首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurements have been made of the electrical potential differencebetween the vacuoles of single potato tuber cells and externalCl- solutions over the range 1–40 mM. With K+ as the counter-ion,the relationship between this transmembrane electrical potentialand external Cl- concentration, for fresh cells at 20° C,was found to be one of decreasing negative polarity with increasingCl- concentration (E at 1 mM Cl- external = – 81 m V;change in E for a 10-fold change in external concentration,E10 = 46 m V). The linearity of this relationship, apparenton a semi-logarithmic plot, was virtually unaltered by low temperature(0.5–2.5° C) or by previous ageing of the cells forperiods up to four days (indicating that metabolic ion absorptionis not an electrogenic process). When the counter-ion was maintainedat a constant high concentration (40 mM K+), the change in potentialover the Cl- concentration range was only 4 m V, polarity becomingmore negative with increasing Cl- concentration. With Ca++ asthe counter-ion, the potential to external Cl- concentrationrelationship was similar to that found in KCl solutions, exceptthat E10 was only about 20 m V. Curves for the influx of C1- to be expected on the basis ofthese electrochemical data alone have been shown to run closelyparallel to Cl absorption isotherms previously determinedexperimentally. This confirms the opinion, already formed onthe basis of theoretically derived values for passive Cl- influx,that Cl- uptake by both fresh and one-day-aged potato tissue,from KCl solutions and Cl- solutions with a fixed high K+ concentration,is rate-determined at o° C by passive movement across theplasmalemma. Uptake of Cl- by fresh tissue at 20° C appearsto be similarly regulated. No such parallelism was found between observed and expectedpatterns of Cl- uptake from CaCl2 solutions, or from KCl bytwo-day-aged tissue, and here factors in addition to the electrochemicalones must determine low temperature Cl-uptake.  相似文献   

2.
To examine effects of cytosolicNa+, K+, and Cs+ on the voltagedependence of the Na+-K+ pump, we measuredNa+-K+ pump current (Ip)of ventricular myocytes voltage-clamped at potentials(Vm) from 100 to +60 mV. Superfusates weredesigned to eliminate voltage dependence at extracellular pump sites.The cytosolic compartment of myocytes was perfused with patch pipette solutions with a Na+ concentration ([Na]pip)of 80 mM and a K+ concentration from 0 to 80 mM or withsolutions containing Na+ in concentrations from 0.1 to 100 mM and K+ in a concentration of either 0 or 80 mM. When[Na]pip was 80 mM, K+ in pipette solutionshad a voltage-dependent inhibitory effect on Ipand induced a negative slope of theIp-Vm relationship. Cs+ in pipette solutions had an effect onIp qualitatively similar to that ofK+. Increases in Ip with increasesin [Na]pip were voltage dependent. The dielectriccoefficient derived from[Na]pip-Ip relationships at thedifferent test potentials was 0.15 when pipette solutions included 80 mM K+ and 0.06 when pipette solutions were K+ free.

  相似文献   

3.
Guttation was used as a non-destructive way to study the flowof water and mineral ions from the roots and compared with parallelmeasurements of root exudation. Guttation of the leaves of barley seedlings depends on age andon the culture solution. Best rates of guttation were obtainedwith the primary leaves of 6- to 7-day-old seedlings grown onfull mineral nutrient solution. The growing leaf tissue becomessaturated with K+ below 1.5 mM K+ in the medium, whereas K+concentration in the guttated fluid still increases furtheras K+ concentration in the medium is raised. At 3 mM K+ averagevalues of guttation were 1.4–2.4 mm3 h–1 per plantwith a K+ concentration of 10–20 mM; for exuding plantsthe flow was 4.2–7.6 mm3 h–1 per plant and K+ concentration35–55 mM. Abscisic acid (ABA) at 10–6 to 10–4 M 0–2h after addition to the root medium increased volume flow ofguttation and exudation and the amount of K+ exported. Threeh after addition of ABA both volume and amount of K+ were reduced.There was an ABA-dependent increase in water permeability (Lp)of exuding roots shortly after ABA addition. Later Lp was decreasedby 35 per cent and salt export by 60 per cent suggesting aneffect of ABA on salt transport to the xylem apart from itseffect on Lp. Benzyladenine (5 x 10–8 to 10–5 M)and kinetin (5 x 10–6 M) progressively reduced volumeflow and K+ export in guttation and exudation and reduced Lp. Guttation showed a qualitatively similar response to phytohormonesas found here and elsewhere using exuding roots. Hordeum vulgare L., barley, guttation, abscisic acid, cytokinins, benzyl adenine, kinetin  相似文献   

4.
The intracellular K+ concentration and its change in mung bean[Vigna mungo (L.) Hepper] root tips were investigated non-invasivelywith 39K nuclear magnetic resonance spectroscopy using a membraneimpermeable shift reagent, dysprosium (III) tripolyphosphate[Dy(PPPi)7–2]. The K+ resonance was shifted to highermagnetic field in proportion to the concentration of the shiftreagent. In addition to a reference capillary peak for measuringthe K+ concentration, two well-resolved peaks (intra- and extracellularK+ resonances) were observed in the 39K NMR spectra of mungbean root tips. The intracellular K+ concentration was determinedto be 41 mM, which was similar to the value obtained by flamephotometry. When 20 mM KCl was added to the external medium,the intensity of the intracellular K+ resonance gradually increasedand the net K+ uptake rate was calculated to be 4.1 micromolesper gram fresh weight per hour. After removal of KCl from theperfusion medium, the intracellular K+ concentration considerablydecreased. With 31P NMR method, 2.5 mM Dy(PPPj)7–12 and20 mM KCl had little effect on the ATP level in the cells. Wehave indicated that the 39K NMR method can be used to determinethe K+ levels and net fluxes of the K+ transport in perfusedroot tips successively. (Received April 6, 1988; Accepted September 29, 1988)  相似文献   

5.
Ion Content of the Halotolerant Alga Dunaliella salina   总被引:3,自引:0,他引:3  
The intracellular concentration of the major ions in Dunaliellasalina cells were determined, following the removal of extracellularions by ion-exchange minicolumns. Log phase cells, grown inmedia containing 1–4 molar NaCl, contained 30–50mM chloride and 200–350 mM magnesium (5 mM in medium).Phosphorus, which is present intracellularly mostly as polyphosphate,was present in amounts of 60–100 fmoles per cell, equivalentto a concentration of 600–1,000 mM (0.2 mM in medium).Previous data indicated that such cells contained 20–40mM Na+, 150–300mM K+, 20mM SO2–4, and very low concentrationsof Ca2+ and charged nitrogenous compounds. Mg2+ and K+ seemto serve as the major counter ions for the intracellular negativecharge present in the massively accumulated polyphosphates.The former accounts for about 2/3 of the required positive charge.This is supported by the observation that limitation in thephosphate or K+ supply in the medium lead to a parallel decreasein the accumulation of intracellular phosphorus, Mg2+ or K+. 1Present address: Department of Vegetables, The Volcani Center,Bet-Dagan 50250, Israel. (Received June 13, 1988; Accepted August 25, 1988)  相似文献   

6.
Phaseolus vulgaris L. grown at a range of external concentrationsof NaCl (0 to 80 mM) responded differently to gaseous anaerobiosis(N2 gas) in nutrient solution or stagnant waterlogging of theroot-zone. With similar patterns of distribution of Na+ andCl- occurring in the plants with comparable NaCl treatments,and similar final concentrations of Na+ and Cl- in plants grownunder both root-zone conditions, rates of uptake of Na+ andCl- were much higher in plants with the stagnant waterloggedrootzones. After 72 h stagnant waterlogging, plant tops fromplants grown at 40 mM NaCl contained 1.42 per cent Na+ and 3.44per cent Cl- (d. wt basis) while after 9 days exposure to NaClwith gaseous anaerobiosis, leaf tissue contained 1.49 per centNa+ and 4.28 per cen Cl- (d. wt basis). Plants exposed to 40mM external NaCl were severely damaged within 72 h when grownwith stagnant waterlogged root-zones; those grown with N2 anaerobiosiscontinued growth and development over the 9 d period. Plantsgrown in nutrient solution showed changes in distribution andconcentration of Na+ and Cl- when oxygen concentration was reducedbelow 21 per cent O2 (full aeration). Phaseolus vulgaris. L., bean, mineral salt distribution, anaerobiosis, salinity, waterlogging  相似文献   

7.
H+-translocating ATPase and pyrophosphatase (PPase) associatedwith the tonoplast of Chara corallina were isolated with theaid of a perfusion technique, and the effects of ions on theiractivities were studied. All the alkali metal cations testedstimulated the ATPase and ATPdependent H+ pumping activitiesonly by 10 to 40%. Anions, on the other hand, strongly affectedthe activities. Potassium salts of Cl- and Br- stimulated them,while F- and NO3- inhibited them. By contrast, the H+-translocatingPPase was insensitive to anions but sensitive to cations. Theorder of cation stimulation was Rb+=K+>Cs+>Na+=Li+>choline+.NO3- (50 mil), thought to be a specific inhibitor of the tonoplast-typeH+-ATPase, inhibited the ATPdependent H+ pumping almost completelybut the ATPase activity by only about 50%. Na+ inhibited thePP1-dependent H+ pumping (I5O=5OmM) in the presence of 50 mMKCl but not the ATP-dependent one. The PPase was more sensitiveto F- (I50=400µM) than the ATPase. Both the H+-ATPaseand the H+-PPase required Mg2+ for their activities, althoughan excess was inhibitory to both. The different sensitivitiesof the PP1-dependent and the ATP-dependent H+- pumping enzymesto ions correspond to the tonoplast enzymes of higher plantsand may be used as "markers" to distinguish between these enzymesin characean cells (Received October 2, 1987; Accepted May 18, 1988)  相似文献   

8.
The effects of NO-3 and NH+4 nutrition on hydroponically grownwheat (Triticum aestivum L.) and maize (Zea mays L.) were assessedfrom measurements of growth, gas exchange and xylem sap nitrogencontents. Biomass accumulation and shoot moisture contents ofwheat and maize were lower with NH+4 than with NO-3 nutrition.The shoot:root ratios of wheat plants were increased with NH+4compared to NO-3 nutrition, while those of maize were unaffectedby the nitrogen source. Differences between NO-3 and NH+4-fedplant biomasses were apparent soon after introduction of thenitrogen into the root medium of both wheat and maize, and thesedifferences were compounded during growth. Photosynthetic rates of 4 mM N-fed wheat were unaffected bythe form of nitrogen supplied whereas those of 12 mM NH+4-fedwheat plants were reduced to 85% of those 12 mM NO-3-fed wheatplants. In maize supplied with 4 and 12 mM NH+4 the photosyntheticrates were 87 and 82% respectively of those of NO-3-fed plants.Reduced photosynthetic rates of NH+4 compared to NO-3-fed wheatand maize plants may thus partially explain reduced biomassaccumulation in plants supplied with NH+4 compared to NO-3 nutrition.Differences in the partitioning of biomass between the shootsand roots of NO-3-and NH+4-fed plants may also, however, arisefrom xylem translocation of carbon from the root to the shootin the form of amino compounds. The organic nitrogen contentof xylem sap was found to be considerably higher in NH+4- thanin NO-3-fed plants. This may result in depletion of root carbohydrateresources through translocation of amino compounds to the shootin NH+4-fed wheat plants. The concentration of carbon associatedwith organic nitrogen in the xylem sap of maize was considerablyhigher than that in wheat. This may indicate that the shootand root components of maize share a common carbon pool andthus differences induced by different forms of inorganic nitrogenare manifested as altered overall growth rather than changesin the shoot:root ratios.Copyright 1993, 1999 Academic Press Triticum aestivum, wheat, Zea mays, maize, nitrogen, growth, photosynthesis, amino acids, xylem  相似文献   

9.
The effects of salinity on growth, water relations, glycinebetainecontent, and ion accumulation in the perennial halophyte Atriplexgriffithii var. stocksii were determined. The following questionswere addressed: (1) What effect does salinity have on growthresponses at different ages? (2) Is A. griffithii an ion accumulator?(3) Does A. griffithii accumulate glycinebetaine in responseto salinity? Atriplex griffithii plants were grown in pots at0, 90, 180 and 360  m M NaCl in sand culture in a plantgrowth chamber and plants were harvested after 30, 60 and 90d. Plant total dry weight was significantly inhibited at 360m M NaCl. Root growth showed a substantial promotion at 90 mM NaCl. The water potential and osmotic potential of shootsbecame more negative with increasing salinity and time of growth.The Na+and Cl-content in both shoots and roots increased withincreases in salinity. Increased treatment levels of NaCl induceddecreases in Ca+, K+and Mg2+in plants. Atriplex griffithii accumulateda large quantity of ions, with the ash content reaching 39%of the dry weight in leaves. Inorganic ion accumulation is significantin osmotic adjustment and facilitates water uptake along a soil-plantgradient. Glycinebetaine concentration was low in roots, andin stems it increased with increases in salinity. Total amountsof glycinebetaine in leaves increased with increases in salinity,and its concentration increased substantially at 360 m M NaCl.Copyright 2000 Annals of Botany Company Atriplex griffithii, glycinebetaine, growth, ions, water relations.  相似文献   

10.
The possiblerole of altered extracellular Ca2+concentration([Ca2+]o)in skeletal muscle fatigue was tested on isolated slow-twitch soleusand fast-twitch extensor digitorum longus muscles of the mouse. Thefollowing findings were made. 1) Achange from the control solution (1.3 mM[Ca2+]o)to 10 mM[Ca2+]o,or to nominally Ca2+-freesolutions, had little effect on tetanic force in nonfatigued muscle.2) Almost complete restoration oftetanic force was induced by 10 mM[Ca2+]oin severely K+-depressed muscle(extracellular K+ concentration of10-12 mM). This effect was attributed to a 5-mV reversal of theK+-induced depolarization andsubsequent restoration of ability to generate action potentials(inferred by using the twitch force-stimulation strength relationship).3) Tetanic force depressed bylowered extracellular Na+concentration (40 mM) was further reduced with 10 mM[Ca2+]o.4) Tetanic force loss at elevatedextracellular K+ concentration (8 mM) and lowered extracellular Na+concentration (100 mM) was partially reversed with 10 mM[Ca2+]oor markedly exacerbated with low[Ca2+]o.5) Fatigue induced by using repeatedtetani in soleus was attenuated at 10 mM[Ca2+]o(due to increased resting and evoked forces) and exacerbated at low[Ca2+]o.These combined results suggest, first, that raised[Ca2+]oprotects against fatigue rather than inducing it and, second, that aconsiderable depletion of[Ca2+]oin the transverse tubules may contribute to fatigue.

  相似文献   

11.
The cultivation of narrow-leafed lupins (Lupinus angustifoliusL.) increase rates of subsoil acidification, and this is thoughtto be partly related to their pattern of nutrient uptake andH+/OH- excretion. The main hypothesis of this study was thatH+ and OH- excretion is not distributed evenly over the entirelength of the root system but is limited to zones where excesscation or anion uptake occur. Seedlings of nodulated lupinswere grown in solution culture using vertically split pots thatallowed the upper and lower zones of the root system to be suppliedwith varying concentrations of K+ and NO-3. Net H+/OH- excretionwas equated to the addition of NaOH/HCl required to maintaina constant pH in the nutrient solution during a 4-d treatmentperiod and nutrient uptake was measured by depletion from solutionin each zone of the split pots. The excess of cation over anion uptake was positively correlatedwith H+ excretion in each rooting zone. In zones where K+ wassupplied at 1200 µM, cation uptake was dominated by K+and up to twice as much H+ was excreted than in zones whereK+ was absent. In zones where NO-3 was supplied at 750 µM,the anion/cation uptake was balanced, however H+ excretion continuedto occur in the zone. When NO-3 was supplied at 5000 µM,anion uptake exceeded cation uptake but there was no OH- excretion.Organic acid anions may be excreted by lupins to maintain theirinternal electroneutrality when anion uptake exceeds cationuptake. Rhizosphere pH would not increase unless the pKa ofthe excreted organic anions was greater than the external pH.Copyright1993, 1999 Academic Press Lupinus angustifolius L., H+/OH- excretion, nutrient uptake, cation-anion balance, vertical split root  相似文献   

12.
Respiratory oxygen consumption by roots was 1·4- and1·6-fold larger in NH+4-fed than in NO-3-fed wheat (Triticumaestivum L.) and maize (Zea mays L.) plants respectively. Higherroot oxygen consumption in NH+4-fed plants than in NO-3-fedplants was associated with higher total nitrogen contents inNH+4-fed plants. Root oxygen consumption was, however, not correlatedwith growth rates or shoot:root ratios. Carbon dioxide releasewas 1·4- and 1·2-fold larger in NO+3-fed thanin NH+4-fed wheat and maize plants respectively. Differencesin oxygen and carbon dioxide gas exchange rates resulted inthe gas exchange quotients of NH-4-fed plants (wheat, 0·5;maize, 0·6) being greatly reduced compared with thoseof NO-3-fed plants (wheat, 1·0; maize, 1·1). Measuredrates of HCO-3 assimilation by PEPc in roots were considerablylarger in 4 mM NH+4-fed than in 4 NO-3 plants (wheat, 2·6-fold;maize, 8·3-fold). These differences were, however, insufficientto account for the observed differences in root carbon dioxideflux and it is probable that HCO-3 uptake is also importantin determining carbon dioxide fluxes. Thus reduced root extension in NH+4-fed compared with NO-3-fedwheat plants could not be ascribed to differences in carbondioxide losses from roots.Copyright 1993, 1999 Academic Press Triticum aestivum, wheat, Zea mays, maize assimilation, ammonium assimilation, root respiration  相似文献   

13.
Ion chromatographic methods determined organic acids and mainnutrient minerals in the apoplastic solution from leaves ofseveral Fagaceae (Quercus ilex L., Quercus cerris L., Quercusvirgiliana (Ten.) Ten, and Fagus sylvatica L.). The anions oforganic acids found in high amounts (250 to 650 µM) werequinate, malate, and oxalate. Lactate, pyruvate, formate andacetate were detected in relatively low amounts with concentrationsbetween 20 and 200 µM. The total concentration of organicacids in the apoplastic sap ranged between 1.5 and 2 mM. Thetotal concentration of inorganic cations (K+, Mg2+, NH4+, Ca2+,Na+) and anions (C1, NO3, SO2–4 and PO3–4)in the apoplastic sap varied between 5 and 10 mM, and 0.35 and1.8 mM, respectively. We conclude that the concentration oforganic acid ions in the leaf apoplast depends mainly on theexchange with the leaf cells and is influenced by the electrochemicalgradient between the symplast and the apoplast in relation tothe water potential of the leaf. The determination of formateand acetate in the apoplastic compartment of leaves lend weightto the argument that the production of these acids by treesis a important emission source to the atmosphere. (Received June 9, 1998; Accepted April 8, 1999)  相似文献   

14.
A novel O-glucosyltransferase (I4'GT) which catalyzes the transferof D-glucose from UDP-D-glucose to position 4' of prunetin (4',5-dihydroxyl-7-methoxyisoflavone)was isolated from the leaves of Prunus ? yedoensis Matsum. andpurified 66-fold by precipitation with ammonium sulfate andchromatography on DEAE-cellulose. UDP-glucose:flavonol 3-O-glucosyltransferase(F3GT) was also isolated and purified 50-fold in the same manner.The molecular weights of both I4'GT and F3GT were estimatedby elution from a column of Sephadex G-100 to be about 51,000Da. The pH optima for I4'GT and F3GT activities were 8.0 and7.5, respectively. The specificities of I4'GT and F3GT for thesugar donor were quite strict, and only UDP-glucose could serveas glucosyl donor, both ADP-D-glucose and GDP-D-glucose beingineffective. The apparent Km values for UDP-glucose and prunetinwere 10.0µM and 1.20µM, respectively, for I4'GT.The Km values for UDP-glucose and quercetin were 9.8 µMand 1.21 µM, respectively, for F3GT. The activities ofboth I4'GT and F3GT were stimulated by 1 mM Mg*+ and stronglyinhibited by 1 mM Cu2+, 1 mM Zn2+ and various reagents thatreact with sulfhydryl groups. (Received May 16, 1990; Accepted September 3, 1990)  相似文献   

15.
We have clonedand functionally characterized the human Na+-dependenthigh-affinity dicarboxylate transporter (hNaDC3) from placenta. ThehNaDC3 cDNA codes for a protein of 602 amino acids with 12 transmembrane domains. When expressed in mammalian cells, the clonedtransporter mediates the transport of succinate in the presence ofNa+ [concentration of substrate necessary for half-maximaltransport (Kt) for succinate = 20 ± 1 µM]. Dimethylsuccinate also interacts with hNaDC3. TheNa+-to-succinate stoichiometry is 3:1 and concentration ofNa+ necessary for half-maximal transport(KNa+0.5) is 49 ± 1 mM as determined by uptake studies withradiolabeled succinate. When expressed in Xenopuslaevis oocytes, hNaDC3 induces Na+-dependent inwardcurrents in the presence of succinate and dimethylsuccinate. At amembrane potential of 50 mV,KSuc0.5 is 102 ± 20 µM andKNa+0.5 is 22 ± 4 mM as determined by the electrophysiological approach. Simultaneous measurements of succinate-evoked charge transfer andradiolabeled succinate uptake in hNaDC3-expressing oocytes indicate acharge-to-succinate ratio of 1:1 for the transport process, suggestinga Na+-to-succinate stoichiometry of 3:1. pH titration ofcitrate-induced currents shows that hNaDC3 accepts preferentially thedivalent anionic form of citrate as a substrate. Li+inhibits succinate-induced currents in the presence of Na+.Functional analysis of rat-human and human-rat NaDC3 chimeric transporters indicates that the catalytic domain of the transporter lies in the carboxy-terminal half of the protein. The humanNaDC3 gene is located on chromosome20q12-13.1, as evidenced by fluorescent in situ hybridization. Thegene is >80 kbp long and consists of 13 exons and 12 introns.

  相似文献   

16.
Osmotic and ionic regulation in Nitella   总被引:2,自引:0,他引:2  
When the osmotic value of an internodal cell of Nitella flexiliswas modified by the method of transcellular osmosis, the normalosmotic value was chiefly restored by the release or absorptionof K+. The release or uptake of Na+ was observed only when themodification of osmotic value was significant. Both the uptakeand release of K+ were linearly dependent on the degree of modificationof the osmotic value. The effectiveness of alkali metal cationsin restoring the osmotic value in cells of lower osmotic valueswas in the order K+>Rb+>Na+, Cs+>Li+. The absorptionof K+ by cells of lower osmotic values depended strongly ontemperature, while the release of K+ from cells of higher osmoticvalues did not. To clarify whether the Nitella cell regulates the osmotic valueor regulates the concentration of K+ in the vacuole, the cellsap was exchanged for artificial cell saps whose osmotic valuesand ionic concentrations were varied independent of each other.It was shown that in Nitella two regulating mechanisms are operating,one which regulates the osmotic value of the cell sap irrespectiveof the level of vacuolar K+ (0.1–140 mM) and another whichregulates the vacuolar K+-level when it is abnormaly high (>160mM). Both mechanisms are assumed to operate in order to keepthe concentration of K+ in the cytoplasm at a constant level.The presence of Na+ (0–100 mM) and Ca2+ (5–40 mM)did not affect the movement of K+ during osmoregulation. 1Present address: Sanki Engineering Limited, Nagaokakyo, Kyoto,Japan. (Received December 19, 1973; )  相似文献   

17.
The contribution of K+ accumulation to cell turgor pressurewas investigated in the gas-vacuolate blue-green alga Anabaenaflos-aquae. The cell turgor pressure, measured by the gas vesiclemethod, drops in cells suspended in culture medium depletedof K+ but rapidly rises again, by 100 kPa or more, when K+ isresupplied. A similar though rather slower rise in turgor pressureis supported by an equivalent concentration of Rb+. The internalK+ concentration rose from 66 to 91 mM when K+ was suppliedat an external concentration of 0.4 mM. This rise was light-dependent.Greater increases in internal K+ concentration and turgor pressureoccurred when K+ was supplied at a higher concentration, 3.6mM. In both cases over 60% of the observed turgor pressure risecould be accounted for by accumulation of K+. The turgor pressurerise supported by light-stimulated K+ uptake can cause collapseof enough of the alga's gas vesicles to destroy its buoyancy.The effect of K+ availability on buoyancy regulation by planktonicblue-green algae is discussed.  相似文献   

18.
We hypothesized that highextracellular K+ concentration([K+]o)-mediated stimulation ofNa+-K+-Cl cotransporter isoform 1 (NKCC1) may result in a net gain of K+ and Cland thus lead to high-[K+]o-induced swellingand glutamate release. In the current study, relative cell volumechanges were determined in astrocytes. Under 75 mM[K+]o, astrocytes swelled by 20.2 ± 4.9%. This high-[K+]o-mediated swelling wasabolished by the NKCC1 inhibitor bumetanide (10 µM, 1.0 ± 3.1%; P < 0.05). Intracellular36Cl accumulation was increased from acontrol value of 0.39 ± 0.06 to 0.68 ± 0.05 µmol/mgprotein in response to 75 mM [K+]o. Thisincrease was significantly reduced by bumetanide (P < 0.05). Basal intracellular Na+ concentration([Na+]i) was reduced from 19.1 ± 0.8 to16.8 ± 1.9 mM by bumetanide (P < 0.05).[Na+]i decreased to 8.4 ± 1.0 mM under75 mM [K+]o and was further reduced to5.2 ± 1.7 mM by bumetanide. In addition, the recovery rate of[Na+]i on return to 5.8 mM[K+]o was decreased by 40% in the presenceof bumetanide (P < 0.05). Bumetanide inhibitedhigh-[K+]o-induced 14C-labeledD-aspartate release by ~50% (P < 0.05).These results suggest that NKCC1 contributes tohigh-[K+]o-induced astrocyte swelling andglutamate release.

  相似文献   

19.
Na+/H+ Antiporter in Tonoplast Vesicles from Rice Roots   总被引:4,自引:0,他引:4  
The Na+/H + antiporter in vacuolar membranes transports Na+from the cytoplasm to vacuoles using a pH gradient generatedby proton pumps; it is considered to be related to salinitytolerance. Rice (Oryza sativa L.) is a salt-sensitive crop whosevacuolar antiporter is unknown. The vacuolar pH of rice roots,determined by 31P-nuclear magnetic resonance (NMR), increasedfrom 5.34 to 5.58 in response to 0.1 M NaCl treatment. Transportof protons into the tonoplast vesicles from rice roots was fluorometricallymeasured. Efflux of protons was accelerated by the additionof Na+. Furthermore, the influx of 22Na+ into the tonoplastvesicles was accelerated by a pH gradient generated by proton-translocatingadenosine 5'-triphosphatase (H+-ATPase) and proton-translocatinginorganic pyro-phosphatase (H+-PPase). We concluded that thisNa+/H+antiporter functioned as a Na+ transporter in the vacuolarmembranes. The antiporter had a Km of 10 mM for Na+ and wascompetitively inhibited by amiloride and its analogues. TheKi values for 5-(N-methyl-N-isobutyl)-amiloride (MIA), 5-(N-ethyl-N-isopropyI)-amiloride(EIPA), and 5-(N, N-hexamethylene)-amiloride (HMA) were 2.2,5.9, and 2.9 µ M, respectively. Unlike barley, a salt-tolerantcrop, NaCl treatment did not activate the antiporter in riceroots. The amount of antiporter in the vacuolar membranes maybe one of the most important factors determining salt tolerance. 1This work was supported by a grant from Bio-Media Project ofthe Japanese Ministry of Agriculture, Forestry and Fisheries(BMP96-III-1).  相似文献   

20.
Effect of Sudden Salt Stress on Ion Fluxes in Intact Wheat Suspension Cells   总被引:4,自引:0,他引:4  
Although salinity is one of the major problems limiting agriculturalproduction around the world, the underlying mechanisms of highNaCl perception and tolerance are still poorly understood. Theeffects of different bathing solutions and fusicoccin (FC),a known activator of plasma membrane ATPase, on plasma membranepotential (Em) and net fluxes of Na+, K+and H+were studied inwheat suspension cells (Triticum aestivum) in response to differentNaCl treatments. Emof cells in Murashige and Skoog (MS) mediumwas less negative than in cells exposed to a medium containing10 mM KCl + 0.1 m M CaCl2(KSM) and to a basic salt medium (BSM),containing 1 m M KCl and 0.1 m M CaCl2. Multiphasic Na+accumulationin cells was observed, peaking at 13 min after addition of 120m M NaCl to MS medium. This time scale was in good agreementwith net Na+flux changes measured non-invasively by moving ion-selectivemicroelectrodes (the MIFE system). When 120 m M NaCl was addedto all media studied, a quick rise of Na+influx was reversedwithin the first 20 min. In both 120 and 20 m M NaCl treatmentsin MS medium, net Na+efflux was observed, indicating that activeNa+transporters function in the plant cell response to saltstress. Lower external K+concentrations (KSM and BSM) and FCpre-treatment caused shifts in Na+fluxes towards net influxat 120 m M NaCl stress. Copyright 2000 Annals of Botany Company Sodium, potassium, proton, membrane potential, fusicoccin, salt stress, wheat, Triticum aestivum  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号