首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chloroquine (ClQ) inhibited the repair of DNA damage produced in cultured rat liver cells by methyl methanesulfonate (MMS). MMS caused fragmentation of single-strand DNA in alkaline sucrose gradients. Repair of the damage was followed by observing the restoration of the normal sedimentation pattern at intervals after treatment. Repair was significant by 7 h and nearly complete at 24 h. Addition of ClQ during the repair peiod markedly reduced the rate of repair. Also, ClQ increased the lethality of MMS, which could be due to the inhibition of repair. ClQ was found to inhibit protein synthesis, but the effect on repair is probably not due entirely to this action since comparable inhibition of protein synthesis by cycloheximide produced a lesser degree of delay in repair.  相似文献   

2.
Gallic acid (3,4,5-trihydroxybenzoic acid, GA) is a naturally occurring plant phenol. In vitro and in vivo studies have shown that this phytochemical protected DNA and membranes against ionizing radiation. Rat liver microsomes and plasmid pBR322 DNA were exposed to various doses of gamma radiation in presence and absence of GA. Exposure of the microsomes to gamma radiation resulted in the formation of peroxides of membrane lipids measured as thiobarbituric acid reactive substances and presence of GA during irradiation prevented the formation of lipid peroxidation. Gamma irradiation of plasmid DNA resulted in induction of strand breaks in DNA resulting in disappearance of the supercoiled (ccc) form. Presence of GA during irradiation protected the DNA from undergoing the strand breaks. In in vivo studies it was found that whole body exposure of mice to gamma radiation (4 Gy) increased the formation of lipid peroxides in various tissues and damage to cellular DNA (as measured by alkaline comet assay) in peripheral blood leucocytes. Administration of GA to mice prior to whole body radiation exposure reduced the peroxidation of lipids and the damage to the cellular DNA indicating in vivo radiation protection of membranes and DNA by GA. (Mol Cell Biochem 278: 111–117, 2005)  相似文献   

3.
许翠娅 《应用生态学报》2022,33(6):1679-1685
为研究对二甲苯对皱纹盘鲍肝胰腺的毒性作用,设置4个浓度(0.5、1.0、1.5和2.0 mg·L-1)和对照组,开展为期21 d的对二甲苯对皱纹盘鲍的亚慢性毒性试验,采用彗星试验技术进行皱纹盘鲍肝胰腺细胞DNA损伤分析,采用CASP分析软件对拖尾率、彗星尾长、彗尾DNA相对含量、Olive矩等损伤指标进行统计。结果表明: 与对照组相比,各染毒组皱纹盘鲍肝胰腺细胞DNA均受到损伤,且损伤程度存在显著性差异。随着染毒浓度的增加,肝胰腺细胞DNA受损程度加重,高浓度甚至可以引发细胞凋亡,呈现一定的剂量-损伤效应。中浓度对二甲苯短时间暴露即可对皱纹盘鲍肝胰腺细胞造成DNA损伤,随着暴露时间延长,细胞DNA受损程度加重,呈现一定的时间-损伤效应。但长时间暴露细胞DNA各损伤指标有所减小,这可能与细胞自身的DNA修复机制和生物体解毒系统的代谢机制有关。研究表明,对二甲苯可对皱纹盘鲍肝胰腺细胞产生氧化损伤,导致DNA断裂,高浓度的对二甲苯长时间暴露可导致其细胞凋亡。  相似文献   

4.
DNA repair synthesis induced by methyl methanesulfonate in preconditioned HeLa cells in which DNA replicative synthesis had been highly suppressed was inhibited by aphidicolin (an inhibitor of DNA polymerases and ) and dideoxythymidine (ddThR, an inhibitor of DNA polymerase ). Incomplete repair patches sensitive to exonuclease III were accumulated in the presence of aphidicolin while not in the presence of ddThR. These patches were comopleted by the combined action of Klenow fragment and T4 DNA ligase, indicating that the single-stranded gaps were formed during the repair synthesis. Moreover, ddThR had little effect on the repair synthesis in the presence of aphidicolin. Thus, the results suggest that the single-stranded gaps may be sealed first by aphidicolin-sensitive polymerase followed by ddThR-sensitive DNA polymerase on the same site of the repair patch.Abbreviations ddThR dideoxythymidine - MMS methyl methanesulfonate - dNTP deoxynucleoside triphosphate  相似文献   

5.
Depending on the analytical method employed estimates of background levels of base oxidation in human DNA vary over orders of magnitude. It is now realised that oxidation of guanine in vitro can result in serious overestimation of the nucleoside by HPLC (with electrochemical detection). We have modified procedures of isolation, hydrolysis and storage of DNA with the aim of eliminating this artefact. Vacuum- or freeze-drying, and dialysis, tend to encourage oxidation. We compare results obtained with HPLC and with the comet assay, which employs lesion-specific enzymes to introduce breaks in DNA at sites of oxidative damage. Although estimates of background levels of DNA oxidation using the comet assay are several-fold lower than the estimates by HPLC, both approaches have been used successfully to detect differences between human subjects or population groups that seem to relate to human disease and nutritional factors.  相似文献   

6.
7.
8.
A mutant allele of the Escherichia coli nfo gene encoding endonuclease IV, nfo-186, was cloned into plasmid pUC18. When introduced into an E. coli xthA nfo mutant, the gene product of nfo-186 complemented the hypersensitivity of the mutant to methyl methanesulfonate (MMS) but not to hydrogen peroxide (H2O2) and bleomycin. These results suggest that the mutant endonuclease IV has normal activity for repairing DNA damages induced by MMS but not those induced by H2O2 and bleomycin. A missense mutation in the cloned nfo-186 gene, in which the wild-type glycine 149 was replaced by aspartic acid, was detected by DNA sequencing. The wild-type and mutant endonuclease IV were purified to near homogeneity, and their apurinic (AP) endonuclease and 3'-phosphatase activities were determined. No difference was observed in the AP endonuclease activities of the wild-type and mutant proteins. However, 3'-phosphatase activity was dramatically reduced in the mutant protein. From these results, it is concluded that the endonuclease IV186 protein is specifically deficient in the ability to remove 3'-terminus-blocking damage, which is required for DNA repair synthesis, and it is possible that the lethal DNA damage by H2O2 is 3'-blocking damage and not AP-site damage.  相似文献   

9.
The molecular dosimetry of methyl methanesulfonate (MMS) in the germ cells of male mice has been investigated. The mice were injected i.p. with 100 mg/kg of [3H]MMS and methylations per sperm head, per deoxynucleotide, and per unit of protamine were then determined over a 3-week period. The methylations per sperm head paralleled the dominant lethal frequency curve for MMS, reaching a maximum of between 22 and 26 million methylations per vas sperm head 8-11 days after treatment. Methylation of sperm DNA was greatest at 4 h (the earliest time point studied) after treatment, with 16.6 methylations/10(5) deoxynucleotides. DNA methylation gradually decreased during the subsequent 3-week period. The methylation of germ-cell DNA did not increase in the stages most sensitive to MMS (late spermatids leads to early spermatozoa) and was not correlated with the dominant lethal frequency curve for MMS. However, methylation of protamine did increase in the germ-cell stages most sensitive to MMS, and showed an excellent correlation with the incidence of dominant lethals produced by MMS in the different germ-cell stages. The pattern of alkylation produced by MMS in the developing germ-cell stages of the mouse is similar to that found for EMS. However, for equimolar exposures, MMS alkylates the germ cells 5-7 times more than does EMS. Hydrolyzed samples of protamine from [3H]MMS-exposed animals were subjected to thin-layer chromatography and amino acid analysis. Both procedures showed that most of the labeled material recovered from the hydrolysates co-chromatographed with authentic standards of S-methyl-L-cysteine. The amino acid analyses showed an average of approximately 80% of the labeled material eluting with S-methyl-L-cysteine. The mechanism of action of both MMS and EMS on the developing germ cells appears to be similar. The occurrence of S-methyl-L-cysteine as the major reaction product in sperm protamine after MMS exposure supports our initial model of how dominant lethals are induced in mouse germ cells by these chemicals: Alkylation of cysteine sulfhydryl groups contained in mouse-sperm protamine blocks normal disulfide-bond formation, preventing proper chromatin condensation in the sperm nucleus. Subsequent stresses produced in the chromatin structure eventually lead to chromosome breakage, with resultant dominant lethality.  相似文献   

10.
Consumption of cruciferous vegetables may protect against colorectal cancer. Cruciferous vegetables are rich in a number of bioactive constituents including polyphenols, vitamins and glucosinolates. Before consumption, cruciferous vegetables often undergo some form of processing that reduces their content of bioactive constituents and may determine whether they exert protective effects. The aim of this study was to compare the ability of raw and blanched‐frozen broccoli to protect colonocytes against DNA damage, improve antioxidant status and induce xenobiotic metabolizing enzymes (XME). Fifteen Landrace × Large White male pigs were divided into five age‐matched and weight‐matched sets (79 days, SD 3, and 34·7 kg, SD 3·9, respectively). Each set consisted of siblings to minimize genetic variation. Within each set, pigs received a cereal‐based diet, unsupplemented (control) or supplemented with 600 g day?1 of raw or blanched‐frozen broccoli for 12 days. The consumption of raw broccoli caused a significant 27% increase in DNA damage in colonocytes (p = 0·03) relative to the control diet, whereas blanched‐frozen broccoli had no significant effect. Both broccoli diets had no significant effect on plasma antioxidant status or hepatic and colonic XME. This study is the first to report that the consumption of raw broccoli can damage DNA in porcine colonocytes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
应用改良彗星试验检测杀虫剂对小鼠细胞DNA的损伤   总被引:5,自引:0,他引:5  
目的:检测杀虫剂(杀灭菊酯乳油)是否对小鼠外周血淋巴细胞DNA有损伤。方法:应用改良彗星试验(单细胞凝胶电泳)分别检测三个剂量组和对照组小鼠外周血淋巴细胞。结果:剂量组的彗星出现率与阴性对照组存在显著差异(P<0.05),而与阳性对照组差异不显著(P>0.05)。结论:该杀虫剂对小鼠外周血淋巴细胞DNA有一定程度的损伤。  相似文献   

12.
We have developed an in vivo micronucleus (MN) test that uses rat skin as the target organ. Sample preparation involves cold-treating the epidermis with trypsin, peeling it off with a fine forceps, treating it in hypotonic solution, and staining it with acridine orange (A.O.). We evaluated the assay using mitomycin C (MMC) and methyl methanesulfonate (MMS) as model clastogens, applying them as single and repeat treatments. Both chemicals induced a significant, dose-dependent increase in MN frequency in basal cells. One treatment per day for 3 days was optimal for MN induction.  相似文献   

13.
Barrett's oesophagus (BE) is a pre-malignant metaplastic tissue predisposing to oesophageal adenocarcinoma (EC), and gastro-oesophageal reflux is a risk factor for both conditions. Reflux of acid and bile can cause mucosal injury and initiate chronic inflammation. These processes can induce DNA damage, possibly via an oxidative stress mechanism, thus increasing the likelihood of progression from Barrett's metaplasia to dysplasia and finally carcinoma. The comet assay was optimized for the detection of DNA damage (strand breaks and alkali-labile sites) in oesophageal biopsies, including incorporation of the DNA repair enzyme Fapy-DNA glycosylase (Fpg). Fpg allows the detection of 8-hydroxy-2-deoxyguanosine (8-OHdG) sites, a known pro-mutagenic DNA lesion. BE patients were recruited from BE surveillance clinics and oesophageal biopsies collected at endoscopy. Comet analysis revealed significantly increased (p<0.001) DNA damage in Barrett's epithelium compared with matched squamous epithelium, with median % tail DNA values of 25.1% (first to third quartile 21.7–29.6%) and 18.6% (first to third quartile 16.9–21.4%), respectively. The median % tail DNA was up to 70% higher in the matched BE tissue compared with squamous epithelium from the same patient. Fpg sensitive sites were demonstrated in both tissue types at similar levels. The raised level of DNA damage in the premalignant BE may contribute to the accumulation of genetic alterations occurring during progression to EC. Understanding these underlying mechanisms provides a basis for cancer prevention strategies in BE patients.  相似文献   

14.
Interaction between Vitamin C (VitC) and transition metals can induce the formation of reactive oxygen species (ROS). VitC may also act as an ROS scavenger and as a metal chelant. To examine these possibilities, we tested in vivo the effect of two doses of VitC (1 and 30 mg/kg of mouse body weight) on the genotoxicity of known mutagens and transition metals. We used the alkaline version of the comet assay to assess DNA damage in peripheral white blood cells of mice. Animals were orally given either water (control), cyclophosphamide (CP), methyl methanesulfonate (MMS), cupric sulfate or ferrous sulfate. A single treatment with each VitC dose was administered after treatment with the mutagens or the metal sulfates. Both doses of VitC enhanced DNA damage caused by the metal sulfates. DNA damage caused by MMS was significantly reduced by the lower dose, but not by the higher dose of VitC. For CP, neither post-treatment dose of VitC affected the DNA damage level. These results indicate a modulatory role of Vitamin C in the genotoxicity/repair effect of these compounds. Single treatment with either dose of VitC showed genotoxic effects after 24 h but not after 48 h, indicating repair. Double treatment with VitC (at 0 and 24 h) induced a cumulative genotoxic response at 48 h, more intense for the higher dose. The results suggest that VitC can be either genotoxic or a repair stimulant, since the alkaline version of the comet assay does not differentiate "effective" strand breaks from those generated as an intermediate step in excision repair (incomplete excision repair sites). Further data is needed to shed light upon the beneficial/noxious effects of VitC.  相似文献   

15.
We developed a method for cloning cellular nucleases from streptococci. Recombinant lambda gt11 bacteriophage containing streptococcal nuclease determinants were identified by the production of pink plaques on toluidine blue O DNase plates. We used this technique to clone a 3.2-kilobase-pair EcoRI fragment with DNase activity from the chromosome of Streptococcus sanguis. The locus was designated don (DNase one) and could be subcloned and stably maintained on plasmid vectors in Escherichia coli. Minicell analyses of various subclones of the don locus allowed us to determine the coding region and size of the Don nuclease in E. coli. The don gene product had an apparent molecular mass of 34 kilodaltons and degraded native DNA most efficiently, with lesser activity against denatured DNA and no detectable activity against RNA. S. sanguis don deletion mutants were constructed by transformation of competent cells with in vitro-prepared plasmid constructs. S. sanguis don deletion mutants retained normal transformation frequencies for exogenously added donor DNA. However, when compared with Don+ wild-type cells, these mutants were hypersensitive to DNA damage induced by UV light and methyl methanesulfonate. An S. sanguis don-specific DNA probe detected homology to chromosomal DNA isolated from Streptococcus pneumoniae and Streptococcus mutans Bratthall serogroups d and g. Our results suggested that the don locus was the S. sanguis allele of the previously described S. pneumoniae major exonuclease and was involved in repair of DNA damage. Furthermore, hybridization studies suggested that the don locus was conserved among species of oral streptococci.  相似文献   

16.
The purpose of this study was to investigate the effect of Zn (zinc) concentration on CCs (cumulus cells) during in vitro maturation. For this purpose, DNA integrity of CCs by addition of different Zn concentrations [0 (control); 0.7 μg/ml (Zn1); 1.1 μg/ml (Zn2) and 1.5 μg/ml (Zn3)] to the culture medium was evaluated by comet assay. In addition, early apoptosis was analysed by annexin staining assay. CCs treated with Zn showed a significant decrease in the DNA damage in a dose‐dependent manner. Comet assay analysed for TM (tail moment) was significantly higher in cells cultured without Zn (control, P<0.01) with respect to cells treated with Zn (control: 5.24±16.05; Zn1: 1.13±5.31; Zn2: 0.10±0.36; Zn3: 0.017±0.06). All treatments were statistically different from the control (P=0.014 for Zn1; P<0.01 for Zn2 and Zn3). The frequency of apoptotic cells was higher in the control group (control: 0.142±0.07; Zn1: 0.109±0.0328; Zn2:0.102±0.013; Zn3: 0.0577±0.019). Statistical differences were found between control and Zn1 (P=0.0308), control and Zn2 (P=0.0077), control and Zn3 (P<0.0001), Zn1 and Zn3 (P<0.001) and Zn2 and Zn3 (P=0.0004). No differences were found between Zn1 and Zn2. In conclusion, low Zn concentrations increase DNA damage and apoptosis in CCs cultured in vitro. However, adequate Zn concentrations ‘protect’ the integrity of DNA molecule and diminish the percentage of apoptotic CC.  相似文献   

17.
Unscheduled DNA synthesis (UDS) in the germ cells of male mice after in vivo treatment with X-rays or methyl methanesulfonate (MMS) was assayed by use of a quantitative autoradiographic procedure. MMS induced UDS in meiotic through type III elongating spermatid stages, whereas X-rays induced UDS in meiotic through round spermatid stages. No UDS was detected in the most mature spermatid stages present in the testis with either MMS or X-rays. Taking into account differences in DNA content of the various germ-cell stages studied, we concluded that X-rays induced a maximum UDS response in spermatocytes at diakinesis--metaphase I. The level of UDS induced by MMS was about the same in all the stages capable of repair. Chromosome damage and UDS were measured simultaneously in the same spermatocytes at diakinesis 90 min after X-irradiation or MMS treatment. The level of UDS in most of the X-irradiated cells paralleled the extent of chromosome damage induced. A statistical analysis of these results revealed a positive correlation. As expected, MMS induced no chromosome aberrations above control levels. Therefore no correlation was determined between UDS and chromosome damage in this case. The distribution of UDS over the chromosomes treated at diakinesis with MMS or X-rays was studied. It was found that UDS occurred in clusters in the irradiated cells, whereas it was uniformly distributed in the MMS-treated cells.  相似文献   

18.
We have investigated the agonists that activate transfected extracellular signal-regulated kinase 8 (ERK8) in cells, and have found that the most potent activators are hydrogen peroxide, DNA alkylating and cross-linking agents and the poly (ADP-ribose) polymerase inhibitor KU-0058948. The feature shared by all these agents is that they lead to the accumulation of single strand breaks in DNA, suggesting a role for ERK8 in the response to, or repair of, DNA single strand breaks. The DNA alkylating agent MMS also induced the disappearance of endogenous ERK8 by a proteasome-dependent mechanism.  相似文献   

19.
Mutations in the WRN gene result in Werner syndrome, an autosomal recessive disease in which many characteristics of aging are accelerated. A probable role in some aspect of DNA metabolism is suggested by the primary sequence of the WRN gene product. A recombinant His-tagged WRN protein (WRNp) was overproduced in insect cells using the baculovirus system and purified to near homogeneity by several chromatographic steps. This purification scheme removes both nuclease and topoisomerase contaminants that persist following a single Ni(2+)affinity chromatography step and allows for unambiguous interpretation of WRNp enzymatic activities on DNA substrates. Purified WRNp has DNA-dependent ATPase and helicase activities consistent with its homology to the RecQ subfamily of proteins. The protein also binds with higher affinity to single-stranded DNA than to double-stranded DNA. However, WRNp has no higher affinity for various types of DNA damage, including adducts formed during 4NQO treatment, than for undamaged DNA. Our results confirm that WRNp has a role in DNA metabolism, although this role does not appear to be the specific recognition of damage in DNA.  相似文献   

20.
Currently, the potential genotoxicity of high power microwave pulses (HPMP) is not clear. Using the alkaline single cell gel electrophoresis assay, also known as the alkaline comet assay, we studied the effects of HPMP (8.8 GHz, 180 ns pulse width, peak power 65 kW, pulse repetition frequency 50 Hz) on DNA of human whole-blood leukocytes and isolated lymphocytes. The cell suspensions were exposed to HPMP for 40 min in a rectangular waveguide. The average SAR calculated from the temperature kinetics was about 1.6 kW/kg (peak SAR was about 300 MW/kg). The steady-state temperature rise in the 50 microl samples exposed to HPMP was 3.5 +/- 0.1 degrees C. In independent experiments, we did not find any statistically significant DNA damage manifested immediately after in vitro HPMP exposure of human blood leukocytes or lymphocytes or after HPMP exposure of leukocytes subsequently incubated at 37 degrees C for 30 min. Our results indicate that HPMP under the given exposure conditions did not induce DNA strand breaks, alkali-labile sites, and incomplete excision repair sites, which could be detected by the alkaline comet assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号