首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Donchin A 《Bioethics》2000,14(3):187-204
Western philosophy has been powerfully influenced by a paradigm of personal agency that is linked to an individualistic conception of autonomy. This essay contrasts this conception with an alternative understanding that recognizes a social component built into the very meaning of autonomy. After reviewing feminist critiques of the dominant conception of autonomy, I develop the broad outlines of a relational view and apply this reconceptualization to a concrete situation in order to show how this altered view reconfigures understanding of the participants' relationships and each of their personal perspectives. The situation chosen, physician-assisted suicide, is intended principally to illustrate one respect in which a relational conception of autonomy reframes a controversial moral issue and reveals perspectives toward it that are likely to be obscured when autonomy is viewed through the lens of the dominant individualistic conception. My principal aim is to show that when autonomy is understood relationally, respecting others' autonomy is likely to be a far more complex issue than is apparent within the standard conception, both for those with professional responsibilities and often for personal intimates as well.  相似文献   

2.
The boundaries of embryonic stem cell (ESC) research have extended considerably in recent years in several?important ways. Alongside a deeper understanding of the pluripotent state, ESCs have been successfully integrated into various fields, such as genomics, epigenetics, and disease modeling. Significant progress in cell fate control has pushed directed differentiation and tissue engineering further than ever before and promoted clinical trials. The geographical distribution of research activity has also expanded, especially for human ESCs. This review outlines these developments and future challenges that remain.  相似文献   

3.
This review discusses the various regulatory charac-teristics of microRNAs that are capable of generating widespread changes in gene expression via post translational repression of many mRNA targets and control self-renewal, differentiation and division of cells. It controls the stem cell functions by controlling a wide range of pathological and physiological processes, including development, differentiation, cellular proliferation, programmed cell death, oncogenesis and metastasis. Through either mRNA cleavage or translational repression, miRNAs alter the expression of their cognate target genes; thereby modulating cellular pathways that affect the normal functions of stem cells, turning them into cancer stem cells, a likely cause of relapse in cancer patients. This present review further emphasizes the recent discoveries on the functional analysis of miRNAs in cancer metastasis and implications on miRNA based therapy using miRNA replacement or anti-miRNA technologies in specific cancer stem cells that are required to establish their efficacy in controlling tumorigenic potential and safe therapeutics.  相似文献   

4.
Kibadachi is a rather simple karate exercise performed during a several-day-long special training, in which the participants squat in a crouching position for an hour and a half without moving. Despite its simplicity, and because its main feature is the immediate and excruciating pain it induces, kibadachi stimulates a kind of permeability between the participants, and also causes changes in the relations between physical and mental parts of their lived body. Following Deleuze and Guattari, kibadachi , and its capacity to dissolve boundaries, is analysed here as a way of becoming a Body without Organs. The participants of kibadachi enter social and somatic dynamics which operate potentiality hidden in their lived bodies, alter boundaries, and reinforce connectedness.  

Résumé


Le kibadachi est un exercice de karaté relativement simple, exécuté au cours d'un entraînement spécial de plusieurs jours, lors duquel les participants se tiennent accroupis pendant une heure et demie sans bouger. En dépit de sa simplicité, et parce que sa principale caractéristique est la douleur immédiate et cuisante qu'il provoque, le kibadachi suscite une sorte de perméabilité entre les participants et provoque aussi des changements dans les relations entre les parties physique et mentale de leur corps vécu. Dans l'esprit de Deleuze et Guattari, le kibadachi et sa capacité d'abolir les frontières sont analysés ici comme un moyen de devenir un Corps sans Organes. Les participants au kibadachi s'engagent dans des dynamiques sociales et somatiques qui opèrent sur les potentialités cachées dans leurs corps vécus, modifient les frontières, et renforcent les liens aux autres.  相似文献   

5.
6.
Coinciding with the 150(th) anniversary of German-Japanese friendship, Kyoto University and Heidelberg University, two universities replete with history and tradition strengthened their close ties at a joint meeting in Heidelberg, Germany, forming the core of a broad collaborative effort between the two countries. This forum article provides a background and overview of the collaborations.  相似文献   

7.
8.
The last decade was dominated by dissemination of the notion that postnatal "mesenchymal stem cells," found primarily in bone marrow but also in other tissues, can generate multiple skeletal and nonskeletal tissues, and thus can be exploited to regenerate a broad range of tissues and organs. The concept of "mesenchymal stem cells" and its applicative implications represent a significant departure from the solidly proven notion that skeletal stem cells are found in the bone marrow (and not in other tissues). Recent data that sharpen our understanding of the identity, nature, origin, and in vivo function of the archetypal "mesenchymal stem cells" (bone marrow skeletal stem cells) point to their microvascular location, mural cell identity, and function as organizers and regulators of the hematopoietic microenvironment/niche. These advances bring back the original concept from which the notion of "mesenchymal stem cells" evolved, and clarify a great deal of experimental data that accumulated in the past decade. As a novel paradigm emerges that accounts for many facets of the biology of skeletal stem cells, a novel paradigm independently emerges for their applicative/translational use. The two paradigms meet each other back in the future.  相似文献   

9.
10.
Bone marrow is a useful cell source for skeletal tissue engineering approaches. In vitro differentiation of marrow mesenchymal stem cells (MSCs) to chondrocytes or osteoblasts can be induced by the addition of specific growth factors to the medium. The present study evaluated the behaviour of human MSCs cultured on various scaffolds to determine whether their differentiation can be induced by cell-matrix interactions. MSCs from bone marrow collected from the acetabulum during hip arthroplasty procedures were isolated by cell sorting, expanded and characterised by a flow cytometry system. Cells were grown on three different scaffolds (type I collagen, type I + II collagen and type I collagen + hydroxyapatite membranes) and analysed by histochemistry, immunohistochemistry and spectrophotometry (cell proliferation, alkaline phosphatase activity) at 15 and 30 days. Widely variable cell adhesion and proliferation was observed on the three scaffolds. MSCs grown on type I+II collagen differentiated to cells expressing chondrocyte markers, while those grown on type I collagen + hydroxyapatite differentiated into osteoblast-like cells. The study highlighted that human MSCs grown on different scaffold matrices may display different behaviours in terms of cell proliferation and phenotype expression without growth factor supplementation.  相似文献   

11.
Evidence has accumulated that cancer develops from a population of quiescent tissue committed/pluripotent stem cells (TCSC/PSC) or cells developmentally closely related to them that are distributed in various organs. To support this notion, stem cells (SC) are long lived cells and thus may become the subject of accumulating mutations that are crucial for initiation/progression of cancer. More important, they may maintain these mutations and pass them to the daughter stem cells. Therefore, mutations that occur in normal SC, accumulate during the life of an organism at the clonal level in the stem cell compartment committed to a given tissue/organ. As a consequence, this may lead to the malignant transformation of SC and tumor initiation. Furthermore, many biological features of normal and cancer SC such as the physiological trafficking of normal and metastasis of cancer stem cells involve similar molecular mechanisms, and we discuss these similarities here. Therefore, looking both at the origin and behavioral aspects we can envision cancer SC being normal SC "Jedi" that went over to the "dark side".  相似文献   

12.
In this paper, experimental findings concerning the kinetics of hematopoietic reconstitution are compared to corresponding clinical data. Although not clearly apparent, the transplantation practice seems to confirm the basic proposals of experimental hematology concerning hematopoietic reconstitution resulting from successive waves of repopulation stemming from different subpopulations of progenitor and stem cells. One of the "first rate" parameters in clinical transplantations in hematology; i.e. the CD34+ positive cell dose, has been discussed with respect to the functional heterogeneity and variability of cell populations endowed by expression of CD34. This parameter is useful only if the relative proportion of stem and progenitor cells in the CD34+ cell population is more or less maintained in a series of patients or donors. This proportion could vary with respect to the source, pathology, treatment, processing procedure, the graft ex vivo treatment and so on. Therefore, a universal dose of CD34+ cells cannot be defined. In addition, to avoid further confusion, the CD34+ cells should not be named "stem cells" or "progenitor cells" since these denominations only concern functionally characterized cell entities.  相似文献   

13.
The synthetic reconstruction of natural gene networks and the de novo design of artificial genetic circuits provide new insights into the cell's regulatory mechanisms and will open new opportunities for drug discovery and intelligent therapeutic schemes. We will present how modular synthetic biology tools like repressors, promoters and enzymes can be assembled into complex systems in order to discover small molecules to shut off antibiotic resistance in tubercle bacteria and to design self-sufficient therapeutic networks. The transfer of these synthetic biological modules to the materials science field enables the construction of novel drug-inducible biohybrid materials for biomedical applications.  相似文献   

14.
The subdivision of proliferating tissues into groups of non-intermingling sets of cells, termed compartments, is a common process of animal development. Signaling between adjacent compartments induces the local expression of morphogens that pattern the surrounding tissue. Sharp and straight boundaries between compartments stabilize the source of such morphogens during tissue growth and, thus, are of crucial importance for pattern formation. Signaling pathways required to maintain compartment boundaries have been identified, yet the physical mechanisms that maintain compartment boundaries remained elusive. Recent data now show that a local increase in actomyosin-based mechanical tension on cell bonds is vital for maintaining compartment boundaries in Drosophila.Key words: Drosophila, wing imaginal disc, compartment boundary, cell sorting, mechanical tensionCompartments were first identified in the wings and abdomen of insects by clonal analysis.1,2 When single cells were genetically marked during early development, the descendant cells (‘clone’) grew up in the adult structure to a boundary line (the compartment boundary), and frequently ran along it, but never extended to the other side. These experiments revealed that, in Drosophila, the developing wing is subdivided during embryogenesis into anterior (A) and posterior (P) compartments (Fig. 1A) and later, during larval development, into dorsal (D) and ventral (V) compartments. Compartments were subsequently identified in different parts of the fly, including the leg, haltere, head and abdomen.37 More recently, lineage tracing also revealed compartments in vertebrate embryos,816 indicating that the formation of compartments is a common strategy during both insect and vertebrate development.Open in a separate windowFigure 1Increased cell bond tension at compartment boundaries in Drosophila. (A) The Drosophila wing imaginal disc is subdivided into anterior (A) and posterior (P) compartments. (B) Myosin II and F-actin (green lines) are enriched at the cell bonds between anterior cells and posterior cells compared to cell bonds elsewhere in the tissue. Mechanical tension (arrows) on cell bonds along the A/P boundary is increased. (C) Measurement of cell bond tension by laser ablation. Arrowheads depict the site of ablation. The two vertices at the ends of the ablated cell bond are displaced. (D and E) Sequential images of an E-cadherin-GFP-labelled cell bond within the anterior compartment (D) or at the A/P boundary (E) before and after laser ablation in wing imaginal discs. (F) Each parasegment of the Drosophila embryo is subdivided into anterior and posterior compartments. (G) Chromophore-assisted laser inactivation (CALI) to locally reduce Myosin II (green lines) in cells along the parasegment boundary (boxed area). As a consequence, dividing cells at the parasegment boundary intermingle.Meinhardt''s theoretical work on pattern formation proposed that boundaries between compartments act as reference lines for positional information during tissue development, and that they serve as sources of morphogen synthesis.17,18 Indeed, many compartment boundaries, both in insects and vertebrates, have by now been shown experimentally to be associated with signaling centers that produce morphogens (reviewed in refs. 19 and 20). The defined position and shape of signaling centers is important for the establishment of precise morphogen gradients and patterning.21,22 In growing tissues, however, the position and shape of signaling centers is challenged by cell rearrangements that take place during cell division.23,24 By inducing signaling centers along stable and straight compartment boundaries, precise morphogen gradients can be maintained in proliferating tissues.25 Compartment boundaries therefore play vital roles during the patterning of proliferating tissues.How are straight and sharp compartment boundaries maintained despite cell re-arrangements caused by cell division? The maintenance of compartment boundaries often requires local signaling between cells from the two adjacent compartments. In the developing hindbrain, for example, signaling by Eph receptors and ephrins is required to maintain the boundaries between adjacent rhombomeres.26,27 In the developing wing of the fly, signaling downstream of Hedgehog and Dpp is required to maintain the A/P boundary,2831 and Notch signaling is required to maintain the D/V boundary.32,33 The physical mechanisms maintaining compartment boundaries, however, remained elusive for a long time. Two recent papers, by Landsberg et al. and Monier et al. now provide evidence that actomyosin-dependent tension on cell bonds is an important mechanism to maintain straight and sharp compartment boundaries.34,35A longstanding hypothesis posed that the sorting of cells at compartment boundaries is due to differences in the affinities between cells of adjacent compartments.36 Earlier theoretical work by Malcom Steinberg had indeed proposed that differences in the adhesiveness of cells lead to cell sorting.37 Steinberg''s hypothesis was based on the important insight that cell sorting closely resembles the separation of immiscible liquids and that quantitative differences in cell properties suffice to explain cell sorting. Cadherins are a class of Ca2+-dependent cell adhesion molecules that can confer differential cell adhesion in vitro and in vivo.3840 Circumstantial evidence indicates that cadherins may play a role in maintaining compartment boundaries. In the telencephalon of mouse embryos, for example, the interface between cells expressing R-cadherin and cells expressing cadherin-6 coincide with the cortico-striatal compartment boundary.11 Interestingly, cortical cells ectopically expressing cadherin-6 sort into the striatal compartment, and the reverse is observed for striatal cells engineered to express R-cadherin. In addition to cadherins, further cell adhesion proteins have been implicated in maintaining compartment boundaries. In the Drosophila wing imaginal disc, an epithelium that gives rise to the adult wing, the two leucine-rich-repeat domain proteins Capricious and Tartan are expressed specifically in cells of the dorsal compartment.41 Strikingly, forced expression of either of these proteins in the dorsal compartment can restore a normal straight and sharp D/V boundary in mutants for apterous, the selector gene required to establish this boundary.41More recent hypotheses to explain the sorting of cells in animal development are based on differential surface contraction42 or differential interfacial tension.43 These hypotheses do not treat cells as liquid molecules, as Steinberg''s differential adhesion hypothesis does, but emphasize that cells can generate mechanical tension that allows them to contract the surface to neighboring cells. Minimizing cell surfaces at interfaces between different cell populations could contribute to cell sorting.Mechanical tension in cells can be generated by tensile elements located at the cellular cortex underlying the plasma membrane, including contractile actomyosin filaments (reviewed in ref. 44). Irvine and colleagues made the important observation that, in Drosophila wing imaginal discs, Filamentous (F)-actin and the motor protein non-muscle Myosin II (Myosin II) were enriched at adherens junctions along the D/V boundary,45,46 indicating a distinct mechanical property of bonds between cells along this compartment boundary. Moreover, these authors found that in mutants for zipper, which encodes myosin heavy chain, the D/V boundary was irregular,46 showing a requirement for Myosin II in maintaining this boundary.Landsberg et al. show that F-actin and Myosin II were also enriched on cell bonds along the A/P boundary in Drosophila wing imaginal discs, and that also the A/P boundary was irregular in zipper mutants.34 Moreover, they now provide direct evidence that mechanical tension at cell bonds along the A/P boundary is increased (Fig. 1B). Differences in mechanical tension on cell bonds have been proposed to result in differences in the shape of cells and the angles between bonds of cells.24,47 Landsberg et al. demonstrate that the two rows of cells along the A/P boundary display a unique shape and that angles between cell bonds along the A/P boundary are widened, providing evidence that mechanical tension is elevated along these cell bonds.34 Distinct shapes have also been previously reported for cells along compartment boundaries in Oncopeltus,48 indicating that they are commonly associated with compartment boundaries.Ablation of cell bonds generates displacements of the corners (vertices) of the ablated bonds, providing direct evidence for tension on cell bonds.49 Landsberg et al. ablated individual cell bonds in wing imaginal discs using an UV laser beam, and quantified the displacements of the two vertices of the ablated cell bonds (Fig. 1C–E). The relative initial velocities with which these vertices are separated in response to laser ablation is a relative measure of cell bond tension.50 Ablation of cell bonds within the anterior compartment and the posterior compartment resulted in similar initial velocities.34 However, when cell bonds along the A/P boundary were ablated, the initial velocity of vertex separation was approximately 2.5-fold higher.34 Displacements of cell vertices after laser ablation were strongly reduced in the presence of Y-27632, a drug that specifically inhibits Rho-kinase,51 which is a major activator of Myosin II.52 These results suggest that actomyosin-based cell bond tension along the A/P boundary is increased 2.5-fold compared to the tension on cell bonds located elsewhere.Is a local increase in cell bond tension sufficient to maintain straight interfaces between proliferating groups of cells? To test this, Landsberg et al. simulated the growth of a tissue based on a vertex model.24 In this model, the network of adherens junctions in a tissue is described by polygons characterized by the position of vertices. Stable configurations of this network are local minima of an energy function that describes the area elasticity of cells, cell bond tension, and the elasticity of cell perimeters. In these simulations, two adjacent cell populations, anterior and posterior compartments, separated by a straight and sharp interface, are introduced into this network. Tissue growth is simulated by randomly selecting a cell, increasing its area two-fold, and dividing the cell at a random angle. The energy in the whole network is then minimized and the procedure is repeated. Simulation of tissue growth renders the initially straight and sharp interface between the two compartments rough and irregular.34 However, by increasing locally cell bond tension at the interface between the two simulated compartments, the interface remains straight.34 These computer simulations provide evidence that a local increase in cell bond tension is sufficient to maintain straight boundaries between compartments in proliferating tissues.Monier et al. analyzed boundaries in the Drosophila embryo.35 The embryonic epidermis is subdivided into parasegments, and cells from adjacent parasegments do not intermingle53 (Fig. 1F). Similar to the D/V and A/P boundaries of larval wing imaginal discs, the authors found that the parasegment boundaries also display elevated levels of F-actin and Myosin II.35 Injection of the Rho-kinase inhibitor Y-27632 into embryos, or expression of a dominant-negative form of zipper, resulted in cell sorting defects at the parasegment boundaries. Live imaging of embryos furthermore showed that mitotic cells locally deform the parasegment boundaries, but that the boundaries straighten out at the onset of cytokinesis. When Myosin II activity was locally reduced by chromophore-assisted laser inactivation (CALI), the parasegment boundaries failed to straighten out after cells had divided, and anterior and posterior cells partially intermingled35 (Fig. 1G). These results demonstrate an important role for Myosin II in separating anterior and posterior cells at parasegment boundaries.Cell sorting is a general phenomenon of developing animals not restricted to compartment boundaries. A well-studied example is the sorting out of cells from the different germ layers during gastrulation. Interestingly, during zebrafish gastrulation, differential actomyosin-dependent cell-cortex tension has recently been implicated in the sorting out of cells from different germ layers.54 A differential mechanical tension might, therefore, be a general mechanism to prevent the mixing of cells in developing animals.Does differential cell adhesion play a role in regulating mechanical tension? At least two contributions can be envisioned. First, cell bond tension depends on both contractile forces along cell bonds as well as the strength of adhesion between neighboring cells.24,43 Elevating contractile forces can increase cell bond tension, whereas increasing adhesive contacts between cells can release tension. Differences in the adhesion between neighboring cells along compartment boundaries, compared to the remaining cells within the compartments, could therefore contribute to the maintenance of compartment boundaries. Second, differential expression of some cell adhesion molecules results in a local increase of F-actin and Myosin II. For example, interfaces between cells expressing the cell adhesion molecule Echinoid and cells lacking Echinoid display elevated levels of F-actin and Myosin II in Drosophila wing imaginal discs.55 Therefore, it seems plausible that, at least in some cases, the increase of F-actin and Myosin II at compartment boundaries could be the consequence of the differential expression of adhesion molecules. In this model, differential cell adhesion would play an indirect role in maintaining compartment boundaries by resulting in local enrichment of F-actin and Myosin II, which in turn could lead to an elevated mechanical tension.The local enrichment of F-actin and Myosin II at distinct sites within cells, and a presumed modulation of tensile stresses, is not restricted to compartment boundaries, but appears to be common to diverse developmental processes. In gastrulating Drosophila embryos, for example, tissue elongation is driven by cell intercalation that depends on the enrichment of Myosin II on shrinking cell bonds.56,57 Similarly, during mesoderm invagination of Drosophila embryos, F-actin and Myosin II accumulate in a central weblike structure at the apical side of cells resulting in apical cell constriction.58 Recruitment of F-actin and Myosin II to this medial web can be induced by expression of an activated form of Wasp, a known regulator of actin polymerization, providing a mechanism for the local enrichment of actomyosin within cells.59 In addition to biochemical mechanisms, mechanical signals have also been shown to help localize Myosin II to specific sites within cells. During germband elongation in the Drosophila embryo, for example, cell bonds that are under high tension have elevated levels of Myosin II, and the experimental application of mechanical force is sufficient to recruit Myosin II to the cell cortex.60 Increased tension at cell bonds along compartment boundaries might, therefore, be also a consequence of both biochemical and mechanical mechanisms. It will be interesting to investigate the nature of these mechanisms, and how they are linked to the developmental signals that control the formation of compartment boundaries.  相似文献   

15.
Fused Deposition Modeling (FDM), better known as 3D printing, has revolutionized modern manufacturing processes and the ever-increasing use of 3D printers is popular not least because of the wide range of materials available for printing. When applying the FDM process to the development of prototypes, it is possible to go from an idea to a first iteration of the product within a few hours, and from an initial concept to a final product within a few days depending on the complexity of the desired structure. We applied FDM-related open-source 3D software and a 3D printer to produce parts for devices being applied in wood anatomy and dendroecology. In this paper, we present the basic requirements for prototyping by showing detailed examples of new devices developed and produced using a 3D printer and related modeling software.  相似文献   

16.
Adipose-derived stem cells: isolation, expansion and differentiation   总被引:1,自引:0,他引:1  
The emerging field of regenerative medicine will require a reliable source of stem cells in addition to biomaterial scaffolds and cytokine growth factors. Adipose tissue has proven to serve as an abundant, accessible and rich source of adult stem cells with multipotent properties suitable for tissue engineering and regenerative medical applications. There has been increased interest in adipose-derived stem cells (ASCs) for tissue engineering applications. Here, methods for the isolation, expansion and differentiation of ASCs are presented and described in detail. While this article has focused on the isolation of ASCs from human adipose tissue, the procedure can be applied to adipose tissues from other species with minimal modifications.  相似文献   

17.
Stem cell therapy is a promising approach to clinical healing in several diseases. A great variety of tissues (bone marrow, adipose tissue, and placenta) are potentially sources of stem cells. Placenta-derived stem cells (p-SCs) are in between embryonic and mesenchymal stem cells, sharing characteristics with both, such as non-carcinogenic status and property to differentiate in all embryonic germ layers. Moreover, their use is not ethically restricted as fetal membranes are considered medical waste after birth. In this context, the present review will be focused on the biological properties, culture and potential cell therapy uses of placental-derived stem cells. Immunophenotype characterization, mainly for surface marker expression, and basic principles of p-SC isolation and culture (mechanical separation or enzymatic digestion of the tissues, the most used culture media, cell plating conditions) will be presented. In addition, some preclinical studies that were performed in different medical areas will be cited, focusing on neurological, liver, pancreatic, heart, muscle, pulmonary, and bone diseases and also in tissue engineering field. Finally, some challenges for stem cell therapy applications will be highlighted. The understanding of the mechanisms involved in the p-SCs differentiation and the achievement of pure cell populations (after differentiation) are key points that must be clarified before bringing the preclinical studies, performed at the bench, to the medical practice.  相似文献   

18.
19.
Long-lived somatic stem cells regenerate adult tissues throughout our lifetime. However, with aging, there is a significant deterioration in the function of stem and progenitor cells, which contribute to diseases of aging. The decision for a long-lived somatic stem cell to become activated and subsequently to undergo either a symmetric or an asymmetric division is a critical cellular decision process. The decision to preferentially divide symmetrically or asymmetrically may be the major fundamental intrinsic difference between normal somatic stem cells and cancer stem cells. Based upon work done primarily in our laboratory over the past 15 years, this article provides a perspective on the critical role of somatic stem cells in aging. In particular, we discuss the importance of symmetric versus asymmetric divisions in somatic stem cells and the role of the differential usage of the highly similar Kat3 coactivators, CREB-binding protein (CBP) and p300, in stem cells. We describe and propose a more complete model for the biological mechanism and roles of these two coactivators, their evolution, and unique roles and importance in stem cell biology. Finally, we discuss the potential to pharmacologically manipulate Kat3 coactivator interactions in endogenous stem cells (both normal and cancer stem cells) to potentially ameliorate the aging process and common diseases of aging.  相似文献   

20.
The cell of origin of cancer as well as cancer stem cells is still a mystery. In a recent issue of JCMM, Wang et al. challenged the conventional somatic genetic mutation model of multi‐stage carcinogenesis of breast cancer and proposed that ‘Invasive cancers are not necessary from preformed in situ tumours—an alternative way of carcinogenesis from misplaced stem cells’. If this stem cell misplacement theory could withstand future experimental evaluation, it may provide a paradigm shift in the prevention and management of cancer in the clinic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号