首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Currently, one of the major limitations in cell biology is maintaining differentiated cell phenotype. Biological matrices are commonly used for culturing and maintaining primary and pluripotent stem cell derived hepatocytes. While biological matrices are useful, they permit short term culture of hepatocytes, limiting their widespread application. We have attempted to overcome the limitations using a synthetic polymer coating. Polymers represent one of the broadest classes of biomaterials and possess a wide range of mechanical, physical and chemical properties, which can be fine-tuned for purpose. Importantly, such materials can be scaled to quality assured standards and display batch-to-batch consistency. This is essential if cells are to be expanded for high through-put screening in the pharmaceutical testing industry or for cellular based therapy. Polyurethanes (PUs) are one group of materials that have shown promise in cell culture. Our recent progress in optimizing a polyurethane coated surface, for long-term culture of human hepatocytes displaying stable phenotype, is presented and discussed.  相似文献   

2.
Engineered culture substrates have proven invaluable for investigating the role of cell and extracellular matrix geometry in governing cell behavior. While the mechanisms relating geometry to phenotype are complex, it is clear that the actin cytoskeleton plays a key role in integrating geometric inputs and transducing these cues into intracellular signals that drive downstream biology. Here, we review recent progress in elucidating the role of the cell and matrix geometry in regulating actin cytoskeletal architecture and mechanics. We address new developments in traditional two-dimensional culture paradigms and discuss efforts to extend these advances to three-dimensional systems, ranging from nanotextured surfaces to microtopographical systems (e.g. channels) to fully three-dimensional matrices.  相似文献   

3.
Cardiomyocyte phenotype changes significantly in 2D culture systems depending on the substrate composition and organization. Given the variety of substrates that are used both for basic cardiac cell culture studies and for regenerative medicine applications, there is a critical need to understand how the different matrices influence cardiac cell mechanics. In the current study, the mechanical properties of neonatal rat cardiomyocytes cultured in a subconfluent layer upon aligned and unaligned collagen and fibronectin matrices were assessed over a two week period using atomic force microscopy. The elastic modulus was estimated by fitting the Hertz model to force curve data and the percent relaxation was determined from stress relaxation curves. The Quasilinear Viscoelastic (QLV) and Standard Linear Solid (SLS) models were fit to the stress relaxation data. Cardiomyocyte cellular mechanical properties were found to be highly dependent on matrix composition and organization as well as time in culture. It was observed that the cells stiffened and relaxed less over the first 3 to 5 days in culture before reaching a plateau in their mechanical properties. After day 5, cells on aligned matrices were stiffer than cells on unaligned matrices and cells on fibronectin matrices were stiffer than cells on collagen matrices. No such significant trends in percent relaxation measurements were observed but the QLV model fit the data very well. These results were correlated with observed changes in cellular structure associated with culture on the different substrates and analyzed for cell-to-cell variability.  相似文献   

4.

Background

The interaction of stem cells with their culture substrates is critical in controlling their fate and function. Declining stemness of adult-derived human mesenchymal stem cells (hMSCs) during in vitro expansion on tissue culture polystyrene (TCPS) severely limits their therapeutic efficacy prior to cell transplantation into damaged tissues. Thus, various formats of natural and synthetic materials have been manipulated in attempts to reproduce in vivo matrix environments in which hMSCs reside.

Results

We developed a series of patterned polymer matrices for cell culture by hot-pressing poly(ε-caprolactone) (PCL) films in femtosecond laser-ablated nanopore molds, forming nanofibers on flat PCL substrates. hMSCs cultured on these PCL fiber matrices significantly increased expression of critical self-renewal factors, Nanog and OCT4A, as well as markers of cell-cell interaction PECAM and ITGA2. The results suggest the patterned polymer fiber matrix is a promising model to maintain the stemness of adult hMSCs.

Conclusion

This approach meets the need for scalable, highly repeatable, and tuneable models that mimic extracellular matrix features that signal for maintenance of hMSC stemness.
  相似文献   

5.
Five prospective microbial associations for conversion of stillage carbohydrates (sugars and dextrins) to acetate have been isolated from natural and anthropogenic sources. The characteristics of biological treatment of the stillage containing up to 40 g of carbohydrates/L have been studied using the Tambukan Silt association immobilized on the polymer nonwoven fibrous organic matrices. The microorganism association immobilized on matrices forms bio-hybrid materials of different features depending on their nature. Maximum biomass of the microbial association accumulates in matrices 9.11 and 9.21, oxidizes stillage carbohydrates, and accumulates acetate in the medium creating its lower redox potential more efficiently than in other matrices. It is supposed that the formation of the bio-hybrid materials has resulted in the formation of specific bacterial systems differing in physical and biochemical properties due to the principal development of specific microbial cell groups.  相似文献   

6.
Cell-interactive polymers have been widely used as synthetic extracellular matrices to regulate cell function and promote tissue regeneration. However, there is a lack of quantitative understanding of the cell-material interface. In this study, integrin-adhesion ligand bond formation of preosteoblasts and D1 stem cells with RGD presenting alginate matrices were examined using FRET and flow cytometry. Bond number increased with adhesion ligand density but did not change with RGD island spacing for both cell types. Integrin expression varied with cell type and substrate in 2D culture, but the integrin expression profiles of both cell types were similar when cultured in 3D RGD presenting substrates and distinct from 2D culture. In summary, combining a FRET technique to quantify bond formation with flow cytometry to elucidate integrin expression can define specific cell-material interactions for a given material system and may be useful for informing biomaterial design strategies for cell-based therapies.  相似文献   

7.
The regulation of stem cell differentiation is key for muscle tissue engineering and regenerative medicine. To this end, various substrates mimicking the native extracellular matrix (ECM) have been developed with consideration of the mechanical, topological, and biochemical properties. However, mimicking the biochemical properties of the native ECM is difficult due to its compositional complexity. To develop substrates that mimic the native ECM and its biochemical properties, decellularization is typically used. Here, substrates mimicking the native ECM at each myogenic stage are prepared as stepwise myogenesis-mimicking matrices via the in vitro myogenic culture of C2C12 myoblasts and decellularization. Cells adhered to the stepwise myogenesis-mimicking matrices at similar levels. However, the matrices derived from cells at the myogenic early stage suppressed cell growth and promoted myogenesis. This promotion of myogenesis was potentially due to the suppression of the activation of endogenous BMP signaling following the suppression of the expression of the myogenic-inhibitory factors, Id2 and Id3. Our stepwise myogenesis-mimicking matrices will be suitable ECM models for basic biological research and myogenesis of stem cells. Further, these matrices will provide insights that improve the efficacy of decellularized ECM for muscle repair.  相似文献   

8.
Outlook for cellulase improvement: screening and selection strategies   总被引:46,自引:0,他引:46  
Cellulose is the most abundant renewable natural biological resource, and the production of biobased products and bioenergy from less costly renewable lignocellulosic materials is important for the sustainable development of human beings. A reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. Here, we review quantitative cellulase activity assays using soluble and insoluble substrates, and focus on their advantages and limitations. Because there are no clear relationships between cellulase activities on soluble substrates and those on insoluble substrates, soluble substrates should not be used to screen or select improved cellulases for processing relevant solid substrates, such as plant cell walls. Cellulase improvement strategies based on directed evolution using screening on soluble substrates have been only moderately successful, and have primarily targeted improvement in thermal tolerance. Heterogeneity of insoluble cellulose, unclear dynamic interactions between insoluble substrate and cellulase components, and the complex competitive and/or synergic relationship among cellulase components limit rational design and/or strategies, depending on activity screening approaches. Herein, we hypothesize that continuous culture using insoluble cellulosic substrates could be a powerful selection tool for enriching beneficial cellulase mutants from the large library displayed on the cell surface.  相似文献   

9.
10.
3D organotypic cultures of epithelial cells on a matrix embedded with mesenchymal cells are widely used to study epithelial cell differentiation and invasion. Rat tail type I collagen and/or matrix derived from Engelbreth-Holm-Swarm mouse sarcoma cells have been traditionally employed as the substrates to model the matrix or stromal microenvironment into which mesenchymal cells (usually fibroblasts) are populated. Although experiments using such matrices are very informative, it can be argued that due to an overriding presence of a single protein (such as in type I Collagen) or a high content of basement membrane components and growth factors (such as in matrix derived from mouse sarcoma cells), these substrates do not best reflect the contribution to matrix composition made by the stromal cells themselves. To study native matrices produced by primary dermal fibroblasts isolated from patients with a tumor prone, genetic blistering disorder (recessive dystrophic epidermolysis bullosa), we have adapted an existing native matrix protocol to study tumor cell invasion. Fibroblasts are induced to produce their own matrix over a prolonged period in culture. This native matrix is then detached from the culture dish and epithelial cells are seeded onto it before the entire coculture is raised to the air-liquid interface. Cellular differentiation and/or invasion can then be assessed over time. This technique provides the ability to assess epithelial-mesenchymal cell interactions in a 3D setting without the need for a synthetic or foreign matrix with the only disadvantage being the prolonged period of time required to produce the native matrix. Here we describe the application of this technique to assess the ability of a single molecule expressed by fibroblasts, type VII collagen, to inhibit tumor cell invasion.  相似文献   

11.
作为一种无支架的组织工程技术,组织工程细胞片不仅可以避免支架材料带来的不利影响,而且可通过组装进一步形成更为复杂的三维功能化组织,因而在生物医学领域备受关注。细胞片的构建主要是基于敏感性材料所构建的培养基底,通过改变温度、酶、光、离子、氧化还原pH、糖等刺激因素,调节基底对细胞的粘附行为使细胞发生自然脱附,从而获取细胞片。近年来,随着研究的深入进行,特别是各种新型的敏感性培养基底的不断发展,各种简单高效的细胞片构建技术不断涌现,得到的各种具有优良性能的细胞片极大地扩展了其应用的广度和深度。文中对组织工程细胞片的各种构建方法进行了阐述,对其存在的问题及发展前景进行了分析和展望。  相似文献   

12.
The engineering of functional smooth muscle (SM) tissue is critical if one hopes to successfully replace the large number of tissues containing an SM component with engineered equivalents. This study reports on the effects of SM cell (SMC) seeding and culture conditions on the cellularity and composition of SM tissues engineered using biodegradable matrices (5 x 5 mm, 2-mm thick) of polyglycolic acid (PGA) fibers. Cells were seeded by injecting a cell suspension into polymer matrices in tissue culture dishes (static seeding), by stirring polymer matrices and a cell suspension in spinner flasks (stirred seeding), or by agitating polymer matrices and a cell suspension in tubes with an orbital shaker (agitated seeding). The density of SMCs adherent to these matrices was a function of cell concentration in the seeding solution, but under all conditions a larger number (approximately 1 order of magnitude) and more uniform distribution of SMCs adherent to the matrices were obtained with dynamic versus static seeding methods. The dynamic seeding methods, as compared to the static method, also ultimately resulted in new tissues that had a higher cellularity, more uniform cell distribution, and greater elastin deposition. The effects of culture conditions were next studied by culturing cell-polymer constructs in a stirred bioreactor versus static culture conditions. The stirred culture of SMC-seeded polymer matrices resulted in tissues with a cell density of 6.4 +/- 0.8 x 10(8) cells/cm3 after 5 weeks, compared to 2.0 +/- 1.1 x 10(8) cells/cm3 with static culture. The elastin and collagen synthesis rates and deposition within the engineered tissues were also increased by culture in the bioreactors. The elastin content after 5-week culture in the stirred bioreactor was 24 +/- 3%, and both the elastin content and the cellularity of these tissues are comparable to those of native SM tissue. New tissues were also created in vivo when dynamically seeded polymer matrices were implanted in rats for various times. In summary, the system defined by these studies shows promise for engineering a tissue comparable in many respects to native SM. This engineered tissue may find clinical applications and provide a tool to study molecular mechanisms in vascular development.  相似文献   

13.
Recent research has enhanced the development of substrates that serve as models of extracellular matrix and their use in studies of cell adhesion and migration. Advances include the development of methods to prepare substrates having ligands immobilized in controlled densities and patterns, and recent work that is developing dynamic substrates which can modulate, in real-time, the activities of ligands. These technologies are providing new opportunities for studies of cell-extracellular-matrix interactions.  相似文献   

14.
One of the current criteria for evaluating the acceptability of cell lines for use in vaccine production is lack of tumorigenicity. Vero cells represent an example of a class of cells known as continuous cell lines. They were derived from African green monkey kidney, and their growth properties and culture characteristics have many advantages over other cell substrates for use in vaccine production. We have tested Vero cells for tumorigenicity in nude mice and in a human muscle organ culture system, and found a significant increase in their tumorigenic potential with increasing passage numbers. Cells at passage 232 and higher produced nodules in all nude mice inoculated. Histologically the nodules were well defined, anaplastic tumors, which exhibited some of the characteristics of renal adenocarcinomas. In about 6 to 8 days all of the nodules began to regress. Data were obtained that suggested an immune mechanism was the basis for the regression phenomenon.  相似文献   

15.
Cancer progression is mediated by complex epigenetic, protein and structural influences. Critical among them are the biochemical, mechanical and architectural properties of the extracellular matrix (ECM). In recognition of the ECM's important role, cancer biologists have repurposed matrix mimetic culture systems first widely used by tissue engineers as new tools for in vitro study of tumor models. In this review we discuss the pathological changes in tumor ECM, the limitations of 2D culture on both traditional and polyacrylamide hydrogel surfaces in modeling these characteristics and advances in both naturally derived and synthetic scaffolds to facilitate more complex and controllable 3D cancer cell culture. Studies using naturally derived matrix materials like Matrigel and collagen have produced significant findings related to tumor morphogenesis and matrix invasion in a 3D environment and the mechanotransductive signaling that mediates key tumor–matrix interaction. However, lack of precise experimental control over important matrix factors in these matrices have increasingly led investigators to synthetic and semi-synthetic scaffolds that offer the engineering of specific ECM cues and the potential for more advanced experimental manipulations. Synthetic scaffolds composed of poly(ethylene glycol) (PEG), for example, facilitate highly biocompatible 3D culture, modular bioactive features like cell-mediated matrix degradation and complete independent control over matrix bioactivity and mechanics. Future work in PEG or similar reductionist synthetic matrix systems should enable the study of increasingly complex and dynamic tumor–ECM relationships in the hopes that accurate modeling of these relationships may reveal new cancer therapeutics targeting tumor progression and metastasis.  相似文献   

16.
Stem cells possess the ability to self-renew and differentiate into other cell types. In vivo, stem cells reside in their own anatomic niches in a defined physiological environment, from which they are released to differentiate into a required cell type when deemed appropriate. While a resident within the niche, the stem cell receives signals that in turn maintain the cell in a pluripotent state. In addition, the niche also provides nourishment to the cell. Physically, the niche also serves to anchor the cell via various ECM components and cell-adhesion molecules. Therefore, in vitro models that replicate the in vivo niche will lead to a better understanding of stem cell fate and turnover. In turn, this will help inform attempts to culture stem cells in vitro on artificial niche-like substrates. In this review, we have highlighted recent studies describing artificial niche-like substrates used to culture embryonic and induced pluripotent stem cells in vitro.  相似文献   

17.
The search for novel molecular materials has focused on viruses as natural nanomaterials. Historically studied for their effects as pathogens, recent advances have incorporated viruses as substrates for chemical modification, materials development, and therapeutic design. Here we will discuss recent advances in chemical strategies for modifying viruses, and the applications of these technologies.  相似文献   

18.
In the last few years, a variety of self-assembling short peptides that consist exclusively of simple amino acids have been designed and modified. These peptides exhibit self-assembling dynamic behaviors. At the molecular structural level, they form α-helical, β-sheet and β-hairpins structures in water. These structures further undergo spontaneous assembly to form nanofibers which aggregate into supramolecular scaffolds that entrap large volumes of water. Furthermore, nanostructures and supramolecular structures that self-organized from these short peptides also have a broad spectrum of biotechnological applications. They are useful as biological materials for 2D and 3D tissue cell cultures, regenerative and reparative medicine, tissue engineering as well as injectable drug delivery matrices that gel in situ. We have endeavored to do a comprehensive review of short peptides that form nanofibrous hydrogels. In particular, we have focused on recent advances in peptide assembly motifs and applications.  相似文献   

19.
Increased recent research activity in exercise physiology has dramatically improved our understanding of skeletal muscle development and physiology in both health and disease. Advances in bioengineering have enabled the development of biomimetic 3D in vitro models of skeletal muscle which have the potential to further advance our understanding of the fundamental processes that underpin muscle physiology. As the principle structural protein of the extracellular matrix, collagen-based matrices are popular tools for the creation of such 3D models but the custom nature of many reported systems has precluded their more widespread adoption. Here we present a simple, reproducible iteration of an established 3D in vitro model of skeletal muscle, demonstrating both the high levels of reproducibility possible in this system and the improved cellular architecture of such constructs over standard 2D cell culture techniques. We have used primary rat muscle cells to validate this simple model and generate comparable data to conventional established cell culture techniques. We have optimized culture parameters for these cells which should provide a template in this 3D system for using muscle cells derived from other donor species and cell lines.  相似文献   

20.
Filamentous biopolymers such as F-actin, vimentin, fibrin and collagen that form networks within the cytoskeleton or the extracellular matrix have unusual rheological properties not present in most synthetic soft materials that are used as cell substrates or scaffolds for tissue engineering. Gels formed by purified filamentous biopolymers are often strain stiffening, with an elastic modulus that can increase an order of magnitude at moderate strains that are relevant to cell and tissue deformation in vivo. This review summarizes some experimental studies of non-linear rheology in biopolymer gels, discusses possible molecular mechanisms that account for strain stiffening, and explores the possible relevance of non-linear rheology to the interactions between cell and extracellular matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号