共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Obese subjects of all ages and sex have reduced plasma SHBG levels. Whether these low plasma SHBG levels play a role in obesity development is unknown. In the present work we wanted to explore if SHBG overexpression could prevent obesity development induced by high fat diet (HFD). To do so, we fed humanized SHBG transgenic male mice and their wild-type littermates with control diet (CD) or HFD over the course of 8 weeks. The results showed that SHBG overexpression protected against body weight gain and fat accumulation induced by HFD. In addition, SHBG overexpression also abrogated the increase in insulin, leptin and resistin levels, as well as the reduction in adiponectin, induced by HFD. Mechanistically, the SHBG protection against HFD-induced obesity was achieved by stimulating lipolysis in white adipose tissue. Furthermore, we have demonstrated the SHBG cell-autonomous effect using human primary visceral adipocytes. Taking together, our results demonstrate that SHBG overexpression protects against diet-induced obesity and improves the metabolic profile of male mice fed a HFD diet. 相似文献
3.
Wan M Easton RM Gleason CE Monks BR Ueki K Kahn CR Birnbaum MJ 《Molecular and cellular biology》2012,32(1):96-106
Akt is encoded by a gene family for which each isoform serves distinct but overlapping functions. Based on the phenotypes of the germ line gene disruptions, Akt1 has been associated with control of growth, whereas Akt2 has been linked to metabolic regulation. Here we show that Akt1 serves an unexpected role in the regulation of energy metabolism, as mice deficient for Akt1 exhibit protection from diet-induced obesity and its associated insulin resistance. Although skeletal muscle contributes most of the resting and exercising energy expenditure, muscle-specific deletion of Akt1 does not recapitulate the phenotype, indicating that the role of Akt1 in skeletal muscle is cell nonautonomous. These data indicate a previously unknown function of Akt1 in energy metabolism and provide a novel target for treatment of obesity. 相似文献
4.
Loss of FXR protects against diet-induced obesity and accelerates liver carcinogenesis in ob/ob mice
Zhang Y Ge X Heemstra LA Chen WD Xu J Smith JL Ma H Kasim N Edwards PA Novak CM 《Molecular endocrinology (Baltimore, Md.)》2012,26(2):272-280
Farnesoid X receptor (FXR) is known to play important regulatory roles in bile acid, lipid, and carbohydrate metabolism. Aged (>12 months old) Fxr(-/-) mice also develop spontaneous liver carcinomas. In this report, we used three mouse models to investigate the role of FXR deficiency in obesity. As compared with low-density lipoprotein receptor (Ldlr) knockout (Ldlr(-/-)) mice, the Ldlr(-/-)Fxr(-/-) double-knockout mice were highly resistant to diet-induced obesity, which was associated with increased expression of genes involved in energy metabolism in the skeletal muscle and brown adipose tissue. Such a striking effect of FXR deficiency on obesity on an Ldlr(-/-) background led us to investigate whether FXR deficiency alone is sufficient to affect obesity. As compared with wild-type mice, Fxr(-/-) mice showed resistance to diet-induced weight gain. Interestingly, only female Fxr(-/-) mice showed significant resistance to diet-induced obesity, which was accompanied by increased energy expenditure in these mice. Finally, we determined the effect of FXR deficiency on obesity in a genetically obese and diabetic mouse model. We generated ob(-/-)Fxr(-/-) mice that were deficient in both Leptin and Fxr. On a chow diet, ob(-/-)Fxr(-/-) mice gained less body weight and had reduced body fat mass as compared with ob/ob mice. In addition, we observed liver carcinomas in 43% of young (<11 months old) Ob(-/-)Fxr(-/-) mice. Together these data indicate that loss of FXR prevents diet-induced or genetic obesity and accelerates liver carcinogenesis under diabetic conditions. 相似文献
5.
6.
Meakin PJ Harper AJ Hamilton DL Gallagher J McNeilly AD Burgess LA Vaanholt LM Bannon KA Latcham J Hussain I Speakman JR Howlett DR Ashford ML 《The Biochemical journal》2012,441(1):285-296
Insulin resistance and impaired glucose homoeostasis are important indicators of Type?2 diabetes and are early risk factors of AD (Alzheimer's disease). An essential feature of AD pathology is the presence of BACE1 (β-site amyloid precursor protein-cleaving enzyme 1), which regulates production of toxic amyloid peptides. However, whether BACE1 also plays a role in glucose homoeostasis is presently unknown. We have used transgenic mice to analyse the effects of loss of BACE1 on body weight, and lipid and glucose homoeostasis. BACE1-/- mice are lean, with decreased adiposity, higher energy expenditure, and improved glucose disposal and peripheral insulin sensitivity than wild-type littermates. BACE1-/- mice are also protected from diet-induced obesity. BACE1-deficient skeletal muscle and liver exhibit improved insulin sensitivity. In a skeletal muscle cell line, BACE1 inhibition increased glucose uptake and enhanced insulin sensitivity. The loss of BACE1 is associated with increased levels of UCP1 (uncoupling protein 1) in BAT (brown adipose tissue) and UCP2 and UCP3 mRNA in skeletal muscle, indicative of increased uncoupled respiration and metabolic inefficiency. Thus BACE1 levels may play a critical role in glucose and lipid homoeostasis in conditions of chronic nutrient excess. Therefore strategies that ameliorate BACE1 activity may be important novel approaches for the treatment of diabetes. 相似文献
7.
Carrie A. Millward Lindsay C. Burrage Haifeng Shao David S. Sinasac Jean H. Kawasoe Annie E. Hill-Baskin Sheila R. Ernest Aga Gornicka Chang-Wen Hsieh Sorana Pisano Joseph H. Nadeau Colleen M. Croniger 《Mammalian genome》2009,20(2):71-82
Obesity is associated with increased susceptibility to dyslipidemia, insulin resistance, and hypertension, a combination of
traits that comprise the traditional definition of the metabolic syndrome. Recent evidence suggests that obesity is also associated
with the development of nonalcoholic fatty liver disease (NAFLD). Despite the high prevalence of obesity and its related conditions,
their etiologies and pathophysiology remains unknown. Both genetic and environmental factors contribute to the development
of obesity and NAFLD. Previous genetic analysis of high-fat, diet-induced obesity in C57BL/6J (B6) and A/J male mice using
a panel of B6-ChrA/J/NaJ chromosome substitution strains (CSSs) demonstrated that 17 CSSs conferred resistance to high-fat, diet-induced obesity.
One of these CSS strains, CSS-17, which is homosomic for A/J-derived chromosome 17, was analyzed further and found to be resistant
to diet-induced steatosis. In the current study we generated seven congenic strains derived from CCS-17, fed them either a
high-fat, simple-carbohydrate (HFSC) or low-fat, simple-carbohydrate (LFSC) diet for 16 weeks and then analyzed body weight
and related traits. From this study we identified several quantitative trait loci (QTLs). On a HFSC diet, Obrq13 protects against diet-induced obesity, steatosis, and elevated fasting insulin and glucose levels. On the LFSC diet, Obrq13 confers lower hepatic triglycerides, suggesting that this QTL regulates liver triglycerides regardless of diet. Obrq15 protects against diet-induced obesity and steatosis on the HFSC diet, and Obrq14 confers increased final body weight and results in steatosis and insulin resistance on the HFSC diet. In addition, on the
LFSC diet, Obrq 16 confers decreased hepatic triglycerides and Obrq17 confers lower plasma triglycerides on the LFSC diet. These congenic strains provide mouse models to identify genes and metabolic
pathways that are involved in the development of NAFLD and aspects of diet-induced metabolic syndrome.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.
C. A. Millward and L. C. Burrage contributed equally to this work. 相似文献
8.
Begriche K Lettéron P Abbey-Toby A Vadrot N Robin MA Bado A Pessayre D Fromenty B 《American journal of physiology. Endocrinology and metabolism》2008,294(5):E939-E951
Partial leptin deficiency is not uncommon in the general population. We hypothesized that leptin insufficiency could favor obesity, nonalcoholic steatohepatitis (NASH), and other metabolic abnormalities, particularly under high calorie intake. Thus, mice partially deficient in leptin (ob/+) and their wild-type (+/+) littermates were fed for 4 mo with a standard-calorie (SC) or a high-calorie (HC) diet. Some ob/+ mice fed the HC diet were also treated weekly with leptin. Our results showed that, when fed the SC diet, ob/+ mice did not present significant metabolic abnormalities except for elevated levels of plasma adiponectin. Under high-fat feeding, increased body fat mass, hepatic steatosis, higher plasma total cholesterol, and glucose intolerance were observed in +/+ mice, and these abnormalities were further enhanced in ob/+ mice. Furthermore, some metabolic disturbances, such as blunted plasma levels of leptin and adiponectin, reduced UCP1 expression in brown adipose tissue, increased plasma liver enzymes, beta-hydroxybutyrate and triglycerides, and slight insulin resistance, were observed only in ob/+ mice fed the HC diet. Whereas de novo fatty acid synthesis in liver was decreased in +/+ mice fed the HC diet, it was disinhibited in ob/+ mice along with the restoration of the expression of several lipogenic genes. Enhanced expression of several genes involved in fatty acid oxidation was also observed only in ob/+ animals. Leptin supplementation alleviated most of the metabolic abnormalities observed in ob/+ fed the HC diet. Hence, leptin insufficiency could increase the risk of obesity, NASH, glucose intolerance, and hyperlipidemia in a context of calorie overconsumption. 相似文献
9.
10.
Teruo Kawada 《Bioscience, biotechnology, and biochemistry》2018,82(4):547-553
AbstractObesity is a key factor in metabolic syndrome. The study of metabolic syndrome focuses on the anti-weight gain properties of physiological mechanisms and food components. Abnormal energy metabolism is a major risk factor of metabolic syndrome. Chronic inflammation is a feature of obesity; cytokines from hypertrophied adipocytes cause inflammation in both adipose tissue and blood vessels, resulting in symptoms of metabolic syndrome. Tumor necrosis factor-α causes insulin resistance in adipocytes and regression of brown adipocytes, resulting in abnormal energy metabolism. Functional foods can serve as a strategy for prevention and treatment of obesity linked with metabolic processes in white and brown adipose tissues. Diet-induced thermogenesis caused by certain food components stimulates burning of stored fat within adipose tissues. A mechanistic understanding of dietary thermogenesis via the sympathetic nerve system will prove valuable for the development of precise strategies for the practical prevention of metabolic syndrome. 相似文献
11.
Shuang Kan Rong Li Yanhui Tan Fang Yang Shaohua Xu Lingzhu Wang Lijun Zhang Xuchen Sun Xuanming Chen Yuting Yang Wei Shu Huaibin Wan Zheng-Feng Chen Hong Liang Ming Chen 《Cell death & disease》2022,13(2)
Obesity is a risk factor for many chronic diseases, and is associated with increased incidence rate of type 2 diabetes, hypertension, dyslipidemia and cardiovascular diseases. Adipocyte differentiation play critical role during development of obesity. Latexin (LXN), a mammalian carboxypeptidase inhibitor, plays important role in the proliferation and differentiation of stem cells, and highlights as a differentiation-associated gene that was significantly downregulated in prostate stem cells and whose expression increases through differentiation. However, it is unclear whether LXN is involved in adipocyte differentiation. The aim of this study was to evaluate the role of LXN on adipocyte differentiation, as well as its effects on high fat-induced obesity and metabolic disorders. In this study, we determine the expression of LXN in adipose tissue of lean and fat mice by Western blot, qPCR and immunohistochemistry. We found that LXN in fat tissues was continuous increased during the development of diet-induced obesity. We fed wild-type (WT) and LXN−/−mice with high-fat diet (HFD) to study the effects of LXN on obesity and related metabolic functions. We found that mice deficient in LXN showed resistance against high-fat diet (HFD)-induced obesity, glucose tolerance, insulin tolerance and hepatic steatosis. In vitro studies indicated that LXN was highly induced during adipocyte differentiation, and positively regulated adipocyte differentiation and adipogenesis in 3T3-L1 cells and primary preadipocytes. Functional analysis revealed that the expression of LXN was positively regulated by mTOR/RXR/PPARɤ signaling pathway during the differentiation of adipocytes, while LXN deletion decreased the protein level of PPARɤ in adipocyte through enhancing FABP4 mediated ubiquitination, which led to impaired adipocyte differentiation and lipogenesis. Collectively, our data provide evidence that LXN is a key positive regulator of adipocyte differentiation, and therapeutics targeting LXN could be effective in preventing obesity and its associated disorders in clinical settings.Subject terms: Metabolic disorders, Mechanisms of disease 相似文献
12.
13.
Foucault AS Mathé V Lafont R Even P Dioh W Veillet S Tomé D Huneau JF Hermier D Quignard-Boulangé A 《Obesity (Silver Spring, Md.)》2012,20(2):270-277
Besides their well-known effect in the molting control in insects, ecdysteroids are steroid hormones that display potential pharmacologic and metabolic properties in mammals. The most common ecdysteroid, 20-hydroxyecdysone (20E) is found in many plants such as quinoa. The aim of the present study was to investigate the ability of quinoa extract (Q) enriched in 20E supplementation to prevent the onset of diet-induced obesity and to regulate the expression of adipocyte-specific genes in mice. Mice were fed a standard low-fat (LF) or a high-fat (HF) diet with or without supplementation by 20E-enriched Q or pure 20E for 3 weeks. Supplementation with Q reduced adipose tissue development in HF mice without modification of their body weight gain. This adipose tissue-specific effect was mainly associated with a reduced adipocyte size and a decrease in the expression of several genes involved in lipid storage, including lipoprotein lipase and phosphoenolpyruvate carboxykinase. Furthermore, Q-treated mice exhibited marked attenuation of mRNA levels of several inflammation markers (monocyte chemotactic protein-1, CD68) and insulin resistance (osteopontin, plasminogen activator inhibitor-1 (PAI-1)) as compared to HF mice. Q supplementation also reversed the effects of HF-induced downregulation of the uncoupling protein(s) (UCP(s)) mRNA levels in muscle. Similar results were obtained in mice fed a HF diet supplemented with similar amounts of pure 20E, suggesting that the latter accounted for most of the Q effects. Our study indicates that Q has an antiobesity activity in vivo and could be used as a nutritional supplement for the prevention and treatment of obesity and obesity-associated disorders. 相似文献
14.
A Mediterranean diet rich in olive oil has profound influence on health outcomes including metabolic syndrome. However, the active compound and detailed mechanisms still remain unclear. Hydroxytyrosol (HT), a major polyphenolic compound in virgin olive oil, has received increased attention for its antioxidative activity and regulation of mitochondrial function. Here, we investigated whether HT is the active compound in olive oil exerting a protective effect against metabolic syndrome. In this study, we show that HT could prevent high-fat-diet (HFD)-induced obesity, hyperglycemia, hyperlipidemia, and insulin resistance in C57BL/6 J mice after 17 weeks supplementation. Within liver and skeletal muscle tissues, HT could decrease HFD-induced lipid deposits through inhibition of the SREBP-1c/FAS pathway, ameliorate HFD-induced oxidative stress by enhancing antioxidant enzyme activities, normalize expression of mitochondrial complex subunits and mitochondrial fission marker Drp1, and eventually inhibit apoptosis activation. Moreover, in muscle tissue, the levels of mitochondrial carbonyl protein were decreased and mitochondrial complex activities were significantly improved by HT supplementation. In db/db mice, HT significantly decreased fasting glucose, similar to metformin. Notably, HT decreased serum lipid, at which metformin failed. Also, HT was more effective at decreasing the oxidation levels of lipids and proteins in both liver and muscle tissue. Similar to the results in the HFD model, HT decreased muscle mitochondrial carbonyl protein levels and improved mitochondrial complex activities in db/db mice. Our study links the olive oil component HT to diabetes and metabolic disease through changes that are not limited to decreases in oxidative stress, suggesting a potential pharmaceutical or clinical use of HT in metabolic syndrome treatment. 相似文献
15.
Peggy R. Biga Jacob M. Froehlich Kendra J. Greenlee Nicholas J. Galt Ben M. Meyer Delci J. Christensen 《The Journal of nutritional biochemistry》2013,24(8):1462-1468
Gelatinases play a role in adipose and muscle hypertrophy and could be involved in tissue remodeling in response to high-fat diet (HFD) intake. This study tested potential roles of gelatinases (matrix metalloproteinses-2 and ?9 [MMP-2 and -9]) in relationship to an antigrowth factor [myostatin (MSTN)] known to be dysregulated in relation to HFD-induced obesity (HFDIO) propensity. In vitro and ex vivo analyses demonstrated that MMP-9 increased mature MSTN levels, indicating a potential role of gelatinases in MSTN activation in vivo. HFD intake resulted in increased body weight and circulating blood glucose values in C57BL/6J and MMP-9 null mice, with no changes observed in SWR/J mice. HFD intake attenuated MMP-9 and MMP-2 mRNA levels in SWR/J mice while elevating MMP-2 levels in skeletal muscle in C57BL/6J mice. In MMP-9 null mice, the effects of HFD intake were muted. Consistent with changes in mRNA levels, HFD intake increased MMP-9 activity in muscle tissue of C57BL/6J mice, demonstrating a strong relationship between HFDIO susceptibility and local MMP regulation. Overall, resistance to HFDIO appears to correspond to low MMP-9 and MSTN levels, suggesting a role of MMP-9 in MSTN activation in local tissue responses to HFD intake. 相似文献
16.
Cantó C Houtkooper RH Pirinen E Youn DY Oosterveer MH Cen Y Fernandez-Marcos PJ Yamamoto H Andreux PA Cettour-Rose P Gademann K Rinsch C Schoonjans K Sauve AA Auwerx J 《Cell metabolism》2012,15(6):838-847
As NAD(+) is a rate-limiting cosubstrate for the sirtuin enzymes, its modulation is emerging as a valuable tool to regulate sirtuin function and, consequently, oxidative metabolism. In line with this premise, decreased activity of PARP-1 or CD38-both NAD(+) consumers-increases NAD(+) bioavailability, resulting in SIRT1 activation and protection against metabolic disease. Here we evaluated whether similar effects could be achieved by increasing the supply of nicotinamide riboside (NR), a recently described natural NAD(+) precursor with the ability to increase NAD(+) levels, Sir2-dependent gene silencing, and replicative life span in yeast. We show that NR supplementation in mammalian cells and mouse tissues increases NAD(+) levels and activates SIRT1 and SIRT3, culminating in enhanced oxidative metabolism and protection against high-fat diet-induced metabolic abnormalities. Consequently, our results indicate that the natural vitamin NR could be used as a nutritional supplement to ameliorate metabolic and age-related disorders characterized by defective mitochondrial function. 相似文献
17.
Effect of diet-induced obesity and metabolic syndrome on skeletal muscles of Ossabaw miniature swine
Clark BA Alloosh M Wenzel JW Sturek M Kostrominova TY 《American journal of physiology. Endocrinology and metabolism》2011,300(5):E848-E857
Ossabaw swine fed excess kilocalorie diet develop metabolic syndrome (MS) characterized by obesity, hypertension, insulin resistance, and glucose intolerance with/without dyslipidemia. The purpose of this study was to test the hypothesis that MS would have a detrimental effect on skeletal muscle structure and cause changes in the expression of myosin heavy chains (MHCs). Adult male Ossabaw swine were fed for 24 wk high-fructose or high-fat/cholesterol/fructose diets to induce normolipidemic MS (MetS) or dyslipidemic MS (DMetS), respectively, and were compared with the lean swine on control diet. MetS swine showed mild MS, lacking increases in total and low density lipoprotein (LDL) cholesterol, both of which were highly upregulated in DMetS swine. There was an ~1.2-fold increase in the cross-sectional areas of muscle fibers in MetS and DMetS groups compared with control for biceps femoris and plantaris muscles. In plantaris muscles, DMetS diet caused an ~2-fold decrease in slow MHC mRNA and protein expression and an ~1.2- to 1.8-fold increase in the number of intramyocellular lipid (IMCL) droplets without large changes in the size of the droplets. There was a trend to the decrease in slow MHC expression in muscles of swine on MetS diet. The number of IMCL droplets in muscle fibers of the MetS group was comparable to controls. These data correlate well with the data on total plasma cholesterol (control = 60, MetS = 70, and DMetS = 298 mg/dl) and LDL (control = 29, MetS = 30, and DMetS = 232 mg/dl). We conclude that structural changes observed in skeletal muscle of obese Ossabaw swine correlate with those previously reported for obese humans. 相似文献
18.
Joya E. Nahon Menno Hoekstra Vanessa van Harmelen Patrick C.N. Rensen Ko Willems van Dijk Sander Kooijman Miranda Van Eck 《生物化学与生物物理学报:疾病的分子基础》2019,1865(2):494-501
Objective
Proteoglycan 4 (Prg4) has emerged from human association studies as a possible factor contributing to weight gain, dyslipidemia and insulin resistance. In the current study, we investigated the causal role of Prg4 in controlling lipid and glucose metabolism in mice.Methods
Prg4 knockout (KO) mice and wild-type (WT) littermates were challenged with an obesogenic high-fat diet (45% of total calories as fat) for 16?weeks. To further stimulate the development of metabolic alterations, 10% fructose water was provided starting from week 13.Results
Prg4 deficiency only tended to reduce diet-induced body weight gain, but significantly improved glucose handling (AUC: ?29%; p?<?0.05), which was also reflected by a tendency towards a reduced HOMA-IR score (?49%; p?=?0.06 as compared to WT mice). This coincided with lower hepatic expression of glycolysis (Gck: ?30%; p?<?0.05) and lipogenesis (Acc: ?21%; p?<?0.05 and Scd1: ?38%; p?<?0.001) genes, which translated in significantly lower hepatic triglyceride levels (?56%; p?<?0.001) in Prg4 KO mice as compared to WT mice. Prg4 KO mice likely had lower glucose utilization by skeletal muscle as compared to WT mice, judged by a significant reduction in the genes Glut4 (?29%; p?<?0.01), Pfkm (?21%; p?<?0.05) and Hk2 (?39%; p?<?0.001). Moreover, Prg4 KO mice showed a favorable white adipose tissue phenotype with lower uptake of triglyceride-derived fatty acids (?46%; p?<?0.05) and lower gene expression of inflammatory markers Cd68, Mcp1 and Tnfα (?65%, ?81% and ?63%, respectively; p?<?0.01) than WT mice.Conclusion
Prg4 KO mice are protected from high-fat diet-induced glucose intolerance and fatty liver disease. 相似文献19.
Obesity is associated with chronic inflammation and elevated levels of IL-6. The role of IL-6 in induction of acute-phase proteins and modulation of hematological responses has been demonstrated in models of inflammation and aging, but not in obesity. We hypothesized that IL-6 is necessary to regulate the acute-phase response and hematological changes associated with diet-induced obesity (DIO) in mice. Feeding a 60%kcal/fat diet for 13 weeks to C57BL6 WT male mice induced a significant increase in IL-6 expression in visceral adipose tissue (VAT), but not liver, compared to mice fed chow diet. Significantly elevated IL-6 levels were present in the peritoneal lavage fluid, but not plasma, of DIO compared to lean mice. A comparable degree of obesity, hepatomegaly, hyperleptinemia, VAT inflammation and insulin resistance was observed in DIO WT and IL-6 KO mice compared to WT and KO mice fed chow diet. Significant leukocytosis was observed in DIO WT but not DIO KO mice compared to lean groups. A significant reduction in platelet counts, without alterations in platelet size, percentage of circulating reticulated platelets and number of bone marrow megakaryocytes, was present in DIO KO mice compared to each other group. Hepatic expression of thrombopoietin was comparable in each group, with DIO WT and KO mice having reduced VAT expression compared to lean mice. Lean KO mice had significantly elevated plasma levels of thrombopoietin compared to each other group, whereas liver-associated thrombopoietin levels were comparable in each group. Deficiency of IL-6 resulted in blunted hepatic induction of the acute-phase protein serum amyloid A-1, whereas expression of hepcidin-1 and -2, LPS-binding protein, ceruloplasmin, plasminogen activator inhibitor-1 and thrombospondin-1 was IL-6-independent. In conclusion, in the absence of overt metabolic alterations, IL-6 modulates leukocytosis, thrombopoiesis and induction of SAA-1, but not other acute-phase proteins in obese mice. 相似文献
20.
Taylor Banh David W. Nelson Yu Gao Ting-Ni Huang Mei-I Yen Chi-Liang E. Yen 《Journal of lipid research》2015,56(2):379-389
Acyl-CoA:monoacylglycerol acyltransferase (MGAT) 2 catalyzes triacylglycerol (TAG) synthesis, required in intestinal fat absorption. We previously demonstrated that mice without a functional MGAT2-coding gene (Mogat2−/−) exhibit increased energy expenditure and resistance to obesity induced by excess calories. One critical question raised is whether lacking MGAT2 during early development is required for the metabolic phenotypes in adult mice. In this study, we found that Mogat2−/− pups grew slower than wild-type littermates during the suckling period. To determine whether inactivating MGAT2 in adult mice is sufficient to confer resistance to diet-induced obesity, we generated mice with an inducible Mogat2-inactivating mutation. Mice with adult-onset MGAT2 deficiency (Mogat2AKO) exhibited a transient decrease in food intake like Mogat2−/− mice when fed a high-fat diet and a moderate increase in energy expenditure after acclimatization. They gained less weight than littermate controls, but the difference was smaller than that between wild-type and Mogat2−/− mice. The moderate reduction in weight gain was associated with reduced hepatic TAG and improved glucose tolerance. Similar protective effects were also observed in mice that had gained weight on a high-fat diet before inactivating MGAT2. These findings suggest that adult-onset MGAT2 deficiency mitigates metabolic disorders induced by high-fat feeding and that MGAT2 modulates early postnatal nutrition and may program metabolism later in life. 相似文献