首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in the distribution of tenascin during tooth development   总被引:10,自引:0,他引:10  
Tenascin is an extracellular matrix molecule that was earlier shown to be enriched in embryonic mesenchyme surrounding the budding epithelium in various organs including the tooth. In the present study tenascin was localized by immunohistology throughout the course of tooth development in the mouse and rat using polyclonal antibodies against chick tenascin. The results indicate that tenascin is expressed by the lineage of dental mesenchymal cells throughout tooth ontogeny. The intensity of staining with tenascin antibodies in the dental papilla mesenchyme was temporarily reduced at cap stage when the tooth grows rapidly and undergoes extensive morphogenetic changes. During the bell stage of morphogenesis, the staining intensity increased and tenascin was accumulated in the dental pulp even after completion of crown development and eruption. Tenascin was present in the dental basement membrane at the time of odontoblast differentiation. The dental papilla cells ceased to express tenascin upon differentiation into odontoblasts and tenascin was completely absent from dentin. It can be speculated that the remarkable expression of tenascin in the dental mesenchymal cells as compared to other connective tissues is associated with their capacity to differentiate into hard-tissue-forming cells.  相似文献   

2.
Osteogenic differentiation of human dental papilla mesenchymal cells   总被引:6,自引:0,他引:6  
We isolated dental papilla from impacted human molar and proliferated adherent fibroblastic cells after collagenase treatment of the papilla. The cells were negative for hematopoietic markers but positive for CD29, CD44, CD90, CD105, and CD166. When the cells were further cultured in the presence of beta-glycerophosphate, ascorbic acid, and dexamethasone for 14 days, mineralized areas together with osteogenic differentiation evidenced by high alkaline phosphatase activity and osteocalcin contents were observed. The differentiation was confirmed at both protein and gene expression levels. The cells can also be cryopreserved and, after thawing, could show in vivo bone-forming capability. These results indicate that mesenchymal type cells localize in dental papilla and that the cells can be culture expanded/utilized for bone tissue engineering.  相似文献   

3.
Dental papilla mesenchymal cells differentiate into odontoblasts through epithelial-mesenchymal interactions. However, the mechanism by which enamel epithelial cells affect the differentiation of dental mesenchymal cells remains unknown. Alkaline phosphatase (ALPase) is a marker for odontoblast-like differentiation, because odontoblasts show much higher ALPase activity than dental undifferentiated mesenchymal cells. The continuously growing rabbit incisor is a good model for the epithelial-mesenchymal interaction during odontogenesis. In the present study, we isolated and maintained rabbit incisor-derived epithelial cells and rabbit incisor pulp-derived fibroblastic cells, and examined the effect of epithelial cells on ALPase activity in fibroblastic cells. Epithelial cells were stained with anti-cytokeratin 5 and 8 antibodies and showed the expression of tuftelin mRNA. In separate cultures of epithelial cells or fibroblastic cells, ALPase activity and mRNA levels were very low, but were upregulated in co-cultures of epithelial and fibroblastic cells. Histochemical analysis found high ALPase activity in fibroblastic cells close to epithelial cells. These findings suggest that epithelial cells play an important role in promoting ALPase expression in pulp fibroblastic cells. The co-culture system developed here will be useful for examining the role of the epithelial-mesenchymal interaction during odontoblast differentiation.  相似文献   

4.
Odontogenesis is the result of the reciprocal interactions between epithelial–mesenchymal cells leading to terminally differentiated odontoblasts. This process from dental papilla mesenchymal cells to odontoblasts is regulated by a complex signaling pathway. When isolated from the developing tooth germs, odontoblasts quickly lose their potential to maintain the odontoblast-specific phenotype. Therefore, generation of an odontoblast-like cell line would be a good surrogate model for studying the dental mesenchymal cell differentiation into odontoblasts and the molecular events of dentin formation. In this study, immortalized dental papilla mesenchymal cell lines were generated from the first mouse mandibular molars at postnatal day 3 using pSV40. These transformed cells were characterized by RT-PCR, immunohistochemistry, Western blot, and analyzed for alkaline phosphatase activity and mineralization nodule formation. One of these immortalized cell lines, iMDP-3, displayed a high proliferation rate, but retained the genotypic and phenotypic characteristics similar to primary cells as determined by expression of tooth-specific markers and demonstrated the ability to differentiate and form mineralized nodules. Furthermore, iMDP-3 cells had high transfection efficiency as well as were inducible and responded to BMP2 stimulation. We conclude that the establishment of the stable murine dental papilla mesenchymal cell line might be used for studying the mechanisms of dental cell differentiation and dentin formation.  相似文献   

5.
Our research concerns the immunohistochemical localization of EGF and IGF-I receptors in the tooth germ, using monoclonal antibodies. The results show that in the early phases of human tooth development EGF and IGF-I receptors are present. At bud stage both receptors are localized at dental laminae level, in some epithelial cells of the tooth bud and in some mesenchymal cells. At cap stage the receptors are present in the outer and inner enamel epithelium, and in some cells of stellate reticulum. As far as concerns the mesenchymal cells, some cells of dental papilla in contact with enamel organ, are intensely positive. The immunopositivity is present also in some mesenchymal cells at follicular level. At late cap stage and at early bell stage receptors are not present at inner enamel epithelium level but they can be detectable in the mesenchyma of dental papilla and in some cells of the follicle. On the basis of these results it may be hypothesized that EGF and IGF-I can act as growth factors in the modulation of cellular proliferation and differentiation during the human tooth morphogenesis. Moreover, it is possible that these substances can play a role in the mesenchymal-epithelial interaction in the developing human tooth.  相似文献   

6.
The distribution of the matrix protein fibronectin was studied by indirect immunofluorescence in differentiating mouse molars from bud stage to the stage of dentin and enamel secretion, and compared to that of collagenous proteins procollagen type III and collagen type I. Fibronectin was seen in mesenchymal tissue, basement membranes, and predentin. The dental mesenchyme lost fibronectin staining when differentiating into odontoblasts. Fibronectin was not detected in mineralized dentin. Epithelial tissues were negative except for the stellate reticulum within the enamel organ. Particularly intense staining was seen at the epithelio-mesenchymal interface between the dental epithelium and mesenchyme. Fibronectin may here be involved in anchorage of the mesenchymal cells during their differentiation into odontoblasts. Procollagen type III was lost from the dental mesenchyme during odontoblast differentiation but reappeared with advancing vascularization of the dental papilla. Similarly, procollagen type III present in the dental basement membrane during the bud and cap stages disappeared from the cuspal area along with odontoblast differentiation. Weak staining was seen in predentin but not in mineralized dentin. The staining with anti-collagen type I antibodies was weak in dental mesenchyme but intense in predentin as well as in mineralized dentin.  相似文献   

7.
The dental papilla is a mesenchymal cell condensation which plays an important regulatory role during tooth development. Dental papilla mesenchymes were enzymatically separated from the dental epithelia from tooth germs of 17-day-old mouse embryos and disaggregated for monolayer culture. These cells were compared with gingival mesenchyme overlying the same tooth germs and with undifferentiated jaw mesenchyme from mandibles of 11-day-old embryos. The dental papilla cells were large and flat with numerous cell processes, whereas the gingival cells resembled typical spindle-shaped fibroblasts and grew to a higher cell density. Although the two mesenchymes differ in their collagen contents in vivo, no differences were detected either in the amount or type of collagen synthesized in vitro. Type I and III collagens were found in the culture media and type V collagen in the cell layer of both cell populations. The mandibular mesenchymal cells of the younger embryos resembled the dental papilla cells in morphology and growth rate. This may reflect retention of undifferentiated embryonic characteristics in the dental papilla. The successful culture of dental papilla cells now enables subsequent studies on the cellular properties related to the unique morphogenetic capabilities of these cells.  相似文献   

8.
Bone morphogenetic protein 2 (Bmp2) is essential for odontogensis and dentin mineralization. Generation of floxed Bmp2 dental mesenchymal cell lines is a valuable application for studying the effects of Bmp2 on dental mesenchymal cell differentiation and its signaling pathways during dentinogenesis. Limitation of the primary culture of dental mesenchymal cells has led to the development of cell lines that serve as good surrogate models for the study of dental mesenchymal cell differentiation into odontoblasts and mineralization. In this study, we established and characterized immortalized mouse floxed Bmp2 dental papilla mesenchymal cell lines, which were isolated from 1st mouse mandibular molars at postnatal day 1 and immortalized with pSV40 and clonally selected. These transfected cell lines were characterized by RT‐PCR, immunohistochemistry, and analyzed for alkaline phosphatase activity and mineralization nodule formation. One of these immortalized cell lines, iBmp2‐dp, displayed a higher proliferation rate, but retained the genotypic and phenotypic characteristics similar to primary cells as determined by expression of tooth‐specific markers as well as demonstrated the ability to differentiate and form mineralized nodules. In addition, iBmp2‐dp cells were inducible and responded to BMP2 stimulation. Thus, we for the first time described the establishment of an immortalized mouse floxed Bmp2 dental papilla mesenchyma cell line that might be used for studying the mechanisms of dental cell differentiation and dentin mineralization mediated by Bmp2 and other growth factor signaling pathways. J. Cell. Physiol. 225: 132–139, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
10.
At the bud stage of tooth development the neural crest derived mesenchyme condenses around the dental epithelium. As the tooth germ develops and proceeds to the cap stage, the epithelial cervical loops grow and appear to wrap around the condensed mesenchyme, enclosing the cells of the forming dental papilla. We have fate mapped the dental mesenchyme, using in vitro tissue culture combined with vital cell labelling and tissue grafting, and show that the dental mesenchyme is a much more dynamic population then previously suggested. At the bud stage the mesenchymal cells adjacent to the tip of the bud form both the dental papilla and dental follicle. At the early cap stage a small population of highly proliferative mesenchymal cells in close proximity to the inner dental epithelium and primary enamel knot provide the major contribution to the dental papilla. These cells are located between the cervical loops, within a region we have called the body of the enamel organ, and proliferate in concert with the epithelium to create the dental papilla. The condensed dental mesenchymal cells that are not located between the body of the enamel organ, and therefore are at a distance from the primary enamel knot, contribute to the dental follicle, and also the apical part of the papilla, where the roots will ultimately develop. Some cells in the presumptive dental papilla at the cap stage contribute to the follicle at the bell stage, indicating that the dental papilla and dental follicle are still not defined populations at this stage. These lineage-tracing experiments highlight the difficulty of targeting the papilla and presumptive odontoblasts at early stages of tooth development. We show that at the cap stage, cells destined to form the follicle are still competent to form dental papilla specific cell types, such as odontoblasts, and produce dentin, if placed in contact with the inner dental epithelium. Cell fate of the dental mesenchyme at this stage is therefore determined by the epithelium.  相似文献   

11.
Summary Cells of the dental papilla are capable of odontoblastic, fibroblastic, and endothelial differentiation and formation of dentin and the dental pulp. In the present study dental papilla cells, obtained from human tooth buds (HDP cells), were cultured in vitro through 3 to 7 passages. After exposure to prostaglandin E2 there was a marked decrease in intracellular cyclic AMP (cAMP) levels as compared to hormone-free controls. Parathyroid hormone and calcitonin had stimulatory effects with 1 and 2 log increases in cAMP, respectively. The HDP cells showed moderate activity of alkaline phosphatase, 1 log higher than that of hamster kidney fibroblasts (BHK 13) and 1 log lower than that of osteoblastic osteosarcoma cells (ROS 17/2). When cultured for 4 or 8 wk in diffusion chambers (DC) implanted in athymic mice, many of the HDP cells underwent odontoblastic morphodifferentiation with very long, single processes extending into the matrix. This matrix contained banded and unbanded collagen fibers. Neither light nor electron microscopy of the DC content revealed mineral deposits. These results suggest that HDP cells have an intrinsic potential for partial odontoblastic differentiation; inductive signals like those originating from odontogenic epithelium are probably essential for the completion of hard tissue formation.  相似文献   

12.
To assess the existence of specific and nonspecific epithelial instructions for mesenchymal cell differentiation we compared homospecific and heterospecific mouse and quail tissue recombinations. In heterospecific recombinants between trypsin-dissociated mouse molar mesenchyme and quail epithelia neither odontoblasts nor chondrocytes differentiated. Cartilage appeared if the quail epithelium was contaminated with homologous limb mesenchyme and odontoblasts differentiated if the mouse dental epithelium was contaminated with dental papilla cells.  相似文献   

13.
14.
Abstract. To assess the existence of specific and nonspecific epithelial instructions for mesenchymal cell differentiation we compared homospecific and heterospecific mouse and quail tissue recombinations. In heterospecific recombinants between trypsin-dissociated mouse molar mesenchyme and quail epithelia neither odontoblasts nor chondrocytes differentiated. Cartilage appeared if the quail epithelium was contaminated with homologous limb mesenchyme and odontoblasts differentiated if the mouse dental epithelium was contaminated with dental papilla cells.  相似文献   

15.
16.
Undifferentiated odontogenic epithelium and dental papilla cells differentiate into ameloblasts and odontoblasts, respectively, both of which are essential for tooth development. These differentiation processes involve dramatic functional and morphological changes of the cells. For these changes to occur, activation of mitochondrial functions, including ATP production, is extremely important. In addition, these changes are closely related to mitochondrial fission and fusion, known as mitochondrial dynamics. However, few studies have focused on the role of mitochondrial dynamics in tooth development. The purpose of this study was to clarify this role. We used mouse tooth germ organ cultures and a mouse dental papilla cell line with the ability to differentiate into odontoblasts, in combination with knockdown of the mitochondrial fission factor, dynamin related protein (DRP)1. In organ cultures of the mouse first molar, tooth germ developed to the early bell stage. The amount of dentin formed under DRP1 inhibition was significantly larger than that of the control. In experiments using a mouse dental papilla cell line, differentiation into odontoblasts was enhanced by inhibiting DRP1. This was associated with increased mitochondrial elongation and ATP production compared to the control. These results suggest that DRP1 inhibition accelerates dentin formation through mitochondrial elongation and activation. This raises the possibility that DRP1 might be a therapeutic target for developmental disorders of teeth.  相似文献   

17.
In an organ culture system under a three-dimensional microenvironment that provides the conditions needed for odontoblast differentiation, a row of odontoblasts can be induced (Kikuchi et al. 1996, 2001). Therefore, in a newly designed three-dimensional cell culture system that fulfils the conditions necessary for odontoblast differentiation (Kikuchi et al. 2002), we examined whether dental papilla cells in rat mandibular incisors could differentiate into tubular dentine-forming cells. In our previously established organ culture system, CM-Dil-labeled cells that were microinjected into isolated dental papillae were replaced by a row of odontoblasts. In a three-dimensional cell culture system, which consists of two kinds of type I collagen in the upper layer over multi-layered cells seeded onto collagen containing Matrigel in the lower layer and which acts as a structural meshwork, dental papilla cells were incubated as multi-layered cells in an artificial extracellular matrix (ECM). The cells aggregated to form a cell mass and invaginated as a cell mass into the ECM. The cells also extended fine fibrillar processes into the ECM. With regard to invagination, the proteolytic activities of matrix metalloproteinase-2 (MMP-2)/membrane type 1-matrix metalloproteinase (MT 1-MMP) were observed on the outer multi-layers of cells within a cell mass adjacent to the ECM. The cell mass progressively shrank to about one-half to one-third of its original diameter and was organized as a tissue surrounded by a newly secreted ECM, like dental pulp-dentine. The cells adjacent to the secreted ECM were constructed as a row of polarized columnar cells. They extended slender processes into the new ECM, which is characteristic of tubular matrix. Dentine sialophosphoprotein (DSPP) and dentine matrix protein 1 (DMP 1) genes, which are specific for odontoblast differentiation, were expressed in an aggregated cell mass where tubular matrix-forming cells were induced. Furthermore, the tubular matrix became mineralized under prolonged culture. These results imply that the putative progenitor cells/stem cells residing in dental papillae can differentiate into odontoblasts under appropriate conditions in vitro.  相似文献   

18.
Teeth develop from epithelium and neural crest-derived mesenchyme via a series of reciprocal epithelial-mesenchymal interactions. The majority of the dental papilla of the tooth has been demonstrated to be of neural crest origin. However, non-neural crest cells have also been observed in this region from the bud stage of tooth development onwards. The number of these non-neural crest-derived cells rises as the dental papilla develops. However, their origin is unknown. We have followed migration of cells into the tooth in vitro using DiI to fate map regions surrounding the developing tooth. To identify the contribution of mesodermally-derived cells, we have utilised Mesp1cre/R26R transgenic reporter mice. We document that cells outside the early tooth primordium migrate into the developing dental papilla from the late cap stage of development. Here, we show that migrating cells are mesodermally-derived and create a network of endothelial cells, forming the blood vessels of the tooth. No cells of mesodermal origin were present in the condensed mesenchyme surrounding the dental epithelium until the cap stage of tooth development. Mesodermally-derived cells start invading the dental papilla at the late cap stage, providing the blood supply to the dental pulp. Endothelial cells are able to invade the developing dental papilla in vitro using the slice culture method. Understanding the origin and timing of migration of the mesodermally-derived cells is an important advance in our understanding of how a tooth develops and is particularly relevant to studies which aim to create bioengineered teeth.  相似文献   

19.
Tooth morphogenesis and differentiation of the dental cells are guided by interactions between epithelial and mesenchymal tissues. Because the extracellular matrix is involved in these interactions, the expression of matrix receptors located at the cell surface may change during this developmental sequence. We have examined the distribution of an epithelial cell surface proteoglycan antigen, known to behave as a receptor for interstitial matrix, during tooth morphogenesis. Intense staining was seen around the cells of the embryonic oral epithelium as well as the dental epithelium at the early bud stage. With development, expression was greatly reduced in the enamel organ. Differentiation of these cells into ameloblasts was associated with the loss of expression, while the epithelial cells remaining in the stratum intermedium and stellate reticulum regained intense staining. The PG antigen was weakly expressed in the loose neural crest-derived jaw mesenchyme but it became strongly reactive in the condensed dental papilla mesenchyme when extensive morphogenetic movements took place. With development, the PG antigen disappeared from the advanced dental papilla mesenchyme but persisted in the dental sac mesenchyme, which gives rise to periodontal tissues. The PG antigen was not expressed by odontoblasts. Hence, the expression of the PG antigen changes during the epithelial-mesenchymal interactions of tooth development and is lost during terminal cell differentiation. The expression follows morphogenetic rather than histologic boundaries. The acquisition and loss of expression in epithelial and mesenchymal tissues during tooth development suggest that this proteoglycan has specific functions in the epithelial-mesenchymal interactions that guide morphogenesis.  相似文献   

20.
To assess the requirement for specific or possibly non-specific epithelial instructions for mesenchymal cell differentiation, we designed studies to evaluate and compare homotypic with heterotypic tissue recombinations across vertebrate species. These studies further tested the hypothesis that determined dental papilla mesenchyme requires epithelial-derived instructions to differentiate into functional odontoblast cells using a serumless, chemically-defined medium. Theiler stage 25 C57BL/6 or Swiss Webster cap stage mandibular first molar tooth organs or trypsin-dissociated, homotypic epithelial-mesenchymal tissue recombinants resulted in the differentiation of odontoblasts within 3 days. Epithelial differentiation into functional ameloblasts was observed within 7 days. Trypsin-dissociated and isolated mesenchyme did not differentiate into odontoblasts under these experimental conditions. Heterotypic recombinants between quail Hamburger-Hamilton stages 22–26 mandibular epithelium and Theiler stage 25 dental papilla mesenchyme routinely resulted in odontoblast differentiation within 3 days in vitro. Odontoblast differentiation and the production of dentine extracellular matrix continued throughout the 10 days in organ culture. Ultrastructural observations of the interface between quail and mouse tissues indicated the reconstitution of the basal lamina as well as the maintenance of an intact basal lamina during 10 days in vitro. Quail epithelial cells did not differentiate into ameloblasts and no enamel extracellular matrix was observed. These results show that quail mandibular epithelium can provide the required developmental instructions for odontoblast differentiation in the absence of serum or other exogenous humoral factors in a chemically-defined medium. They also suggest the importance of reciprocal epithelial-mesenchymal interactions during epidermal organogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号