首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have found that a brefeldin A (BFA)-resistant mutant cell line derived from Vero cells (BER-40) is highly resistant to ricin-induced apoptosis as compared with parental Vero cells. In BER-40 cells, all apoptotic events caused by ricin including cytolysis, nuclear morphological changes, and DNA fragmentation occur to a lesser extent than in Vero cells, even though both cell lines show similar sensitivities to ricin-mediated inhibition of protein synthesis. Furthermore, no significant apoptotic signaling events, such as increases in caspase-3 and -9-like activities, release of cytochrome c from mitochondria, or the cleavage of PARP, were observed in BER-40 cells under the conditions at which these changes were evident in Vero cells. Intracellular biochemical changes associated with ricin-induced apoptosis, such as the depletion of glutathione and an increase in free Zn2+, were also less apparent in BER-40 cells than in Vero cells. BER-40 cells were also found to be highly resistant to apoptosis induced by other toxins with different intoxication mechanisms such as diphtheria toxin, modeccin, and anisomycin. These results suggest that the entire apoptotic signal transduction mechanism in BER-40 cells, which may be triggered after the inhibition of protein synthesis by toxins, becomes resistant. Since MDCK cells, a naturally BFA resistant cell line, are highly sensitive to ricin-induced apoptosis, it seems likely that the BFA resistance phenotype may not necessarily lead to resistance to apoptotic cell death. Probably the underlaying BFA-resistance mechanism in BER-40 cells is distinct from that in MDCK cells, and the resistance to ricin-induced apoptosis of BER-40 cells may be a unique phenotype acquired concomitantly with BFA-resistance.  相似文献   

2.
An early event in the action of brefeldin A (BFA) is the dissociation of beta-coat protein (beta-COP) from the Golgi membrane. We have recently shown that staphylococcal ADP-ribosyltransferase (epidermal cell differentiation inhibitor (EDIN)), which specifically modifies a small G protein, rho, mimics the action of BFA and disassembles the Golgi apparatus in Vero cells (Sugai, M., Chen, C-h., and Wu, H. C. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 8903-8907). Three independent BFA-resistant cell lines (BER-40 from Vero cells, PtK1, and MDCK) showed cross-resistance to EDIN regarding the release of the beta-COP from the Golgi membrane by EDIN or BFA. BFA as well as EDIN induced disassembly of the actin microfilaments in Vero cells, and they both failed to induce the disassembly of actin microfilaments in BER-40, PtK1, and MDCK cells. BFA inhibited protein secretion in Vero cells but not in BFA-resistant cell lines, whereas EDIN did not inhibit protein secretion in either Vero or other cell lines. AlF-4 inhibited the effect of EDIN as well as that of BFA on the distribution of the beta-COP. These results suggest that an EDIN-sensitive rho protein together with trimeric and other small G protein(s) is involved in the regulation of the assembly of coated vesicles and vesicular transport in the Golgi apparatus.  相似文献   

3.
Brefeldin A (BFA) causes rapid redistribution of Golgi proteins into the ER, leaving no definable Golgi apparatus, and blocks transport of proteins into post-Golgi compartments in the cell. In this study we follow the disassembly of the Golgi apparatus in BFA-treated, living cells labeled with NBD-ceramide and demonstrate that forskolin can both inhibit and reverse this process. Long, tubular processes labeled with NBD-ceramide were observed emerging from Golgi elements and extending out to the cell periphery in cells treated with BFA for 5 min. With longer incubations in BFA, the NBD label was dispersed in a fine reticular pattern characteristic of the ER. Treatment with forskolin inhibited these effects of BFA as well as BFA's earliest morphologic effect on the Golgi apparatus: the redistribution to the cytosol of a 110-kD Golgi peripheral membrane protein. In addition, forskolin could reverse BFA's block in protein secretion. Forskolin inhibition of BFA's effects was dose dependent and reversible. High concentrations of BFA could overcome forskolin's inhibitory effect, suggesting forskolin and BFA interact in a competitive fashion. Remarkably, in cells already exposed to BFA, forskolin could reverse BFA's effects causing the 110-kD Golgi peripheral membrane protein to reassociate with Golgi membrane and juxtanuclear Golgi complexes to reassemble. Neither membrane permeant cAMP analogues nor cAMP phosphodiesterase inhibitors could replicate or enhance forskolin's inhibition of BFA. 1,9-Dideoxyforskolin, which does not activate adenylyl cyclase, was equally as effective as forskolin in antagonizing BFA. A derivative of forskolin, 7-HPP-forskolin, that is less potent than forskolin at binding to adenylyl cyclase, was also equally effective as forskolin in antagonizing BFA. In contrast a similar derivative, 6-HPP-forskolin, that is equipotent with forskolin at binding to adenylyl cyclase, did not inhibit BFA's effects. These results suggest that forskolin acts as a competitive antagonist to BFA, using a cAMP-independent mechanism to prevent and reverse the morphologic effects induced by BFA.  相似文献   

4.
Clofibrate-induced retrograde Golgi membrane movement was blocked or retarded when NRK cells were treated with sodium azide/2-deoxyglucose, nocodazole, taxol, and destruxin B, indicating that it depends on energy, and the dynamic state of microtubules, and being acidic or vacuolar-type ATPase function. PDMP and phospholipase A2 inhibitors also blocked it. These characteristics are similar to those of brefeldin A (BFA) and nordihydroguaiaretic acid (NDGA), inducers of retrograde Golgi membrane movement. However, clofibrate was distinguished from BFA in that BFA action was insensitive to phospholipase A2 inhibitors and from NDGA in that NDGA stabilized microtubules against nocodazole and its action was almost insensitive to taxol. The trans Golgi network (TGN) was resistant to clofibrate, while BFA and NDGA dispersed it. To our knowledge, clofibrate is the first drug to show such different effects on the Golgi and TGN and, therefore, is expected to be a useful tool to distinguish their architecture and/or membrane dynamics.  相似文献   

5.
Clofibrate-induced retrograde Golgi membrane movement was blocked or retarded when NRK cells were treated with sodium azide/2-deoxyglucose, nocodazole, taxol, and destruxin B, indicating that it depends on energy, and the dynamic state of microtubules, and being acidic or vacuolar-type ATPase function. PDMP and phospholipase A2 inhibitors also blocked it. These characteristics are similar to those of brefeldin A (BFA) and nordihydroguaiaretic acid (NDGA), inducers of retrograde Golgi membrane movement. However, clofibrate was distinguished from BFA in that BFA action was insensitive to phospholipase A2 inhibitors and from NDGA in that NDGA stabilized microtubules against nocodazole and its action was almost insensitive to taxol. The trans Golgi network (TGN) was resistant to clofibrate, while BFA and NDGA dispersed it. To our knowledge, clofibrate is the first drug to show such different effects on the Golgi and TGN and, therefore, is expected to be a useful tool to distinguish their architecture and/or membrane dynamics.  相似文献   

6.
The release of a 110-kD peripheral membrane protein from the Golgi apparatus is an early event in brefeldin A (BFA) action, preceding the movement of Golgi membrane into the ER. ATP depletion also causes the reversible redistribution of the 110-kD protein from Golgi membrane into the cytosol, although no Golgi disassembly occurs. To further define the effects of BFA on the association of the 110-kD protein with the Golgi apparatus we have used filter perforation techniques to produce semipermeable cells. All previously observed effects of BFA, including the rapid redistribution of the 110-kD protein and the movement of Golgi membrane into the ER, could be reproduced in the semipermeable cells. The role of guanine nucleotides in this process was investigated using the nonhydrolyzable analogue of GTP, GTP gamma S. Pretreatment of semipermeable cells with GTP gamma S prevented the BFA-induced redistribution of the 110-kD protein from the Golgi apparatus and movement of Golgi membrane into the ER. GTP gamma S could also abrogate the observed release of the 110-kD protein from Golgi membranes which occurred in response to ATP depletion. Additionally, when the 110-kD protein had first been dissociated from Golgi membranes by ATP depletion, GTP gamma S could restore Golgi membrane association of the 110-kD protein, but not if BFA was present. All of these effects observed with GTP gamma S in semipermeable cells could be reproduced in intact cells treated with AlF4-. These results suggest that guanine nucleotides regulate the dynamic association/dissociation of the 110-kD protein with the Golgi apparatus and that BFA perturbs this process by interfering with the association of the 110-kD protein with the Golgi apparatus.  相似文献   

7.
In the present study, we compared the abilities of ricin and diphtheria toxin to induce apoptosis in Vero cells. The cytolysis and DNA fragmentation by ricin paralleled its protein synthesis inhibitory activity. However, unlike ricin, diphtheria toxin could induce neither cytolysis nor DNA fragmentation in Vero cells up to very high concentration, in spite of the fact that Vero cells were even more sensitive to protein synthesis inhibition by diphtheria toxin than ricin. Interestingly, coexistence of brefeldin A (BFA) and okadaic acid (OA) significantly enhanced diphtheria toxin-mediated cytolysis and DNA fragmentation without affecting the activity of protein synthesis inhibition. Ammonium chloride almost completely abolished the ability of diphtheria toxin to induce apoptosis in the presence of BFA and OA as well as the protein synthesis inhibitory activity. The mutant CRM 197, which does not catalyze the ADP ribosylation of elongation factor-2 (EF-2), failed to induce apoptosis in Vero cells even in the presence of BFA and OA. Thus, translocation of diphtheria toxin into the cytosol and subsequent enzymatic inactivation of EF-2 may be necessary steps to induce apoptosis. Taken together our results suggest that protein synthesis inhibition by toxins is not sufficient to induce apoptosis, and underlying mechanisms of apoptosis induction may be distinct between ricin and diphtheria toxin. Since a morphological change in the Golgi complex was observed in Vero cells treated with BFA and OA, modulation of the Golgi complex by these reagents may be partly responsible for enhanced apoptosis induction by diphtheria toxin.  相似文献   

8.
《The Journal of cell biology》1990,111(6):2295-2306
Brefeldin A (BFA) has a profound effect on the structure of the Golgi apparatus, causing Golgi proteins to redistribute into the ER minutes after drug treatment. Here we describe the dissociation of a 110-kD cytoplasmically oriented peripheral membrane protein (Allan, V. J., and T. E. Kreis. 1986. J. Cell Biol. 103:2229-2239) from the Golgi apparatus as an early event in BFA action, preceding other morphologic changes. In contrast, other peripheral membrane proteins of the Golgi apparatus were not released but followed Golgi membrane into the ER during BFA treatment. The 110-kD protein remained widely dispersed throughout the cytoplasm during drug treatment, but upon removal of BFA it reassociated with membranes during reformation of the Golgi apparatus. Although a 30-s exposure to the drug was sufficient to cause the redistribution of the 110-kD protein, removal of the drug after this short exposure resulted in the reassociation of the 110-kD protein and no change in Golgi structure. If cells were exposed to BFA for 1 min or more, however, a portion of the Golgi membrane was committed to move into and out of the ER after removal of the drug. ATP depletion also caused the reversible release of the 110-kD protein, but without Golgi membrane redistribution into the ER. These findings suggest that the interaction between the 110-kD protein and the Golgi apparatus is dynamic and can be perturbed by metabolic changes or the drug BFA.  相似文献   

9.
22 CHOBFY (BFY) cell lines were isolated at a frequency 2-30 x 10(-7) from mutagenized populations on the basis of their ability to grow in the presence of 1 microgram/ml brefeldin A (BFA). Four of the five mutant lines tested are genetically stable and none of the mutant lines characterized degrade this drug. Immunofluorescence studies reveal that whereas early endosomes and the Golgi complex have nearly identical BFA sensitivities in the parent CHO line, the relative sensitivities of these two organelles were dramatically altered in all six mutant lines tested. Four cell lines maintain normal Golgi appearance at a BFA concentration as high as 10 micrograms/ml. Mutant lines show wide variation in the level of resistance to growth inhibition by BFA, but none of the mutant lines characterized grow above 2 micrograms/ml BFA. This specific growth inhibition is observed under conditions where Golgi morphology and function remain unaffected, suggesting that some factor(s) unrelated to Golgi function remains sensitive to BFA in BFY mutant lines. These observations provide strong evidence for the presence of multiple, organelle-specific targets for BFA. Cell-free measurements with membrane extracts establish that resistance to BFA in BFY-1 cells involves a membrane-associated factor distinct from ARFs and coatomers. This collection of mutant lines may prove valuable for the identification of intracellular target(s) for BFA and/or of effectors that interact upstream or downstream with these targets, thereby uncovering the cascade which regulates assembly of organelle- specific coats.  相似文献   

10.
We have studied the cytotoxicity of ricin in cells treated with brefeldin A (BFA), which dramatically disrupts the structure of the Golgi apparatus causing Golgi content and membrane to redistribute to the ER. BFA inhibits the cytotoxicity of ricin in Chinese hamster ovary, normal rat kidney, and Vero cells and abolishes the enhancement of ricin cytotoxicity by NH4Cl, nigericin, swainsonine, and tunicamycin or by a mutation in endosomal acidification. BFA protects cells from the cytotoxicities of modeccin and Pseudomonas toxin, but has no effect on the intoxication by diphtheria toxin. Pretreatment of BFA does not protect cells from ricin treatment in the absence of BFA. Our results suggest that ricin, modeccin, and Pseudomonas toxin share a common pathway of intracellular transport from endosomes to the Golgi region where they are released into the cytosol. In contrast, the lack of protection of Vero cells from diphtheria toxin by BFA indicates that diphtheria toxin is released from acidified endosomes without involving the Golgi region.  相似文献   

11.
Brefeldin A (BFA) has been reported to block protein transport from the ER and cause disassembly of the Golgi complex. We have examined the effects of BFA on the transport and processing of the vesicular stomatitis virus G protein, a model integral membrane protein. Delivery of G protein to the cell surface was reversibly blocked by 6 micrograms/ml BFA. Pulse-label experiments revealed that in the presence of BFA, G protein became completely resistant to endoglycosidase H digestion. Addition of sialic acid, a trans-Golgi event, was not observed. Despite processing by cis- and medial Golgi enzymes, G protein was localized by indirect immunofluorescence to a reticular distribution characteristic of the ER. By preventing transport of G protein from the ER with the metabolic inhibitor carbonyl cyanide m-chlorophenylhydrazone or by use of the temperature-sensitive mutant ts045, which is restricted to the ER at 40 degrees C, we showed that processing of G protein occurred in the ER and was not due to retention of newly synthesized Golgi enzymes. Rather, redistribution of preexisting cis and medial Golgi enzymes to the ER occurred as soon as 2.5 min after addition of BFA, and was complete by 10-15 min. Delivery of Golgi enzymes to the ER was energy dependent and occurred only at temperatures greater than or equal to 20 degrees C. BFA also induced retrograde transport of G protein from the medial Golgi to the ER. Golgi enzymes were completely recovered from the ER 10 min after removal of BFA. These findings demonstrate that BFA induces retrograde transport of both resident and itinerant Golgi proteins to the ER in a fully reversible manner.  相似文献   

12.
A mAb AD7, raised against canine liver Golgi membranes, recognizes a novel, 200-kD protein (p200) which is found in a wide variety of cultured cell lines. Immunofluorescence staining of cultured cells with the AD7 antibody produced intense staining of p200 in the juxtanuclear Golgi complex and more diffuse staining of p200 in the cytoplasm. The p200 protein in the Golgi complex was colocalized with other Golgi proteins, including mannosidase II and beta-COP, a coatomer protein. Localization of p200 by immunoperoxidase staining at the electron microscopic level revealed concentrations of p200 at the dilated rims of Golgi cisternae. Biochemical studies showed that p200 is a peripheral membrane protein which partitions to the aqueous phase of Triton X-114 solutions and is phosphorylated. The p200 protein is located on the cytoplasmic face of membranes, since it was accessible to trypsin digestion in microsomal preparations, and is recovered in approximately equal amounts in membrane pellets and in the cytosol of homogenized cells. Immunofluorescence staining of normal rat kidney cells exposed to the toxin brefeldin A (BFA), showed that there was very rapid redistribution of p200, which was dissociated from Golgi membranes in the presence of this drug. The effect of BFA was reversible, since upon removal of the toxin, AD7 rapidly reassociated with the Golgi complex. In the BFA-resistant cell line PtK1, BFA failed to cause redistribution of p200 from Golgi membranes. Taken together, these results indicate that the p200 Golgi membrane-associated protein has many properties in common with the coatomer protein, beta-COP.  相似文献   

13.
We have studied the effects of brefeldin A (BFA) on the tubular endosomes in AtT20 and HeLa cells (Tooze, J., and M. Hollinshead. 1991. J. Cell Biol. 115:635-653) by electron microscopy of cells labeled with three endocytic tracers, HRP, BSA-gold, and transferrin conjugated to HRP, and by immunofluorescence microscopy. For the latter we used antibodies specific for transferrin receptor, and, in the case of AtT20 cells, also antibodies specific for synaptophysin. In HeLa cells BFA at concentrations ranging from 1 micrograms to 10 micrograms/ml causes the dispersed patches of network of preexisting tubular early endosomes to be incorporated within 5 min into tubules approximately 50 nm in diameter but up to 40-50 microns long. These long, straight tubular endosomes are aligned along microtubules; they branch relatively infrequently to form an open network or reticulum extending from the cell periphery to the microtubule organizing center (MTOC). As the incubation with BFA is prolonged beyond 5 min, a steady state is reached in which many tubules are located in a dense network enclosing the centrioles, with branches extending in a more open network to the periphery. This effect of BFA, which is fully reversed within 15-30 min of washing out, is inhibited by pre-incubating the cells with sodium azide and 2-deoxy-D-glucose. In AtT20 cells BFA at 5 micrograms/ml or above causes the same sorts of changes, preexisting tubular endosomes are recruited into a more continuous endosomal network, and there is a massive accumulation of this network around the MTOC. Maintenance of the BFA-induced endosomal reticulum in both cell types is dependent upon the integrity of microtubules. In AtT20 cells BFA at 1 microgram/ml has no detectable effect on the early endosomal system but the Golgi stacks are converted to clusters of tubules and vesicles that remain in the region of the MTOC during prolonged incubations. Therefore, the Golgi apparatus in these cells is more sensitive to BFA than the early endosomes. The morphological evidence suggests that all the tubular early endosomes in BFA-treated HeLa and AtT20 cells are linked together in a single reticulum. Consistent with this, incubations as short as 1-3 min with 10 or 20 mg/ml HRP in the medium result in the entire endosomal reticulum in most of the BFA-treated cells being filled with HRP reaction product.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Brefeldin A (BFA) causes disassembly of the Golgi apparatus and blocks protein transport to this organelle from the endoplasmic reticulum. However, there still remains considerable ambiguity regarding the involvement of the Golgi apparatus in glycerolipid transport pathways. We examined the effects of BFA upon the intracellular translocation of phosphatidylcholine in alveolar type II cells, that synthesize, transport, store and secrete large amounts of phospholipid for regulated exocytosis. BFA at concentrations as high as 10 microg/ml failed to alter the assembly of phosphatidylcholine into lamellar bodies, the specialized storage organelles for pulmonary surfactant. The same concentration of BFA was also ineffective at altering the secretion of newly synthesized phosphatidylcholine from alveolar type II cells. In contrast, concentrations of the drug of 2.5 microg/ml completely arrested newly synthesized lysozyme secretion from the same cells, indicating that BFA readily blocked protein transport processes in alveolar type II cells. The disassembly of the Golgi apparatus in alveolar type II cells following BFA treatment was also demonstrated by showing the redistribution of the resident Golgi protein MG-160 to the endoplasmic reticulum. These results indicate that intracellular transport of phosphatidylcholine along the secretory pathway in alveolar type II cells proceeds via a BFA insensitive route and does not require a functional Golgi apparatus.  相似文献   

15.
The 100-110-kD proteins (alpha-, beta-, beta'-, and gamma-adaptins) of clathrin-coated vesicles and the 110-kD protein (beta-COP) of the nonclathrin-coated vesicles that mediate constitutive transport through the Golgi have homologous protein sequences. To determine whether homologous processes are involved in assembly of the two types of coated vesicles, the membrane binding properties of their coat proteins were compared. After treatment of MDBK cells with the fungal metabolite Brefeldin A (BFA), beta-COP was redistributed to the cytoplasm within 15 s, gamma-adaptin and clathrin in the trans-Golgi network (TGN) dispersed within 30 s, but the alpha-adaptin and clathrin present on coated pits and vesicles derived from the plasma membrane remained membrane associated even after a 15-min exposure to BFA. In PtK1 cells and MDCK cells, BFA did not affect beta-COP binding or Golgi morphology but still induced redistribution of gamma-adaptin and clathrin from TGN membranes to the cytoplasm. Thus BFA affects the binding of coat proteins to membranes in the Golgi region (Golgi apparatus and TGN) but not plasma membranes. However, the Golgi binding interactions of beta-COP and gamma-adaptin are distinct and differentially sensitive to BFA. BFA treatment did not release gamma-adaptin or clathrin from purified clathrin-coated vesicles, suggesting that their distribution to the cytoplasm after BFA treatment of cells was due to interference with their rebinding to TGN membranes after a normal cycle of disassembly. This was confirmed using an in vitro assay in which gamma-adaptin binding to TGN membranes was blocked by BFA and enhanced by GTP gamma S, similar to the binding of beta-COP to Golgi membranes. These results suggest the involvement of GTP-dependent proteins in the association of the 100-kD coat proteins with membranes in the Golgi region of the cell.  相似文献   

16.
Brefeldin A (BFA) was shown in earlier studies of numerous cell types to inhibit secretion, induce enzymes of the Golgi stacks to redistribute into the ER, and to cause the Golgi cisternae to disappear. Here, we demonstrate that the PtK1 line of rat kangaroo kidney cells is resistant to BFA. The drug did not disrupt the morphology of the Golgi complex in PtK1 cells, as judged by immunofluorescence using antibodies to 58- (58K) and 110-kD (beta-COP) Golgi proteins, and by fluorescence microscopy of live cells labeled with C6-NBD-ceramide. In addition, BFA did not inhibit protein secretion, not alter the kinetics or extent of glycosylation of the vesicular stomatitis virus (VSV) glycoprotein (G-protein) in VSV-infected PtK1 cells. To explore the mechanism of resistance to BFA, PtK1 cells were fused with BFA-sensitive CV-1 cells that had been infected with a recombinant SV-40 strain containing the gene for VSV G-protein and, at various times following fusion, the cultures were exposed to BFA. Shortly after cell fusion, heterokaryons contained one Golgi complex associated with each nucleus. Golgi membranes derived from CV-1 cells were sensitive to BFA, whereas those of PtK1 origin were BFA resistant. A few hours after fusion, most heterokaryons contained a single, large Golgi apparatus that was resistant to BFA and contained CV-1 galactosyltransferase. In unfused cells that had been perforated using nitrocellulose filters, retention of beta-COP on the Golgi was optimal in the presence of cytosol, ATP, and GTP. In perforated cell models of the BFA-sensitive MA104 line, BFA caused beta-COP to be released from the Golgi complex in the presence of nucleotides, and either MA104 or PtK1 cytosol. In contrast, when perforated PtK1 cells were incubated with BFA, nucleotides, and cytosol from either cell type, beta-COP remained bound to the Golgi complex. We conclude that PtK1 cells contain a nondiffusible factor, which is located on or very close to the Golgi complex, and confers a dominant resistance to BFA. It is possible that this factor is homologous to the target of BFA in cells that are sensitive to the drug.  相似文献   

17.
18.
C. L. Jackson  F. Kepes 《Genetics》1994,137(2):423-437
Brefeldin A (BFA) blocks protein transport out of the Golgi apparatus and causes disassembly of this organelle in mammalian cells. The primary effect of BFA is the release of the non-clathrin coat from Golgi membranes and vesicles. We sought to elucidate the mechanism of BFA action using a genetic approach in Saccharomyces cerevisiae. When an erg6 S. cerevisiae strain is treated with BFA, cell growth is arrested, cells lose viability and secretory proteins are accumulated in the endoplasmic reticulum (ER) and early Golgi compartments. We demonstrate that the mutant sec21 (defective in the S. cerevisiae homolog of γ-COP, a non-clathrin coat protein) is supersensitive to BFA. Hence BFA probably affects the same processes in S. cerevisiae as in mammalian cells. We used a multicopy genomic DNA library to search for multicopy suppressors of BFA-induced lethality. We identified one such gene, BFR1, that, in addition, partially suppresses the growth and secretion defects of the ER-to-Golgi secretion mutant sec17. A bfr1-Δ1::URA3 deletion strain is viable, but has defects in cell morphology and nuclear segregation, and the mutation accentuates the growth and secretion defects of a sec21 mutant.  相似文献   

19.
ER to Golgi transport: Requirement for p115 at a pre-Golgi VTC stage   总被引:1,自引:0,他引:1  
The membrane transport factor p115 functions in the secretory pathway of mammalian cells. Using biochemical and morphological approaches, we show that p115 participates in the assembly and maintenance of normal Golgi structure and is required for ER to Golgi traffic at a pre-Golgi stage. Injection of antibodies against p115 into intact WIF-B cells caused Golgi disruption and inhibited Golgi complex reassembly after BFA treatment and wash-out. Addition of anti-p115 antibodies or depletion of p115 from a VSVtsO45 based semi-intact cell transport assay inhibited transport. The inhibition occurred after VSV glycoprotein (VSV-G) exit from the ER but before its delivery to the Golgi complex, and resulted in VSV-G protein accumulating in peripheral vesicular tubular clusters (VTCs). The p115-requiring step of transport followed the rab1-requiring step and preceded the Ca(2+)-requiring step. Unexpectedly, mannosidase I redistributed from the Golgi complex to colocalize with VSV-G protein arrested in pre-Golgi VTCs by p115 depletion. Redistribution of mannosidase I was also observed in cells incubated at 15 degrees C. Our data show that p115 is essential for the translocation of pre-Golgi VTCs from peripheral sites to the Golgi stack. This defines a previously uncharacterized function for p115 at the VTC stage of ER to Golgi traffic.  相似文献   

20.
The fungal drug brefeldin A (BFA) has recently been found to induce a redistribution of medial- and cis-Golgi components to the endoplasmic reticulum (ER), raising the possibility of the existence of a retrograde pathway from the Golgi complex to the ER. Here, we demonstrate a BFA-induced reversible rearrangement of the trans-Golgi membrane protein galactosyltransferase (Gal-T) to the ER in HeLa cells. With immunofluorescence microscopy we have shown that BFA first caused a rapid change of Gal-T immunolabelling from a normal Golgi complex pattern to long and slender structures emanating from the cell centre and co-localizing with tubulin. Then immunofluorescence became ER-like. This effect was not dependent on ongoing protein synthesis and was reversed to normal within 120 min after removal of the drug. Restoration of the Golgi complex after removal of brefeldin A was energy-dependent but not mediated by microtubules nor dependent on protein synthesis. BFA-induced backflow of Gal-T was inhibited by nocodazole, a microtubule-disrupting agent. Immunoelectron microscopy showed that BFA treatment resulted in the fusion of Gal-T-containing vesicles with the ER. Furthermore, sucrose gradient centrifugation showed a significant shift in density of mature Gal-T polypeptides upon BFA treatment: about 40% of the enzyme migrated from its original density (1.13 g/ml) to the density of rough ER (1.19 g/ml). Thus, BFA caused microtubule-dependent vesicular backflow from a trans-Golgi component to the ER followed by fusion of the Golgi-derived vesicles with the ER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号