosphorylases and anthranilate phosphoribosyltransferases, the relationship between which has not been suspected previously. Based on the known tertiary structure of E. coli thymidine phosphorylase, structural interpretation was given to the sequence conservation in this family. The highest conservation is observed in the N-terminal alpha-helical domain, whose exact function is not known. Parts of the conserved active site of thymidine phosphorylases and anthranilate phosphoribosyltransferases were delineated. A motif in the putative phosphate-binding site is conserved in family II and in other phosphoribosyltransferases. Our analysis suggests that certain enzymes of very similar specificity, e.g., uridine and thymidine phosphorylases, could have evolved independently. In contrast, enzymes catalyzing such different reactions as AMP hydrolysis and uridine phosphorolysis or thymidine phosphorolysis and phosphoribosyl anthranilate synthesis are likely to have evolved from common ancestors.  相似文献   

15.
Summary Phosphorylases (EC 2.4.1.1) from potato and rabbit muscle are similar in many of their structural and kinetic properties, despite differences in regulation of their enzyme activity. Rabbit muscle phosphorylase is subject to both allosteric and covalent controls, while potato phosphorylase is an active species without any regulatory mechanism. Both phosphorylases are composed of subunits of approximately 100 000 molecular weight, and contain a firmly bound pyridoxal 5-phosphate. Their actions follow a rapid equilibrium random Bi Bi mechanism. From the sequence comparison between the two phosphorylases, high homologies of widely distributed regions have been found, suggesting that they may have evolved from the same ancestral protein. By contrast, the sequences of the N-terminal region are remarkably different from each other. Since this region of the muscle enzyme forms the phosphorylatable and AMP-binding sites as well as the subunit-subunit contact region, these results provide the structural basis for the difference in the regulatory properties between potato and rabbit muscle phosphorylases. Judged from CD spectra, the surface structures of the potato enzyme might be significantly different from that of the muscle enzyme. Indeed, the subunit-subunit interaction in the potato enzyme is tighter than that in the muscle enzyme, and the susceptibility of the two enzymes toward modification reagents and proteolytic enzymes are different. Despite these differences, the structural and functional features of the cofactor, pyridoxal phosphate, site are surprisingly well conserved in these phosphorylases. X-ray crystallographic studies on rabbit muscle phosphorylase have shown that glucose-1-phosphate and orthophosphate bind to a common region close to the 5-phosphate of the cofactor. The muscle enzyme has a glycogen storage site for binding of the enzyme to saccharide substrate, which is located away from the cofactor site. We have obtained, in our reconstitution studies, evidence for binding of saccharide directly to the cofactor site of potato phosphorylase. This difference in the topography of the functional sites explains the previously known different specificities for saccharide substrates in the two phosphorylases. Based on a combination of these and other studies, it is now clear that the 5-phosphate group of pyridoxal phosphate plays a direct role in the catalysis of this enzyme. Information now available on the reaction mechanism of phosphorylase is briefly described.  相似文献   

16.
Activities and properties of phosphorylases of cytosol and mitochondrial fractions are studied in free-living turbellaria Phagocata sibirica and cestodes Bothriocephalus scorpii. The phosphorylase activities in P. sibirica and B. scorpii differ significantly both in form and the total activity of this enzyme. Dependence of the phosphorylase reaction rate on substrate concentration is studied. The high activity of phosphorylase as compared with that of hexokinase suggests glycogen to be the main energy source of the studied flatworms. Effects of various effectors on activities of cytosol and mitochondrial phosphorylases are studied.  相似文献   

17.
Cellobiose phosphorylase from Clostridium thermocellum catalyzed the beta-anomer-selective synthesis of alkyl glucosides from cellobiose. Synthesis of alkyl beta-glucoside from inexpensive sucrose using cellobiose phosphorylase and sucrose phosphorylase from Pseudomonas saccharophilia was investigated. By combined use of these two phosphorylases, alkyl beta-glucoside was anomer-selectively synthesized from sucrose and alkyl alcohol.  相似文献   

18.
Lin CT  Yeh KW  Lee PD  Su JC 《Plant physiology》1991,95(4):1250-1253
Sweet potato (Ipomoea batatas) starch phosphorylase cDNA clones were isolated by screening an expression library prepared from the young root poly(A)+ RNA successively with an antiserum, a monoclonal antibody, and a specific oligonucleotide probe. One cDNA clone had 3292 nucleotide residues in which was contained an open reading frame coding for 955 amino acids. This sequence was compared with those of potato (916 residues plus 50-residue putative transit peptide) and rabbit muscle (841 residues) phosphorylases. The sweet potato phosphorylase has an overall structural feature highly homologous to that reported for potato phosphorylase, in conformity with the finding that they belong to the same class of plant phosphorylase. High divergencies of the two enzymes are found in the about 70 residue N-termini each including a putative transit peptide, and the midchain 78 residue insert typical of type I plant phosphorylase. We consider that the very high dissimilarity found in the midchain inserts is related to the difference in proteolytic lability of the two plant phosphorylases. Some structural features of the cDNA clone were also discussed.  相似文献   

19.
20.
Pseudo first order rate constants were determined for the dephosphorylation of heart and skeletal muscle specific phosphorylase a isoenzymes isolated from rabbit and pig using rabbit muscle phosphorylase phosphatase (mol. wt 34,000). The rate constants determined in the absence of ligands, were 4-5 fold lower for heart specific phosphorylases than for skeletal muscle specific ones. Glucose 6-phosphate (0.5-1 mM) enhances the rate of dephosphorylation of heart specific isophosphorylases 3-fold and suspends inhibition by 10(-5) M AMP, however, it has no significant effect on the dephosphorylation of skeletal muscle specific enzymes under the same conditions. Our data support characteristic functional differences between heart and skeletal muscle specific phosphorylases both in rabbit and pig.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号