首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Assembly of the ribosome from its protein and RNA constituents has been studied extensively over the past 50?years, and here we utilize a comparative analysis approach to relate the composition of ribosomal proteins (r-proteins) to their role in the assembly process. We computed the amino acid distributions for the 30S subunit r-protein sequences from 560 bacterial species and compared this composition to those of other house-keeping proteins from the same species. We found that r-proteins have a significantly higher content of positively charged residues (Lysine, K, and Arginine, R) than do nonribosomal proteins (10% for R and 11% for K in r-proteins, vs. 4.7% R and 5.9% K in non-ribosomal proteins), which is consistent with prior knowledge of net positive charges carried by r-proteins (Baker et al., 2001; Klein et al., 2004; Burton et al., 2012). Furthermore, these two residues are also highly represented at contact sites along the protein/RNA interface (contact enrichment factor (CEF)?>?1). These results provide further evidence of the importance of electrostatic interactions between the positively charged proteins and negatively charged ribosomal RNA (rRNA) during ribosome assembly. Other highly represented contact residues include polar and aromatic residues, which are likely to interact with rRNA via hydrogen bonds and base stacking interactions, respectively. Interestingly, the proportion of K residues generally decreases with r-protein size, reflecting a negative correlation between protein lengths and the proportion of K (Spearman’s rank correlation, ρ?=??0.802, p?=?2.60e???5). We suggest that this trend helps the smaller r-proteins, which experience higher translational entropy than large proteins, overcome the increased free energy barrier during assembly. When the r-protein sequences were categorized according to the species’ optimal growth temperature, we found that thermophiles show increased R, Isoleucine (I), and Tyrosine (Y) content, whereas mesophiles have increased proportions of Serine (S) and Threonine (T). These results reflect one typical distinction between thermophiles and mesophiles (Kumar and Nussinov 2001), yet these differences in amino acid distributions do not extend to their respective contact sites. That is, the makeup of thermophilic and mesophilic r-protein contact residues are not significantly different (p?>?0.01). This indicates that, while the percent compositions of amino acids relating to qualities such as thermostability and protein folding are expected to vary with environmental temperature, the distributions of residues in contact with rRNA are comparable for all bacterial species. From this, we conclude that the electrostatic interactions that guide ribosome assembly are independent of temperature.  相似文献   

2.
Both structural and thermodynamic studies are necessary to understand the ribosome assembly. An initial step was made in studying the interaction between a 16S rRNA fragment and S7, a key protein in assembling the prokaryotic ribosome small subunit. The apparent dissociation constant was obtained for complexes of recombinant Escherichia coli and Thermus thermophilus S7 with a fragment of the 3' domain of the E. coli 16S rRNA. Both proteins showed a high rRNA-binding activity, which was not observed earlier. Since RNA and proteins are conformationally labile, their folding must be considered to correctly describe the RNA-protein interactions.  相似文献   

3.
Ribosome biogenesis involves an integrated series of binding events coupled with conformational changes that ultimately result in the formation of a functional macromolecular complex. In vitro, Escherichia coli 30 S subunit assembly occurs in a cooperative manner with the ordered addition of 20 ribosomal proteins (r-proteins) with 16 S rRNA. The assembly pathway for 30 S subunits has been dissected in vitro into three steps, where specific r-proteins associate with 16 S rRNA early in 30 S subunit assembly, followed by a mid-assembly conformational rearrangement of the complex that then enables the remaining r-proteins to associate in the final step. Although the three steps of 30 S subunit assembly have been known for some time, few details have been elucidated about changes that occur as a result of these three specific stages. Here, we present a detailed analysis of the concerted early and late stages of small ribosomal subunit assembly. Conformational changes, roles for base-pairing and r-proteins at specific stages of assembly, and a polar nature to the assembly process have been revealed. This work has allowed a more comprehensive and global view of E.coli 30 S ribosomal subunit assembly to be obtained.  相似文献   

4.
J Dodd  J M Kolb  M Nomura 《Biochimie》1991,73(6):757-767
Earlier studies have shown that the reconstitution of Escherichia coli 50S as well as 30S ribosomal subunits from component rRNA and ribosomal protein (r-protein) molecules in vitro is not completely cooperative and binding of more than one r-protein to a single 16S rRNA (or 23S rRNA) molecule is required to initiate a successful 30S (or 50S) ribosome assembly reaction. We first confirmed this conclusion by carrying out 30S subunit reconstitution in the presence of a constant amount of 16S rRNA together with various amounts of total 30S r-proteins (TP30) and by analyzing the physical state of reconstituted particles rather than by assaying protein synthesizing activity of the particles as was done in the earlier studies. As expected, under conditions of excess rRNA, the efficiency of 30S subunit reconstitution per unit amount of TP30 decreased greatly with the decrease in the ratio of TP30 to rRNA, indicating the lack of complete cooperativity in the assembly reaction. We then asked the question whether the cooperativity of ribosome assembly is complete in vivo. We treated exponentially growing E coli cells with low concentrations of chloramphenicol which is known to inhibit protein synthesis without inhibiting rRNA synthesis, creating conditions of excess synthesis of rRNA relative to r-proteins. Several concentrations of chloramphenicol (ranging from 0.4 to 4.0 micrograms/ml) were used so that inhibition of protein synthesis ranged from 40 to 95%. Under these conditions, we examined the synthesis of RNA, ribosomal proteins and 50S ribosomal subunits as well as the synthesis of total protein. We found that the synthesis of 50S subunits was not inhibited as much as the synthesis of total protein at lower concentrations of chloramphenicol, but the degree of inhibition of 50S subunit synthesis increased sharply with increasing concentrations of chloramphenicol and was in fact greater than the degree of inhibition of total protein synthesis at chloramphenicol concentrations of 2 micrograms/ml or higher. The inhibition of 50S subunit synthesis was significantly greater than the inhibition of r-protein synthesis at all chloramphenicol concentrations examined. These data are consistent with the hypothesis that the cooperativity of ribosome assembly in vivo is also not complete as is the case for in vitro ribosome reconstitution, but are difficult, if not impossible, to explain on the basis of the complete cooperativity model.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
6.
Ribonucleoprotein particles (RNPs) are important components of all living systems, and the assembly of these particles is an intricate, often multistep, process. The 30 S ribosomal subunit is composed of one large RNA (16 S rRNA) and 21 ribosomal proteins (r-proteins). In vitro studies have revealed that assembly of the 30 S subunit is a temperature-dependent process involving sequential binding of r-proteins and conformational changes of 16 S rRNA. Additionally, a temperature-dependent conformational rearrangement was reported for a complex of primary r-protein S4 and 16 S rRNA. Given these observations, a systematic study of the temperature-dependence of 16 S rRNA architecture in individual complexes with the other five primary binding proteins (S7, S8, S15, S17, and S20) was performed. While all primary binding r-proteins bind 16 S rRNA at low temperature, not all r-proteins/16 S rRNA complexes undergo temperature-dependent conformational rearrangements. Some RNPs achieve the same conformation regardless of temperature, others show minor adjustments in 16 S rRNA conformation upon heating and, finally, others undergo significant temperature-dependent changes. Some of the architectures achieved in these rearrangements are consistent with subsequent downstream assembly events such as assembly of the secondary and tertiary binding r-proteins. The differential interaction of 16 S rRNA with r-proteins illustrates a means for controlling the sequential assembly pathway for complex RNPs and may offer insights into aspects of RNP assembly in general.  相似文献   

7.
We have isolated spontaneous streptomycin-resistant, streptomycin-dependent and streptomycin-pseudo-dependent mutants of the thermophilic bacterium Thermus thermophilus IB-21. All mutant phenotypes were found to result from single amino acid substitutions located in the rpsL gene encoding ribosomal protein S12. Spontaneous suppressors of streptomycin dependence were also readily isolated. Thermus rpsL mutations were found to be very similar to rpsL mutations identified in mesophilic organisms. This similarity affords greater confidence in the utility of the crystal structures of Thermus ribosomes to interpret biochemical and genetic data obtained with Escherichia coli ribosomes. In the X-ray crystal structure of the T. thermophilus HB8 30 S subunit, the mutated residues are located in close proximity to one another and to helices 18, 27 and 44 of 16 S rRNA. X-ray crystallographic analysis of ribosomes from streptomycin-resistant, streptomycin-pseudo-dependent and streptomycin-dependent mutants described here is expected to reveal fundamental insights into the mechanism of tRNA selection, translocation, and conformational dynamics of the ribosome.  相似文献   

8.
The relationship between inherent internal conformational processes and enzymatic activity or thermodynamic stability of proteins has proven difficult to characterize. The study of homologous proteins with differing thermostabilities offers an especially useful approach for understanding the functional aspects of conformational dynamics. In particular, ribonuclease HI (RNase H), an 18 kD globular protein that hydrolyzes the RNA strand of RNA:DNA hybrid substrates, has been extensively studied by NMR spectroscopy to characterize the differences in dynamics between homologs from the mesophilic organism E. coli and the thermophilic organism T. thermophilus. Herein, molecular dynamics simulations are reported for five homologous RNase H proteins of varying thermostabilities and enzymatic activities from organisms of markedly different preferred growth temperatures. For the E. coli and T. thermophilus proteins, strong agreement is obtained between simulated and experimental values for NMR order parameters and for dynamically averaged chemical shifts, suggesting that these simulations can be a productive platform for predicting the effects of individual amino acid residues on dynamic behavior. Analyses of the simulations reveal that a single residue differentiates between two different and otherwise conserved dynamic processes in a region of the protein known to form part of the substrate-binding interface. Additional key residues within these two categories are identified through the temperature-dependence of these conformational processes.  相似文献   

9.
The ribosomal protein L11 in bacteria is posttranslationally trimethylated at multiple amino acid positions by the L11 methyltransferase PrmA, the product of the prmA gene. The role of L11 methylation in ribosome function or assembly has yet to be determined, although the deletion of Escherichia coli prmA has no apparent phenotype. We have constructed a mutant of the extreme thermophile Thermus thermophilus in which the prmA gene has been disrupted with the htk gene encoding a heat-stable kanamycin adenyltransferase. This mutant shows no growth defects, indicating that T. thermophilus PrmA, like its E. coli homolog, is dispensable. Ribosomes prepared from this mutant contain unmethylated L11, as determined by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), and are effective substrates for in vitro methylation by cloned and purified T. thermophilus PrmA. MALDI-TOF MS also revealed that T. thermophilus L11 contains a total of 12 methyl groups, in contrast to the 9 methyl groups found in E. coli L11. Finally, we found that, as with the E. coli methyltransferase, the ribosomal protein L11 dissociated from ribosomes is a more efficient substrate for in vitro methylation by PrmA than intact 70S ribosomes, suggesting that methylation in vivo occurs on free L11 prior to its incorporation into ribosomes.  相似文献   

10.
Ribosomes are composed of RNA and protein molecules that associate together to form a supramolecular machine responsible for protein biosynthesis. Detailed information about the structure of the ribosome has come from the recent X-ray crystal structures of the ribosome and the ribosomal subunits. However, the molecular interactions between the rRNAs and the r-proteins that occur during the intermediate steps of ribosome assembly are poorly understood. Here we describe a modification-interference approach to identify nonbridging phosphate oxygens within 16S rRNA that are important for the in vitro assembly of the Escherichia coli 30S small ribosomal subunit and for its association with the 50S large ribosomal subunit. The 30S small subunit was reconstituted from phosphorothioate-substituted 16S rRNA and small subunit proteins. Active 30S subunits were selected by their ability to bind to the 50S large subunit and form 70S ribosomes. Analysis of the selected population shows that phosphate oxygens at specific positions in the 16S rRNA are important for either subunit assembly or for binding to the 50S subunit. The X-ray crystallographic structures of the 30S subunit suggest that some of these phosphate oxygens participate in r-protein binding, coordination of metal ions, or for the formation of intersubunit bridges in the mature 30S subunit. Interestingly, however, several of the phosphate oxygens identified in this study do not participate in any interaction in the mature 30S subunit, suggesting that they play a role in the early steps of the 30S subunit assembly.  相似文献   

11.
12.
The 16S rRNA-binding ribosomal protein S15 is a key component in the assembly of the small ribosomal subunit in bacteria. We have shown that S15 from the extreme thermophile Thermus thermophilus represses the translation of its own mRNA in vitro, by interacting with the leader segment of its mRNA. The S15 mRNA-binding site was characterized by footprinting experiments, deletion analysis and site-directed mutagenesis. S15 binding triggers a conformational rearrangement of its mRNA into a fold that mimics the conserved three-way junction of the S15 rRNA-binding site. This conformational change masks the ribosome entry site, as demonstrated by direct competition between the ribosomal subunit and S15 for mRNA binding. A comparison of the T.thermophilus and Escherichia coli regulation systems reveals that the two regulatory mRNA targets do not share any similarity and that the mechanisms of translational inhibition are different. Our results highlight an astonishing plasticity of mRNA in its ability to adapt to evolutionary constraints, that contrasts with the extreme conservation of the rRNA-binding site.  相似文献   

13.
Cryo-EM density maps showing the 70S ribosome of E. coli in two different functional states related by a ratchet-like motion were analyzed using real-space refinement. Comparison of the two resulting atomic models shows that the ribosome changes from a compact structure to a looser one, coupled with the rearrangement of many of the proteins. Furthermore, in contrast to the unchanged inter-subunit bridges formed wholly by RNA, the bridges involving proteins undergo large conformational changes following the ratchet-like motion, suggesting an important role of ribosomal proteins in facilitating the dynamics of translation.  相似文献   

14.
Insights into protein biosynthesis from structures of bacterial ribosomes   总被引:1,自引:0,他引:1  
Understanding the structural basis of protein biosynthesis on the ribosome remains a challenging problem for cryo-electron microscopy and X-ray crystallography. Recent high-resolution structures of the Escherichia coli 70S ribosome without ligands, and of the Thermus thermophilus and E. coli 70S ribosomes with bound mRNA and tRNAs, reveal many new features of ribosome dynamics and ribosome-ligand interactions. In addition, the first high-resolution structures of the L7/L12 stalk of the ribosome, responsible for translation factor binding and GTPase activation, reveal the structural basis of the high degree of flexibility in this region of the ribosome. These structures provide groundbreaking insights into the mechanism of protein synthesis at the level of ribosome architecture, ligand binding and ribosome dynamics.  相似文献   

15.
The mutM (fpg) gene, which encodes a DNA glycosylase that excises an oxidatively damaged form of guanine, was cloned from an extremely thermophilic bacterium, Thermus thermophilus HB8. Its nucleotide sequence encoded a 266 amino acid protein with a molecular mass of approximately 30 kDa. Its predicted amino acid sequence showed 42% identity with the Escherichia coli protein. The amino acid residues Cys, Asn, Gln and Met, known to be chemically unstable at high temperatures, were decreased in number in T.thermophilus MutM protein compared to those of the E.coli one, whereas the number of Pro residues, considered to increase protein stability, was increased. The T.thermophilus mutM gene complemented the mutability of the E.coli mutM mutY double mutant, suggesting that T. thermophilus MutM protein was active in E.coli. The T.thermophilus MutM protein was overproduced in E.coli and then purified to homogeneity. Size-exclusion chromatography indicated that T. thermophilus MutM protein exists as a more compact monomer than the E.coli MutM protein in solution. Circular dichroism measurements indicated that the alpha-helical content of the protein was approximately 30%. Thermus thermophilus MutM protein was stable up to 75 degrees C at neutral pH, and between pH 5 and 11 and in the presence of up to 4 M urea at 25 degrees C. Denaturation analysis of T.thermophilus MutM protein in the presence of urea suggested that the protein had at least two domains, with estimated stabilities of 8.6 and 16.2 kcal/mol-1, respectively. Thermus thermophilus MutM protein showed 8-oxoguanine DNA glycosylase activity in vitro at both low and high temperatures.  相似文献   

16.
Chloroplast ribosomes of higher plants are of the prokaryotic ribosome motif but, unlike in bacteria, their ribosomal protein (r-protein) genes are distributed between the organelle and the nucleus. In order to isolate some of the nuclear-encoded r-protein genes, we have raised antibodies to several spinach chloroplast r-proteins and constructed spinach cDNA expression libraries in lambdagt11. Screening the libraries with one of the antisera yielded three cDNA clones for r-protein L13, an early 50 S subunit assembly protein essential for RI50 formation. The cDNA clone encodes, beginning with a Met codon in the consensus plant initiator context, a polypeptide of 250 amino acid residues. The NH2-terminal 60 residues bear the characteristic features of a chloroplast transit peptide. The putative mature L13 protein, which has common immunoepitopes with Escherichia coli L13, is 34% longer than the E. coli homologue. It has 56% sequence identity with E. coli L13 in the homologous region, but no identity to any known protein in the extra stretch. There are two neighboring ATG codons in the 5' region and two putative plant polyadenylation signals in the 3'-untranslated region of the cDNA. Their possible effect to increase translational efficiency is discussed, and the importance of encoding a RI50 protein in the nuclear genome for possible nuclear control of chloroplast protein synthesis is noted.  相似文献   

17.
Four decades after early in vitro assembly studies demonstrated that ribosome assembly is a controlled process, our understanding of ribosome assembly is still incomplete. Just as structure determination has been so important to understanding ribosome function, so too will it be critical to sorting out the assembly process. Here, we used a viable deletion in the yjeQ gene, a recognized ribosome assembly factor, to isolate and structurally characterize immature 30S subunits assembled in vivo. These small ribosome subunits contained unprocessed 17S rRNA and lacked some late ribosomal proteins. Cryo-electron microscopy reconstructions revealed that the presence of precursor sequences in the rRNA induces a severe distortion in the 3' minor domain of the subunit involved in the decoding of mRNA and interaction with the large ribosome subunit. These findings suggest that rRNA processing events induce key local conformational changes directing the structure toward the mature assembly. We concluded that rRNA processing, folding, and the entry of tertiary r-proteins are interdependent events in the late stages of 30S subunit assembly. In addition, we demonstrate how studies of emerging assembly factors in ribosome biogenesis can help to elucidate the path of subunit assembly in vivo.  相似文献   

18.
A novel way is presented for determination of the stoichiometry of ribosomal proteins in the ribosome. The 70S E. coli r-proteins, completely separated on a two-dimensional gel system, were used throughout our experiments. The method is based on our previous observation that the amount of Coomassie R bound to a protein molecule is directly proportional to the number of positive charges on that protein. By plotting the amount of bound Coomassie as a function of the number of positive charges of each r-protein, and relating the experimental amount of the dye bound to each r-protein to the value obtained from the linear regression line based on all (a total of some 50 proteins), one can obtain the molar concentration of every protein in the ribosome. A parallel experiment can be carried out, which relates the radioactivity contributed by 3H-labeled amino acid in each r-protein to its amino acid content in that molecule. The two sets of data, which are completely independent of each other, are well correlated. Further verification of the validity of our procedure is provided by the fact that we found the known proportions of four copies of L7/L12 and one copy of S6 per ribosome. The rationale behind the present study was our finding that recalculation of Hardy's data (Hardy, S.J.S. (1975) Mol. Gen. Genet. 140, 253-274), with the accurate molecular weight value of the r-proteins provided by Giri et al. (Adv. Protein Chem. (1984) 36, 1-78), raises some doubt with regard to his experimental results, although we agree with his final conclusion that E. coli ribosome is homogeneous with respect to its proteins.  相似文献   

19.
Thermus thermophilus ribonuclease H was overexpressed and purified from Escherichia coli. The determination of the complete amino acid sequence allowed modification of that predicted from the DNA sequence, and the enzyme was shown to be composed of 166 amino acid residues with a molecular weight of 18,279. The isoelectric point of the enzyme was 10.5, and the specific absorption coefficient A0.1%(280) was 1.69. The enzymatic and physicochemical properties as well as the thermal and conformational stabilities of the enzyme were compared with those of E. coli RNase HI, which shows 52% amino acid sequence identity. Comparison of the far and near UV circular dichroism spectra suggests that the two enzymes are similar in the main chain folding but different in the spatial environments of tyrosine and tryptophan residues. The enzymatic activities of T. thermophilus RNase H at 37 and 70 degrees C for the hydrolysis of either an M13 DNA/RNA hybrid or a nonanucleotide duplex were approximately 5-fold lower and 3-fold higher, respectively, as compared with E. coli RNase HI at 37 degrees C. The melting temperature, Tm, of T. thermophilus RNase H was 82.1 degrees C in the presence of 1.2 M guanidine hydrochloride, which was 33.9 degrees C higher than that observed for E. coli RNase HI. The free energy changes of unfolding in the absence of denaturant, delta G[H2O], of T. thermophilus RNase H increased by 11.79 kcal/mol at 25 degrees C and 14.07 kcal/mol at 50 degrees C, as compared with E. coli RNase HI.  相似文献   

20.
Immunological homology between chloroplast ribosomal proteins (r-proteins) from a higher plant (Spinacia) and bacterial r-proteins was examined using antibodies prepared against 35 purified Escherichia coli r-proteins. Cross-reactions were determined on cellulose acetate gels and on nitrocellulose paper, after electrophoretic transfer of r-proteins from one- and two dimensional polyacrylamide gels, using peroxidase and fluorescein-conjugated second antibodies for detection (immunoblotting). The specificity of positive cross-reactions was confirmed by absorption experiments using purified E. coli r-proteins. Antisera against five proteins of the small subunit and six proteins of the large subunit of E. coli ribosome (i.e. anti-S7, -S9, -S11, -S12, and -S19; anti-L1, -L2, -L3, -L6, -L13, and -L17) gave cross-reactions. As an inference from this work, and a recent study on the synthesis of certain chloroplast r-proteins in isolated chloroplasts (Eneas-Filho, J., Hartley, M. R., and Mache, R. (1981) Mol. Gen. Genet. 184, 484-488), we suggest that chloroplast r-proteins S7 and L2 are encoded in the organelle DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号