首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Nitric oxide (NO) has been implicated, both and paradoxically, as a pro- and anti-inflammatory agent in a wide range of circumstances. It is of common concern that NO can be either up- or downregulated by different inflammatory cytokines. Attempting to assess the contribution of NO to the granulomatous response, we used the in vitro granuloma (IVG) model which consists on a reaction of mononuclear cells around polyacrylamide beads conjugated to antigens. Our assays employed Schistosoma mansoni antigens and human peripheral blood mononuclear cells (PBMC) from schistosomiasis patients. Recently, we have described evidence for a regulatory role of NO, with the aid of an inhibitor of NO synthesis, L-NAME. The addition of L-NAME to IVG cultures elicited an increase on the granuloma formation index. Based on these data we decided to investigate the mechanisms involved in the effects of L-NAME-enhanced granuloma formation. Cytokines and chemokines are involved in inflammatory responses by, particularly the latter, inducing migration and adhesion of leukocytes, which led us on this search for their interactions with NO on granulomatous reaction. We evaluated the cytokine/chemokine-secreting profile of PBMC (treated and not treated with L-NAME) on the IVG reaction in order to investigate how NO could interfere on the release of these soluble mediators. Comparison of cell culture releasing amounts of IL-2, IL-10, TNFalpha, IFNgamma, MIP-1alpha, MCP-1, and RANTES demonstrated that MIP-1alpha had increased levels when NO production was blocked with L-NAME, whereas IL-10 secretion decreased in presence of L-NAME. The other tested cytokines (IL-2, TNFalpha, and IFNgamma) and chemokines (MCP-1 and RANTES) showed no significant differences between the presence or absence of L-NAME. Results obtained in this work suggest that inhibition of NO production could upregulate the IVG reaction on human schistosomiasis through changes in the cytokine/chemokine profile released by PBMC. The mechanisms involved may lead to a MIP-1alpha-increased and IL-10-decreased secretion under our experimental conditions, which could partly account for the previously ascribed IVG-exacerbating action of NO inhibition.  相似文献   

2.
Prostaglandin E2 (PGE2) is the major cyclooxygenase metabolite in macrophages with complex proinflammatory and immunoregulatory properties. In the present study, we have compared the modulatory role of PGE2/cAMP-dependent signaling on induced nitric oxide (NO) production in two murine macrophages, J774 and RAW 264.7. With no effect on NO release by itself, PGE2 co-addition with lipopolysaccharide (LPS) resulted in a concentration-dependent enhancement in NO release and inducible NO synthase induction in J774, but not in RAW 264.7, macrophages. The potentiation effect of PGE2 in J774 cells was still seen when applied within 9 h after LPS treatment. Whereas RAW 264.7 macrophages release PGE2 with greater extent than J774 macrophages in response to LPS, indomethacin and NS-398, upon abolishing LPS-induced PGE2 release, caused a more obvious inhibition of NO release from J774 than RAW 264.7 cells. Thus, we suggest a higher positive modulatory role of PGE2--either endogenous or exogenous--on NO formation in J774 cells. Supporting these findings, exogenous PGE2 triggers cAMP formation in J774 cells with higher potency and efficacy. Of interest, dBcAMP also elicits higher sensitivity in potentiating NO release in J774 cells. We conclude that the opposite effect of PGE2/cAMP signaling on macrophage NO induction depends on its signaling efficacy and might be associated with the difference in endogenous PGE2 levels.  相似文献   

3.
Hyperhomocysteinemia is a risk factor for cardiovascular diseases that induces endothelial dysfunction. Here, we examine the participation of endothelial NO synthase (eNOS) in the homocysteine-induced alterations of NO/O(2)(-) balance in endothelial cells from human umbilical cord vein. When cells were treated for 24 h, homocysteine dose-dependently inhibited thrombin-activated NO release without altering eNOS phosphorylation and independently of the endogenous NOS inhibitor, asymmetric dimethylarginine. The inhibitory effect of homocysteine on NO release was associated with increased production of reactive nitrogen and oxygen species (RNS/ROS) independent of extracellular superoxide anion (O(2)(-)) and was suppressed by the NOS inhibitor L-NAME. In unstimulated cells, L-NAME markedly decreased RNS/ROS formation and the ethidium red fluorescence induced by homocysteine. This eNOS-dependent O(2)(-) synthesis was associated with reduced intracellular levels of both total biopterins (-45%) and tetrahydrobiopterin (-80%) and increased release of 7,8-dihydrobiopterin and biopterin in the extracellular medium (+40%). In addition, homocysteine suppressed the activating effect of sepiapterin on NO release, but not that of ascorbate. The results show that the oxidative stress and inhibition of NO release induced by homocysteine depend on eNOS uncoupling due to reduction of intracellular tetrahydrobiopterin availability.  相似文献   

4.
Parathyroid hormone (PTH) and mechanical stress both stimulate bone formation but have opposite effects on bone resorption. PTH increased loading-induced bone formation in a rat model, suggesting that there is an interaction of these stimuli, possibly at the cellular level. To investigate whether PTH can modulate mechanotransduction by bone cells, we examined the effect of 10-9 M human PTH-(1-34) on fluid flow-induced prostaglandin E2 (PGE2) and nitric oxide (NO) production by primary mouse osteoblastic cells in vitro. Mechanical stress applied by means of a pulsating fluid flow (PFF; 0.6 +/- 0.3 Pa at 5 Hz) stimulated both NO and PGE2 production twofold. In the absence of stress, PTH also caused a twofold increase in PGE2 production, but NO release was not affected and remained low. Simultaneous application of PFF and PTH nullified the stimulating effect of PFF on NO production, whereas PGE2 production was again stimulated only twofold. Treatment with PTH alone reduced NO synthase (NOS) enzyme activity to undetectable levels. We speculate that PTH prevents stress-induced NO production via the inhibition of NOS, which will also inhibit the NO-mediated upregulation of PGE2 by stress, leaving only the NO-independent PGE2 upregulation by PTH. These results suggest that mechanical loading and PTH interact at the level of mechanotransduction.  相似文献   

5.
Tetracyclines (doxycycline and minocycline) augmented (one- to twofold) the PGE2 production in human osteoarthritis-affected cartilage (in the presence or absence of cytokines and endotoxin) in ex vivo conditions. Similarly, bovine chondrocytes stimulated with LPS showed (one- to fivefold) an increase in PGE2 accumulation in the presence of doxycycline. This effect was observed at drug concentrations that did not affect nitric oxide (NO) production. In murine macrophages (RAW 264.7) stimulated with LPS, tetracyclines inhibited NO release and increased PGE2 production. Tetracycline(s) and L-N-monomethylarginine (L-NMMA) (NO synthase inhibitor) showed an additive effect on inhibition of NO and PGE2 accumulation, thereby uncoupling the effects of tetracyclines on NO and PGE2 production. The enhancement of PGE2 production in RAW 264.7 cells by tetracyclines was accompanied by the accumulation of both cyclooxygenase (COX)-2 mRNA and cytosolic COX-2 protein. In contrast to tetracyclines, L-NMMA at low concentrations (< or = 100 microM) inhibited the spontaneous release of No in osteoarthritis-affected explants and LPS-stimulated macrophages but had no significant effect on the PGE2 production. At higher concentrations, L-NMMA (500 microM) inhibited NO release but augmented PGE2 production. This study indicates a novel mechanism of action of tetracyclines to augment the expression of COX-2 and PGE2 production, an effect that is independent of endogenous concentration of NO.  相似文献   

6.
Humic acid (HA) has been implicated as an etiological factor in the peripheral vasculopathy of blackfoot disease (BFD). In this study, we examined the effects of HA upon the generation of nitric oxide (NO) during the process of lethal cell injury in cultured human umbilical vein endothelial cells (HUVECs). NO production was measured by the formation of nitrite (NO(2)(-)), the stable end-metabolite of NO. Cell death was assessed by measuring the release of intracellular lactate dehydrogenase (LDH). Treatment HUVECs with HA at a concentration of 50, 100, and 200 microg/ml concentration-dependently increased nitrite levels, reaching a peak at 12 h subsequent to HA treatment, with a maximal response of approximately 400 pmole nitrite (from 1 x 10(4) cells). HA-induced nitrite formation was blocked completely by N(G)-nitro-L-arginine methyl ester (L-NAME) and also by N(G)-methyl-L-arginine (L-NMA), both being specific inhibitors of NO synthase. The LDH released from endothelial cells was evoked at from 24 h after the addition of HA (50, 100, 200 microg/ml) in a concentration- and time-dependent manner. The HA-induced LDH release was also reduced by the presence of both L-NAME and L-NMA. The addition of Ca(2+) chelator (BAPTA) inhibited both nitrite formation and LDH release by HA. Moreover, the antioxidants (superoxide dismutase, vitamin C, vitamin E) and protein kinase inhibitor (H7) effectively suppressed HA-induced nitrite formation. These results suggest that HA treatment of endothelial cells stimulates NO production, which can elicit cell injury via the stimulation of Ca(2+)-dependent NO synthase activity by increasing cytosolic Ca(2+) levels. Because the destruction of endothelial cells has been implicated in triggering the onset of BFD, the induction of excessive levels of NO and consequent endothelial-cell injury may be important to the etiology of HA-induced vascular disorders associated with BFD for humans.  相似文献   

7.
The influence of T cells on the production of prostaglandins (PGE2) and on PGE2-mediated regulation of natural killer (NK) activity was studied. Supernatants from peripheral blood mononuclear cells (PBMC) and from PBMC depleted of T cells ((PBMC)-T), both of which had been incubated in plastic petri dishes overnight, contained similar amounts of PGE2, as detected by radioimmunoassay and by their potential to inhibit NK activity of peripheral blood mononuclear cells in a 51Cr release assay with K 562 cells as the target population. However, the NK activity of PBMC was inhibited significantly more strongly (P less than 0.005) by PGE2-containing supernatants than was the NK activity of (PBMC)-T. In further assays, in which synthetic PGE2 in concentrations of 10(-4) and 10(-5)M was added, a significant inhibition of NK activity was observed in PBMC populations (P less than 0.05), but not in (PBMC)-T. Thus, T cells did not seem to be involved in the control of PGE2 production, but their presence was necessary for PGE2-mediated inhibition of NK activity.  相似文献   

8.
Essential fatty acids, from which PG derive, can participate in development and regulation of immune responses and have been shown to suppress inflammation and tissue injury in animal models. In this report, we investigate the effects of the immediate (DGLA, precursor to PGE1), arachidonic acid (AA, PGE precursors, dihomogamma linolenic acid (DGLA, precursor to PGE1), arachidonic acid (AA, precursor to PGE2), and eicosapentaenoic acid (EPA, precursor to PGE3) on IL-2 production by PHA-stimulated human PBMC. DGLA and AA inhibited IL-2 production in a dose-dependent manner: half-maximal inhibition was obtained by using the fatty acids at the dose of 10 micrograms/ml without significant effects on cell viability. EPA inhibited IL-2 production by PBMC of only some donors. Incubation of cells in the presence of oleic, stearic, and palmitic acids, which are not PG precursors, did not affect mitogen-induced IL-2 production. A progressive increase in incorporation of DGLA into cellular lipids was observed over a 48-h incubation period. IL-2 production was reduced also when PBMC were pretreated overnight with DGLA or AA and washed before exposure to PHA. Whereas addition of the cyclo-oxygenase inhibitor, indomethacin, at the time of mitogenic stimulation led to increased IL-2 production and prevented mitogen- and fatty acid-induced increases in PGE release, it had no significant effect on the capacity of the fatty acids to suppress IL-2 production. Time course experiments showed that DGLA and AA inhibited IL-2 production even at times of minimal or no PGE release by the treated cultures. Moreover, DGLA and AA inhibited IL-2 production by the human leukemia T cell line Jurkat which, when appropriately induced, is able to release high levels of IL-2 in the absence of accessory cells and measurable PGE production. Taken together, these data indicate that essential fatty acids inhibit IL-2 production directly without conversion into their cyclo-oxygenase pathway products, and suggest that human lymphocyte function may be altered profoundly by small changes in their fatty acid profile.  相似文献   

9.
10.
Our previous studies demonstrated that magnolol protects neurons against chemical hypoxia by KCN in cortical neuron-astrocyte mixed cultures (14). In the present study, we examined whether the neuroprotective effect of magnolol involve modulating inflammatory mediators, prostaglandin E2 (PGE2) and nitric oxide (NO), induced by KCN (hypoxia) or KCN plus lipopolysaccharide (LPS). In glucose-absent (hypoglycemia) media, KCN or KCN plus LPS induced increases in lactate dehydrogenase (LDH) activity by 32% and 34%, and PGE2 production by 12% and 32%, respectively. Both LDH and PGE2 increases were suppressed by 100 microM magnolol. In addition, although KCN or LPS alone did not increase NO generation, KCN plus LPS increased NO generation. This increase was reduced by 100 microM magnolol or 10 microM L-NAME, but the LDH increase and PGE2 production were not reduced by L-NAME. These findings suggest that the protective effects of magnolol against brain damage by KCN or KCN plus LPS in hypoglycemic media may involve inhibition of PGE2 production, but inhibition of NO generation may not be important.  相似文献   

11.
Preplating human adherent peripheral blood mononuclear cells (PBMC) for up to 24 hr results in a progressive decrease in their basal PGE release, and in the loss of their ability to increase PGE release during a subsequent 72-hr coculture period with allogeneic human thyroid cells. Phytohemagglutinin (PHA) present during a 24-hr adherent-cell preplating period prevents, in part, the loss of this PGE response to thyroid cells. These data indicate that adherent cells require continual stimulation by the thyroid cells or by PHA in order to maintain their ability to increase PGE secretion in response to thyroid cells.  相似文献   

12.
BACKGROUND: Our previous results showed that nitric oxide (NO) and bradykinin (BK) mediate the arthritis induced by Bothrops jararaca venom (BjV) in rabbits. In this study, we investigated the contribution of each receptor of BK as well as the inter-relationship between NO and eicosanoids in BjV-induced arthritis. METHODS: The arthritis was induced in rabbits with 16 microg of BjV injected intra-articularly. Prostaglandin E2 (PGE2), thromboxane B2 (TxB2), leukotriene B4 (LTB4) (radioimmunoassay) and nitrite/nitrate concentrations (NO2/NO3) (Griess reaction) were evaluated in the synovial fluid 4 h later. The animals were prior treated with NO synthase inhibitor (L-NAME; 20 mg/kg/day for 14 days), the B2 antagonist of BK (HOE-140) and the B1 antagonist of BK (des-Arg9[Leu8]-bradykinin), both at a dose of 0.3mg/kg, 30 min prior to the venom injection. RESULTS: Data show that L-NAME and HOE-140 treatment were equally able to reduce PGE2 and NO2/NO3 levels without interfering with TxB2 and LTB4 production. On the contrary, the B1 antagonist of BK inhibited TxB2 and LTB4 production, and did not alter PGE2 and NO metabolites levels in the inflamed joint. DISCUSSIONS: The results presented clarify the contribution of the kinin system, mainly through the B2 receptor, to the local inflammatory response induced by BjV, as well as its positive interaction with PGE2 and NO production.  相似文献   

13.
1,25-Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) and prostaglandin E(2) (PGE(2)) are known to influence osteoclast formation indirectly through their effects on osteoblasts. To determine whether 1, 25(OH)(2)D(3) and PGE(2) also have a direct effect on circulating osteoclast precursors, these factors were added to long-term cultures of human peripheral blood mononuclear cells (PBMCs) in the presence of osteoprotegerin ligand and macrophage colony-stimulating factor (M-CSF) (+/-dexamethasone). The number of TRAP(+) and VNR(+) multinucleated cells and the area of lacunar resorption were decreased when 1,25(OH)(2)D(3) alone was added. A marked increase in resorption pit formation was noted when the combination of 1, 25(OH)(2)D(3) and dexamethasone was added to PBMC cultures. Dose-dependent inhibition of osteoclast formation and lacunar resorption was seen when PGE(2) was added to PBMC cultures in both the presence and the absence of dexamethasone. Thus, 1,25(OH)(2)D(3) and PGE(2) not only influence osteoclast formation in the presence of bone stromal cells but also act directly on circulating osteoclast precursors to influence osteoclast differentiation.  相似文献   

14.
The present studies were designed to investigate the sites of PGE(2), prostacyclin and leptin formation in human adipose tissue. Most of the PGE(2) and prostacyclin formation by adipose tissue explants from obese humans after 48 h in primary culture was due to blood vessels and other tissues not digested by collagenase. However, there was appreciable PGE(2) formation by adipocytes over a 48 h incubation and leptin formation was only seen in adipocytes. An increase in COX-2 immunoreactive protein was also seen after incubation of isolated human adipocytes for 48 h. The release of PGE(2) by adipocytes incubated for 48 h was about 4% that by intact adipose tissue explants while the release of prostacyclin was about 1.5% that by tissue. However, in a different experimental design where PGE(2) formation was measured over 2 h in the presence of 20 microM arachidonic acid the formation of PGE(2) by adipocytes after 48 h prior incubation in primary culture was 38% of that by tissue explants. Dexamethasone enhanced leptin release by adipocytes while inhibiting PGE(2) release and COX-2 up-regulation. The mechanisms involved in up-regulation of COX-2 activity during primary culture of adipocytes and the inhibition of this by dexamethasone do not appear to involve p38 MAPK or p42-44 MAPK. Interleukin I(beta) further enhanced PGE(2) formation by adipocytes but did not affect leptin formation. In conclusion, these data indicate that leptin release is exclusively a function of adipocytes while prostanoids are made by both adipocytes and the other cells present in human adipose tissue  相似文献   

15.
Concerning schistosomiasis, little is known about the intracellular signaling response of human peripheral blood mononuclear cells (PBMC) to Schistosoma mansoni antigens. To understand the critical role of protein tyrosine kinases (PTKs) in PBMC activation by S. mansoni antigens, we investigated how inhibition of PTKs by genistein, a tyrosine kinase inhibitor, affects proliferation, cytokine production and activation of mitogen-activated protein kinases (MAPKs). Our studies showed that PTKs have an important role in proliferation of PBMC from chronic schistosomiasis patients as cells stimulated with S. mansoni soluble antigens in the presence of genistein had an impaired proliferation. In contrast, PTK inhibition failed to cause any effect on MAPKs activity. We also evaluated the cytokine production for interleukin (IL)-2, interferon gamma (IFN-gamma), and IL-10 in culture supernatants of PBMC treated with or without PTKs inhibitor. Our results show that PBMC from chronic patients produced a high amount of IL-10 when stimulated with soluble egg antigen preparation (SEA), however, the amount produced of IL-2 and IFN-gamma was not significant. In the presence of PTKs inhibitor only the production of IL-10 was decreased. The findings suggest that PTKs are involved on signal transduction pathway for PBMC activation, but may not be an absolute requirement for all signaling responses to S. mansoni antigens.  相似文献   

16.
Several natural flavonoids have been demonstrated to perform some beneficial biological activities, however, higher-effective concentrations and poor-absorptive efficacy in body of flavonoids blocked their practical applications. In the present study, we provided evidences to demonstrate that flavonoids rutin, quercetin, and its acetylated product quercetin pentaacetate were able to be used with nitric oxide synthase (NOS) inhibitors (N-nitro-L-arginine (NLA) or N-nitro-L-arginine methyl ester (L-NAME)) in treatment of lipopolysaccharide (LPS) induced nitric oxide (NO) and prostaglandin E2 (PGE2) productions, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) gene expressions in a mouse macrophage cell line (RAW 264.7). The results showed that rutin, quercetin, and quercetin pentaacetate-inhibited LPS-induced NO production in a concentration-dependent manner without obvious cytotoxic effect on cells by MTT assay using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide as an indicator. Decrease of NO production by flavonoids was consistent with the inhibition on LPS-induced iNOS gene expression by western blotting. However, these compounds were unable to block iNOS enzyme activity by direct and indirect measurement on iNOS enzyme activity. Quercetin pentaacetate showed the obvious inhibition on LPS-induced PGE2 production and COX-2 gene expression and the inhibition was not result of suppression on COX-2 enzyme activity. Previous study demonstrated that decrease of NO production by L-arginine analogs effectively stimulated LPS-induced iNOS gene expression, and proposed that stimulatory effects on iNOS protein by NOS inhibitors might be harmful in treating sepsis. In this study, NLA or L-NAME treatment stimulated significantly on LPS-induced iNOS (but not COX-2) protein in RAW 264.7 cells which was inhibited by these three compounds. Quercetin pentaacetate, but not quercetin and rutin, showed the strong inhibitory activity on PGE2 production and COX-2 protein expression in NLA/LPS or L-NAME/LPS co-treated RAW 264.7 cells. These results indicated that combinatorial treatment of L-arginine analogs and flavonoid derivates, such as quercetin pentaacetate, effectively inhibited LPS-induced NO and PGE2 productions, at the same time, inhibited enhanced expressions of iNOS and COX-2 genes.  相似文献   

17.
We studied the effect of peroxisome proliferator-activated receptor gamma (PPARgamma) activation on thromboxane A(2)(TXA(2)) and prostaglandin E(2)(PGE(2)) production in monocyte/macrophage cell lines. In present experiment, we used human peripheral blood monocyte (PBMC), monocyte-cell line THP-1 and mouse macrophage-like cell line RAW264.7. The expression of PPARgamma is reported in PBMC and THP-1. Synthetic PPARgamma ligands (troglitazone or BRL49653) inhibited TXA(2) production and enhanced PGE(2) production of PBMC and THP-1. When treated with 0.5-10 microM of troglitazone, there were no significant changes of TXA(2) and PGE(2) production of RAW264.7 cells, which express very low levels of PPARgamma. When RAW264.7 cells was transfected with PPARgamma expression plasmid and treated with troglitazone, PPARgamma was activated in a dose-dependent manner. In PPARgamma-transfected RAW264.7, TXA(2) production was decreased and PGE(2) production was increased by troglitazone treatment. But it needs high concentration of troglitazone (10 microM) for increasing PGE(2) production. These results suggest that PPARgamma may have negative effect on TXA(2) production, and also have slightly positive effect on PGE(2) production of macrophage.  相似文献   

18.
In the present study, we examined the effects of L-nitroarginine methylester (L-NAME), a non-selective nitric oxide synthase (NOS) inhibitor, indomethacin (IND), a non-selective COX inhibitor and a combination of these agents (L-NAME+IND) on carrageenan-induced pleurisy in rats. Exudate volume, albumin leakage, leukocyte influx, exudate and plasma nitrite/nitrate (NO(x)) levels and exudate PGE(2) levels increased markedly 6 h after an intrapleural injection of 2% carrageenan. First, the effects of L-NAME and IND alone were investigated. L-NAME non-significantly reduced exudate volume by 26% at 10 mg/kg (i.p.), and significantly by 45% at 30 mg/kg. IND dose-dependently decreased the exudate volume at 0.3-10 mg/kg (p.o.) and the effect reached the maximal level at 1 mg/kg (33%). Second, the effects of L-NAME (10 mg/kg, i.p.), IND (1 mg/kg, p.o.) and L-NAME+IND were examined. L-NAME and IND alone at the dose employed significantly reduced the exudate volume and albumin levels by 21-26%. L-NAME but not IND tended to reduce the increased exudate and plasma NO(x) by 18% and 19%, respectively. IND but not L-NAME significantly reduced leukocyte numbers and PGE(2) levels in the exudates by 25% and 77%, respectively. L-NAME+IND significantly reduced exudate volume, albumin leakage, leukocyte number, PGE(2) and NO(x) by 43%, 41%, 31%, 80% and 37%, respectively. The inhibitory effects of L-NAME+IND on exudate volume, albumin leakage and NO(x) levels were greater than those of L-NAME and IND alone. In conclusion, a non-selective NOS inhibitor and COX inhibitor showed anti-inflammatory effects at the early phase of carrageenan-induced pleurisy, and a combination of both inhibitors had a greater effect than each alone probably via the potentiation of NOS inhibition. The simultaneous inhibition of NOS and COX could be a useful approach in therapy for acute inflammation.  相似文献   

19.
Induction of heme oxygenase (HO)-1 during inflammation has been demonstrated in many cell types, but the contribution of inflammatory molecules nitric oxide (NO) and prostaglandin E(2) (PGE(2)) has remained unresolved. Here we show that NO donors including sodium nitroprusside (SNP) and spermine nonoate (SP-NO), and PGE(2) significantly stimulate HO-1 expression in RAW264.7 macrophages, associated with alternative induction on NO and PGE(2) in medium, respectively. NO donors also show the inductive effect on cyclo-oxygenase 2 protein and PGE(2) production. In the presence of lipopolysaccharide and interferon-gamma (LPS/IFN-gamma), HO-1 protein was induced slightly but significantly, and SNP, SP-NO, and PGE(2) enhanced HO-1 protein induced by LPS/IFN-gamma. L-Arginine analogs N-nitro-L-arginine methyl ester (L-NAME) and N-nitro-L-arginine (NLA) significantly block HO-1 protein induced by LPS/IFN-gamma associated with a decrease in NO (not PGE(2)) production. And, NSAIDs aspirin and diclofenase dose dependently inhibited LPS/IFN-gamma-induced HO-1 protein accompanied by suppression of PGE(2) (not NO) production. PD98059 (a specific inhibitor of MEKK), but not SB203580 (a specific inhibitor of p38 kinase), attenuated PGE(2) (not SP-NO) induced HO-1 protein. Under UVC (100 J/m(2)) and UVB (50 J/m(2)) irradiation, PGE(2) or SP-NO treatment prevents cells from UVC or UVB-induced cell death, and HO-1 inhibitor tin protoporphyrin (SnPP) reverses the preventive effects of PGE(2) and SP-NO. The protective activity induced by PGE(2) on UVC or UVB irradiation-induced cell death was blocked by MAPK inhibitor PD98059 (not SB203580). These results demonstrated that inflammatory molecules NO and PGE(2) were potent inducers of HO-1 gene, and protected cells from UV-irradiation-induced cell death through HO-1 induction.  相似文献   

20.
An enhanced linkage-specific 9-O-acetylated sialic acid (9-O-AcSA) on peripheral blood mononuclear cells (PBMC) of children with acute lymphoblastic leukaemia, ALL (PBMC(ALL), 9-O-AcSA+ cells) was demonstrated by using a lectin, Achatinin-H, whose lectinogenic epitope was 9-O-AcSAalpha2-6GalNAc. Our aim was to evaluate the in vitro contributory role of this glycotope (9-O-AcSAalpha2-6GalNAc) towards the survival of these 9-O-AcSA+ cells in ALL patients. For direct comparison, 9-O-AcSA- cells were generated by removing O-acetyl group of 9-O-AcSA present on PBMC(ALL) using O-acetyl esterase. An elevated level of serum interferon gamma (IFN-gamma) in affected children led us to think that PBMC(ALL) are continuously exposed specifically to this cytokine. Accordingly, 9-O-AcSA+ and 9-O-AcSA- cells were exposed in vitro to IFN-gamma. A twofold increased NO release along with inducible NO synthase (iNOS) mRNA expression by the 9-O-AcSA+ cells was observed as compared to the 9-O-AcSA- cells. The decreased viability of IFN-gamma exposed 9-O-AcSA- cells as compared to 9-O-AcSA+ cells were reflected from a 5.0-fold increased caspase-3-like activity and a 10.0-fold increased apoptosis in the 9-O-AcSA- cells when production of NO was lowered by adding competitive inhibitor of iNOS in reaction mixture. Therefore, it may be envisaged that a link exists between induction of this glycotope and their role in regulating viability of PBMC(ALL). Taken together, it is reasonable to hypothesise that O-acetylation of sialic acids on PBMC(ALL) may be an additional mechanism that promotes the survival of lymphoblasts by avoiding apoptosis via IFN-gamma-induced NO production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号