首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
In filamentous fungi D-galactose can be catabolised through the oxido-reductive and/or the Leloir pathway. In the oxido-reductive pathway D-galactose is converted to d-fructose in a series of steps where the last step is the oxidation of d-sorbitol by an NAD-dependent dehydrogenase. We identified a sorbitol dehydrogenase gene, sdhA (JGI53356), in Aspergillus niger encoding a medium chain dehydrogenase which is involved in D-galactose and D-sorbitol catabolism. The gene is upregulated in the presence of D-galactose, galactitol and D-sorbitol. An sdhA deletion strain showed reduced growth on galactitol and growth on D-sorbitol was completely abolished. The purified enzyme converted D-sorbitol to D-fructose with K(m) of 50±5 mM and v(max) of 80±10 U/mg.  相似文献   

2.
L-Arabinitol 4-dehydrogenase (Lad1) of the cellulolytic and hemicellulolytic fungus Hypocrea jecorina (anamorph: Trichoderma reesei) has been implicated in the catabolism of L-arabinose, and genetic evidence also shows that it is involved in the catabolism of D-xylose in xylitol dehydrogenase (xdh1) mutants and of D-galactose in galactokinase (gal1) mutants of H. jecorina. In order to identify the substrate specificity of Lad1, we have recombinantly produced the enzyme in Escherichia coli and purified it to physical homogeneity. The resulting enzyme preparation catalyzed the oxidation of pentitols (L-arabinitol) and hexitols (D-allitol, D-sorbitol, L-iditol, L-mannitol) to the same corresponding ketoses as mammalian sorbitol dehydrogenase (SDH), albeit with different catalytic efficacies, showing highest k(cat)/K(m) for L-arabinitol. However, it oxidized galactitol and D-talitol at C4 exclusively, yielding L-xylo-3-hexulose and D-arabino-3-hexulose, respectively. Phylogenetic analysis of Lad1 showed that it is a member of a terminal clade of putative fungal arabinitol dehydrogenase orthologues which separated during evolution of SDHs. Juxtapositioning of the Lad1 3D structure over that of SDH revealed major amino acid exchanges at topologies flanking the binding pocket for d-sorbitol. A lad1 gene disruptant was almost unable to grow on L-arabinose, grew extremely weakly on L-arabinitol, D-talitol and galactitol, showed reduced growth on D-sorbitol and D-galactose and a slightly reduced growth on D-glucose. The weak growth on L-arabinitol was completely eliminated in a mutant in which the xdh1 gene had also been disrupted. These data show not only that Lad1 is indeed essential for the catabolism of L-arabinose, but also that it constitutes an essential step in the catabolism of several hexoses; this emphasizes the importance of such reductive pathways of catabolism in fungi.  相似文献   

3.
4.
BackgroundGluconobacter oxydans, is used in biotechnology because of its ability to oxidize a wide variety of carbohydrates, alcohols, and polyols in a stereo- and regio-selective manner by membrane-bound dehydrogenases located in periplasmic space. These reactions obey the well-known Bertrand-Hudson's rule. In our previous study (BBA-General Subjects, 2021, 1865:129740), we discovered that Gluconobacter species, including G. oxydans and G. cerinus strain can regio-selectively oxidize the C-3 and C-5 hydroxyl groups of D-galactitol to rare sugars D-tagatose and L-xylo-3-hexulose, which represents an exception to Bertrand Hudson's rule. The enzyme catalyzing this reaction is located in periplasmic space or membrane-bound and is PQQ (pyrroloquinoline quinine) and Ca2+-dependent; we were encouraged to determine which type of enzyme(s) catalyze this unique reaction.MethodsEnzyme was identified by complementation of multi-deletion strain of Gluconobacter oxydans 621H with all putative membrane-bound dehydrogenase genes.Results and conclusionsIn this study, we identified this gene encoding the membrane-bound PQQ-dependent dehydrogenase that catalyzes the unique galactitol oxidation reaction in its 3’-OH and 5’-OH. Complement experiments in multi-deletion G. oxydans BP.9 strains established that the enzyme mSLDH (encoded by GOX0855–0854, sldB-sldA) is responsible for galactitol's unique oxidation reaction. Additionally, we demonstrated that the small subunit SldB of mSLDH was membrane-bound and served as an anchor protein by fusing it to a red fluorescent protein (mRubby), and heterologously expressed in E. coli and the yeast Yarrowia lipolytica. The SldB subunit was required to maintain the holo-enzymatic activity that catalyzes the conversion of D-galactitol to L-xylo-3-hexulose and D-tagatose. The large subunit SldA encoded by GOX0854 was also characterized, and it was discovered that its 24 amino acids signal peptide is required for the dehydrogenation activity of the mSLDH protein.General significanceIn this study, the main membrane-bound polyol dehydrogenase mSLDH in G. oxydans 621H was proved to catalyze the unique galactitol oxidation, which represents an exception to the Bertrand Hudson's rule, and broadens its substrate ranges of mSLDH. Further deciphering the explicit enzymatic mechanism will prove this theory.  相似文献   

5.
6.
A simple, but low-yielding method for the synthesis of 3-hexuloses has been elaborated. Oxidation of 1,2:5,6-di-O-isopropylidenehexitols with bromine in the presence of barium carbonate, followed by mild-acid hydrolysis of the oxidation products gave the free hexuloses. Oxidation occurred at only one of the carbon atoms bearing free hydroxyl groups. From the D-mannitol derivative, D-arabino-3-hexulose was obtained via the di-O-isopropylidene derivative, whereas the D-glucitol derivative gave a mixture of the 1,2:5,6-di-O-isoprpylidene derivatives of L-xylo- and D-ribo-3-hexulose, separable by column chromatography. Mild-acid hydrolysis of the oxidation products afforded the free hexuloses.  相似文献   

7.
Considerable interest in the D-xylose catabolic pathway of Pachysolen tannophilus has arisen from the discovery that this yeast is capable of fermenting D-xylose to ethanol. In this organism D-xylose appears to be catabolized through xylitol to D-xylulose. NADPH-linked D-xylose reductase is primarily responsible for the conversion of D-xylose to xylitol, while NAD-linked xylitol dehydrogenase is primarily responsible for the subsequent conversion of xylitol to D-xylulose. Both enzyme activities are readily detectable in cell-free extracts of P. tannophilus grown in medium containing D-xylose, L-arabinose, or D-galactose and appear to be inducible since extracts prepared from cells growth in media containing other carbon sources have only negligible activities, if any. Like D-xylose, L-arabinose and D-galactose were found to serve as substrates for NADPH-linked reactions in extracts of cells grown in medium containing D-xylose, L-arabinose, or D-galactose. These L-arabinose and D-galactose NADPH-linked activities also appear to be inducible, since only minor activity with L-arabinose and no activity with D-galactose is detected in extracts of cells grown in D-glucose medium. The NADPH-linked activities obtained with these three sugars may result from the actions of distinctly different enzymes or from a single aldose reductase acting on different substrates. High-performance liquid chromatography and gas-liquid chromatography of in vitro D-xylose, L-arabinose, and D-galactose NADPH-linked reactions confirmed xylitol, L-arabitol, and galactitol as the respective conversion products of these sugars. Unlike xylitol, however, neither L-arabitol nor galactitol would support comparable NAD-linked reaction(s) in cellfree extracts of induced P. tannophilus. Thus, the metabolic pathway of D-xylose diverges from those of L-arabinose or D-galactose following formation of the pentitol.  相似文献   

8.
9.
The thymidine diphosphate-L-rhamnose biosynthesis pathway is required for assembly of surface glycoconjugates in a growing list of bacterial pathogens, making this pathway a potential therapeutic target. However, the terminal reactions have not been characterized. To complete assignment of the reactions, the four enzymes (RmlABCD) that constitute the pathway in Salmonella enterica serovar Typhimurium LT2 were overexpressed. The purified RmlC and D enzymes together catalyze the terminal two steps involving NAD(P)H-dependent formation of dTDP-L-rhamnose from dTDP-6-deoxy-D-xylo-4-hexulose. RmlC was assigned as the thymidine diphosphate-4-dehydrorhamnose 3,5-epimerase by showing its activity to be NAD(P)H-independent. Spectrofluorometric and radiolabeling experiments were used to demonstrate the ability of RmlC to catalyze the formation of dTDP-6-deoxy-L-lyxo-4-hexulose from dTDP-6-deoxy-D-xylo-4-hexulose. Under reaction conditions, RmlC converted approximately 3% of its substrate to product. RmlD was unequivocally identified as the thymidine diphosphate-4-dehydrorhamnose reductase. The reductase property of RmlD was shown by equilibrium analysis and its ability to enable efficient biosynthesis of dTDP-L-rhamnose, even in the presence of low amounts of dTDP-6-deoxy-L-lyxo-4-hexulose. Comparison of 23 known and predicted RmlD sequences identified several conserved amino acid residues, especially the serine-tyrosine-lysine catalytic triad, characteristic for members of the reductase/epimerase/dehydrogenase protein superfamily. In conclusion, RmlD is a novel member of this protein superfamily.  相似文献   

10.
The serotype c-specific polysaccharide antigen of Actinobacillus actinomycetemcomitans NCTC 9710 contains an unusual sugar, 6-deoxy-L-talose, which has been identified as a constituent of cell wall components in some bacteria. Two genes coding for thymidine diphosphate (dTDP)-6-deoxy-L-lyxo-4-hexulose reductases were identified in the gene cluster required for biosynthesis of serotype c-specific polysaccharide. Both dTDP-6-deoxy-L-lyxo-4-hexulose reductases were overproduced and purified from Escherichia coli transformed with the plasmids containing these genes. The sugar nucleotides converted by both reductases were purified by reversed-phase high performance liquid chromatography and identified by (1)H nuclear magnetic resonance and gas-liquid chromatography. The results indicated that one of two reductases produced dTDP-6-deoxy-L-talose and the other produced dTDP-L-rhamnose (dTDP-6-deoxy-L-mannose). The amino acid sequence of the dTDP-6-deoxy-L-lyxo-4-hexulose reductase forming dTDP-6-deoxy-L-talose shared only weak homology with that forming dTDP-L-rhamnose, despite the fact that these two enzymes catalyze the reduction of the same substrate and the products are determined by the stereospecificity of the reductase activity. Neither the gene for dTDP-6-deoxy-L-talose biosynthesis nor its corresponding protein product has been found in other bacteria; this biosynthetic pathway is identified here for the first time.  相似文献   

11.
Base-catalysed isomerisation of aldoses of the arabino and lyxo series in aluminate solution has been investigated. L-Arabinose and D-galactose give L-erythro-2-pentulose (L-ribulose) and D-lyxo-2-hexulose (D-tagatose), respectively, in good yields, whereas lower reactivity is observed for 6-deoxy-D-galactose (D-fucose). From D-lyxose, D-mannose and 6-deoxy-L-mannose (L-rhamnose) are obtained mixtures of ketoses and C-2 epimeric aldoses. Small amounts of the 3-epimers of the ketoses were also formed. 6-Deoxy-L-arabino-2-hexulose (6-deoxy-L-fructose) and 6-deoxy-L-glucose (L-quinovose) were formed in low yields from 6-deoxy-L-mannose and isolated as their O-isopropylidene derivatives. Explanations of the differences in reactivity and course of the reaction have been suggested on the basis of steric effects.  相似文献   

12.
13.
Helicobacter pylori and Campylobacter jejuni have been shown to modify their flagellins with pseudaminic acid (Pse), via O-linkage, while C. jejuni also possesses a general protein glycosylation pathway (Pgl) responsible for the N-linked modification of at least 30 proteins with a heptasaccharide containing 2,4-diacetamido-2,4,6-trideoxy-alpha-D-glucopyranose, a derivative of bacillosamine. To further define the Pse and bacillosamine biosynthetic pathways, we have undertaken functional characterization of UDP-alpha-D-GlcNAc modifying dehydratase/aminotransferase pairs, in particular the H. pylori and C. jejuni flagellar pairs HP0840/HP0366 and Cj1293/Cj1294, as well as the C. jejuni Pgl pair Cj1120c/Cj1121c using His(6)-tagged purified derivatives. The metabolites produced by these enzymes were identified using NMR spectroscopy at 500 and/or 600 MHz with a cryogenically cooled probe for optimal sensitivity. The metabolites of Cj1293 (PseB) and HP0840 (FlaA1) were found to be labile and could only be characterized by NMR analysis directly in aqueous reaction buffer. The Cj1293 and HP0840 enzymes exhibited C6 dehydratase as well as a newly identified C5 epimerase activity that resulted in the production of both UDP-2-acetamido-2,6-dideoxy-beta-L-arabino-4-hexulose and UDP-2-acetamido-2,6-dideoxy-alpha-D-xylo-4-hexulose. In contrast, the Pgl dehydratase Cj1120c (PglF) was found to possess only C6 dehydratase activity generating UDP-2-acetamido-2,6-dideoxy-alpha-D-xylo-4-hexulose. Substrate-specificity studies demonstrated that the flagellar aminotransferases HP0366 and Cj1294 utilize only UDP-2-acetamido-2,6-dideoxy-beta-L-arabino-4-hexulose as substrate producing UDP-4-amino-4,6-dideoxy-beta-L-AltNAc, a precursor in the Pse biosynthetic pathway. In contrast, the Pgl aminotransferase Cj1121c (PglE) utilizes only UDP-2-acetamido-2,6-dideoxy-alpha-D-xylo-4-hexulose producing UDP-4-amino-4,6-dideoxy-alpha-D-GlcNAc (UDP-2-acetamido-4-amino-2,4,6-trideoxy-alpha-D-glucopyranose), a precursor used in the production of the Pgl glycan component 2,4-diacetamido-2,4,6-trideoxy-alpha-D-glucopyranose.  相似文献   

14.
The fungal L-arabinose pathway consists of five enzymes, aldose reductase, L-arabinitol 4-dehydrogenase, L-xylulose reductase, xylitol dehydrogenase, and xylulokinase. All the genes encoding the enzymes of this pathway are known except for that of L-xylulose reductase (EC 1.1.1.10). We identified a gene encoding this enzyme from the filamentous fungus Trichoderma reesei (Hypocrea jecorina). The gene was named lxr1. It was overexpressed in the yeast Saccharomyces cerevisiae, and the enzyme activity was confirmed in a yeast cell extract. Overexpression of all enzymes of the L-arabinose pathway in S. cerevisiae led to growth of S. cerevisiae on L-arabinose; i.e., we could show that the pathway is active in a heterologous host. The lxr1 gene encoded a protein with 266 amino acids and a calculated molecular mass of 28 428 Da. The LXRI protein is an NADPH-specific reductase. It has activity with L-xylulose, D-xylulose, D-fructose, and L-sorbose. The highest affinity is toward L-xylulose (K(m) = 16 mM). In the reverse direction, we found activity with xylitol, D-arabinitol, D-mannitol, and D-sorbitol. It requires a bivalent cation for activity. It belongs to the protein family of short chain dehydrogenases. The enzyme is catalytically similar and homologous in sequence to a D-mannitol:NADP 2-dehydrogenase (EC 1.1.1.138).  相似文献   

15.
16.
17.
The majority of black Aspergilli (Aspergillus section Nigri), including Aspergillus niger, as well as many other Ascomycetes fail to germinate on d-galactose as a sole carbon source. Here, we provide evidence that the ability of A. niger to transport D-galactose is growth stage dependent, being absent in the conidiospores but present in the mycelia. Despite earlier claims, we could identify galactokinase activity in growing cells and all genes of the Leloir pathway (responsible for channelling D-galactose into the EMP pathway) are well induced on D-galactose (and also on lactose, D-xylose and L-arabinose) in the mycelial stage. Expression of all Leloir pathway genes was also detectable in conidiospores, although galE (encoding a galactokinase) and galD (encoding a galactose-1-phosphate uridylyl transferase) were expressed poorly. These results suggest that the D-galactose-negative phenotype of A. niger conidiospores may be due to the lack of inducer uptake.  相似文献   

18.
The glycan repeats of the surface layer glycoprotein of Aneurinibacillus thermoaerophilus L420-91T contain d-rhamnose and 3-acetamido-3,6-dideoxy-d-galactose, both of which are also constituents of lipopolysaccharides of Gram-negative plant and human pathogenic bacteria. The two genes required for biosynthesis of the nucleotide-activated precursor GDP-d-rhamnose, gmd and rmd, were cloned, sequenced, and overexpressed in Escherichia coli. The corresponding enzymes Gmd and Rmd were purified to homogeneity, and functional studies were performed. GDP-d-mannose dehydratase (Gmd) converted GDP-d-mannose to GDP-6-deoxy-d-lyxo-4-hexulose, with NADP+ as cofactor. The reductase Rmd catalyzed the second step in the pathway, namely the reduction of the keto-intermediate to the final product GDP-d-rhamnose using both NADH and NADPH as hydride donor. The elution behavior of the intermediate and end product was analyzed by high performance liquid chromatography. Nuclear magnetic resonance spectroscopy was used to identify the structure of the final product of the reaction sequence as GDP-alpha-d-rhamnose. This is the first characterization of a GDP-6-deoxy-d-lyxo-4-hexulose reductase. In addition, Gmd has been shown to be a bifunctional enzyme with both dehydratase and reductase activities. So far, no enzyme catalyzing these two types of reactions has been identified. Both Gmd and Rmd are members of the SDR (short chain dehydrogenase/reductase) protein family.  相似文献   

19.
目的观察Wnt/β-catenin信号通路是否在体外以外源性Wnt3a持续作用小鼠胚胎干细胞后被激活,并进一步调控该通路下游基因的表达。方法应用外源性Wnt3a持续作用ES-E14TG2a小鼠胚胎干细胞21d,通过细胞免疫荧光及Western Blotting检测细胞内β-catenin蛋白,以观察该蛋白的胞内积聚情况;同时QRT-PCR检测WNT下游靶标基因的表达量,采用完全随机F检验并用LSD法进行两两比较,来确定经典WNT/β-catenin信号通路是否被激活。结果ES-E14TG2a小鼠胚胎干细胞经Wnt3a连续培养21d后,β-catenin蛋白的细胞荧光明显较强,而对照组中的荧光强度较弱,说明细胞内β-catenin蛋白没有被降解而是在胞内大量积累;Western Blotting检测结果显示Wnt3a连续培养21d后ES-E14TG2a细胞内β-catenin蛋白条带明显比空白对照的蛋白条带粗;ES—E14TG2a细胞经wnt3a培养后Pitx2、Frizzled、Sox17的表达量均持续上升,Pitx2在培养7d、14d、21d分别为4.17±0.20、7.27±0.35、8.59±0.21(F=222.757,P=0.000);Frizzled在培养7d、14d、21d分别为1.01±0.06、2.93±0.22、5.44±0.30(F=302.703,P=0.000);Sox17在培养7d、14d、21d分别为8.45±0.41、18.35±0.17、34.93±0.16(F=7217.083,P=0.000);Oct4培养到7d、14d的表达量持续增加分别为1.22±0.21、1.56±0.04,而连续培养21d后Oct4基因的表达量下降为1.15±0.07(F=8.827,P=0.016)。结论Wnt3a持续作用可激活Wnt/β-catenin信号通路,并调控下游基因的表达。  相似文献   

20.
Liver X receptors (LXRs) are involved in various diseases associated with lipid disorders, and in regulating cancer cell proliferation. However, the underlying molecular mechanisms, especially those in gastric cancer (GC) remain to be clarified. In this study, immunohistochemistry analysis revealed that LXRβ was mainly expressed in GC tissue, with less expression in adjacent normal tissues. The LXRβ agonist T0901317 efficiently suppressed the proliferation and colony formation of various GC cell lines. We further showed that LXRβ translocated from the cytoplasm to the nucleus when activated by T0901317. LXRβ nuclear localization suppressed the activation of Wnt signalling and decreased the expression of target genes such as MYC, BMP4, and MMP7 through binding to their promoters. Moreover, we demonstrated that the LXR agonist efficiently suppressed GC tumour growth in a nude mouse xenograft model. Taken together, these results revealed that LXRβ agonist inhibited GC cells proliferation by suppressing Wnt signalling via LXRβ relocalization. The results strongly suggest that LXRβ could be a promising target in GC therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号