首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the Arabidopsis root, patterning of the epidermal cell types is position-dependent. The epidermal cell pattern arises early during root development, and can be visualized using reporter genes driven by the GLABRA (GL)2 promoter as markers. The GL2 gene is preferentially expressed in the differentiating hairless cells (atrichoblasts) during a period in which epidermal cell identity is believed to be established. We show that AtAGP30 is also expressed in atrichoblasts. This gene encodes an arabinogalactan-protein (AGP) that is known to play a role in root regeneration and increases abscisic acid (ABA)-response rates. Although the expression level of this gene is regulated by the plant growth factors ABA and ethylene, only ABA was found to affect the tissue-specific pattern of expression. ABA also disrupts the expression pattern of the GL2::GUS (beta-glucuronidase) reporter gene. Our results indicate that ABA regulates epidermal cell-type-specific gene expression in the meristematic zone of the Arabidopsis root, while ethylene is known to act at later stages of epidermal differentiation. Despite its effects on the early stages of root epidermal patterning, ABA does not affect root hair formation on mature wild-type epidermal cells, suggesting that other developmental cues, like positional information, can progressively over-ride the ABA-mediated disruption of early epidermal patterning.  相似文献   

2.
Enrichment and characterization of mouse putative epidermal stem cells   总被引:8,自引:0,他引:8  
Epidermis, a continuously renewing tissue, is maintained by stem cells that proliferate and replenish worn out or damaged cells in the tissue during life. Cultured epidermal stem cells have great potential in scientific research and clinical application. However, isolating a pure and viable population of epidermal stem cells and culturing them has been challenging. In this study, putative epidermal stem cells of mouse were isolated by combining Hoechst 33342 and propidium iodide staining with fluorescence-activated cell sorting. Molecular markers expression pattern analysis showed that cytokeratin 14, integrin beta1 and p63 are expressed in the sorted putative stem cells, but not active beta-catenin, nestin and involucrin. Our results provide further supporting data that mouse putative epidermal stem cells could be successfully isolated by combining Hoechst dye staining with fluorescence-activated cell sorting and cultured in vitro. The cultured mouse putative epidermal stem cells could be used as a potent tool for studying stem cell biology and testing stem cell therapy.  相似文献   

3.
The cell layers of the Arabidopsis primary root are arranged in a simple radial pattern. The outermost layer is the lateral root cap and lies outside the epidermis that surrounds the ground tissue. The files of epidermal and lateral root cap cells converge on a ring of initials (lateral root cap/epidermis initial) from which the epidermal and lateral root cap tissues of the seedling are derived, once root growth is initiated after germination. Each initial gives rise to a clone of epidermal cells and a clone of lateral root cap cells. These initial divisions in the epidermal/lateral root cap initial are defective in tornado1 (trn1) and trn2 plants indicating a requirement for TRN1 and TRN2 for initial cell function. Furthermore, lateral root cap cells develop in the epidermal position in trn1 and trn2 roots indicating that TRN1 and TRN2 are required for the maintenance of the radial pattern of cell specification in the root. The death of these ectopic lateral root cap cells in the elongation zone (where lateral root cap cells normally die) results in the development of gaps in the epidermis. These observations indicate that TRN1 and TRN2 are required to maintain the distinction between the lateral root cap and epidermis and suggest that lateral root cap fate is the default state. It also suggests that TRN1 and TRN2 repress lateral root cap fate in cells in the epidermal location. Furthermore, the position-dependent pattern of root hair and non-root hair cell differentiation in the epidermis is defective in trn1 and trn2 mutants. Together these results indicate that TRN1 and TRN2 are required for the maintenance of both the radial pattern of tissue differentiation in the root and for the subsequent circumferential pattern within the epidermis.  相似文献   

4.
The cell lineage theory, which explains stomatal patterning in monocot leaves as a consequence of orderly divisions, was studied in Tradescantia. Data were collected to test the theory at three levels of organization: the individual stoma; stomata distributed in one dimension, in linear fashion along cell files; and stomata apportioned in two dimensions, across the length and breadth of the leaf. In an attempt to watch the patterning process through regeneration, stomata in all visible stages of development were laser ablated. The results showed that the formation of stomatal initials was highly regular, and measurements of stomatal frequency and spacing showed that pattern was determined near the basal meristem when the stomatal initials arose. Following the origin of initials, the pattern was not readjusted by division of epidermal cells. Stomatal initials were not committed when first present and a small percentage of them arrested. The arrested cells, unlike stomata, were consistently positioned in cell files midway between a developed pair of stomata. At the one-dimensional level of pattern, stomata in longitudinal files were separated by a variable number of epidermal cells and the frequency of these separations was not random. The sequential spacing of stomata also was not random, and stomata separated by single epidermal cells were grouped into more short and long series than expected by chance. The stomatal pattern across the width of the leaf resulted from cell files free of stomata which alternated with cell files containing stomata, but not with a recurring periodicity. Files lacking stomata were found only over longitudinal vascular bundles. Laser ablations of developing stomata did not disrupt the pattern in nearby cells or result in stomatal regeneration. We conclude that the cell lineage theory explains pattern as an individual stomatal initial arises from its immediate precursor and satisfactorily accounts for the minimum spacing of stomata in a cell file, i.e., stoma-epidermal cell-stoma. However, the theory does not explain the collective stomatal pattern along the cell files, at the one-dimensional level of patterning. Nor does the theory account for the for the two-dimensional distribution of stomata in which regions devoid of stomata alternate with regions enriched with stomata, but not in a highly regular nor haphazard manner. We suggest that the grouping of epidermal cells and stomata separated by single epidermal cells in cell files may result from cell lineages at a specific position in the cell cycle as they traverse the zone where stomatal initials form.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Relative quantities of DNA in individual nuclei of stem and leaf epidermal cells of Arabidopsis were measured microspectrofluorometrically using epidermal peels. The relative ploidy level in each nucleus was assessed by comparison to root tip mitotic nuclei. A clear pattern of regular endopolyploidy is evident in epidermal cells. Guard cell nuclei contain levels of DNA comparable to dividing root cells, the 2C level (i.e., one unreplicated copy of the nuclear DNA). Leaf trichome nuclei had elevated ploidy levels of 4C, 8C, 16C, 32C, and 64C, and their cytology suggested that the polyploidy represents a form of polyteny. The nuclei of epidermal pavement cells were 2C, 4C, and 8C in stem epidermis, and 2C, 4C, 8C, and 16C in leaf epidermis. Morphometry of epidermal pavement cells revealed a direct proportionality between nuclear DNA level and cell size. A consideration of the development process suggests that the cells of highest ploidy level are developmentally oldest; consequently, the developmental pattern of epidermal tissues can be read from the ploidy pattern of the cells. This observation is relevant to theories of stomate spacing and offers opportunities for genetic analysis of the endopolyploidy/polyteny phenomenon.  相似文献   

6.
The distribution of saccharide moieties in human interfollicular epidermis was studied with fluorochrome-coupled lectins. In frozen sections Concanavalin A (Con A), Lens culinaris agglutinin (LCA), Ricinus communis agglutinin I (RCAI), and wheat germ agglutinin (WGA) stained intensively both dermis and viable epidermal cell layers, whereas peanut agglutinin (PNA) bound only to living epidermal cell layers. Ulex europaeus agglutinin I (UEAI) bound to dermal endothelial cells and upper cell layers of the epidermis but left the basal cell layer unstained. Dolichos biflorus agglutinin (DBA) bound only to basal epidermal cells, whereas both soybean agglutinin (SBA) and Helix pomatia agglutinin (HPA) showed strong binding to the spinous and granular cell layers. On routinely processed paraffin sections, a distinctly different staining pattern was seen with many lectins, and to reveal the binding of some lectins a pretreatment with protease was required. All keratin-positive cells in human epidermal cell suspensions, obtained with the suction blister method, bound PNA, whereas only a fraction of the keratinocytes bound either DBA or UEAI. Such a difference in lectin binding pattern was also seen in epidermal cell cultures both immediately after attachment and in organized cell colonies. This suggests that in addition to basal cells, more differentiated epidermal cells from the spinous cell layer are also able to adhere and spread in culture conditions. Gel electrophoretic analysis of the lectin-binding glycoproteins in detergent extracts of metabolically labeled primary keratinocyte cultures revealed that the lectins recognized both distinct and shared glycoproteins. A much different lectin binding pattern was seen in embryonic human skin: fetal epidermis did not show any binding of DBA, whereas UEAI showed diffuse binding to all cell layers but gave a bright staining of dermal endothelial cells. This was in contrast to staining results obtained with a monoclonal cytokeratin antibody, which showed the presence of a distinct basal cell layer in fetal epidermis also. The results indicate that expression of saccharide moieties in human epidermal keratinocytes is related to the stage of cellular differentiation, different cell layers expressing different terminal saccharide moieties. The results also suggest that the emergence of a mature cell surface glycoconjugate pattern in human epidermis is preceded by the acquisition of cell layer-specific, differential keratin expression.  相似文献   

7.
The epidermal maxilla II-gland of Scutigera coleoptrata was investigated using light and electron microscopy. The glandular epithelium surrounds a spacious integumental cavity at the base of the maxilla II. The gland is formed as a compound gland organ that is composed of thousands of epidermal gland units. Each of them consists of four different cell types: a secretory cell, an accessory or intermediary cell, and a proximal and distal canal cell. The intermediary and the two canal cells form a conducting canal. Only in the most distal part of the intermediary cell is the canal lined by a cuticle. In the area of the two canal cells, the conducting canal is completely covered by a cuticle. The canal passes through the cuticle and opens into the spacious integumental cavity, which serves as a secretion reservoir. The structural organization of the epidermal maxilla II-gland was compared to that of other compound epidermal gland organs in Chilopoda and Diplopoda. All these glandular organs in Myriapoda share the same ground pattern.  相似文献   

8.
During legume seed development the epidermis of the embryos differentiates into a transfer cell layer which mediates nutrient uptake during the storage phase. This specific function of the epidermal cells is acquired at the onset of embryo maturation. We investigated this process in the pea seed mutant E2748. The epidermal cells of the mutant embryo, instead of turning into transfer cells, enlarge considerably and become vacuolated and tightly associated with adjacent seed tissues. Expression of a sucrose transporter gene that is upregulated in wild-type transfer cells decreases in the mutant and changes its spatial pattern. This indicates that the outermost cell layer of mutant cotyledons cannot acquire transfer cell morphology but loses epidermal cell identity and does not function as a sucrose uptake system. Seed coat growth as well as composition, concentration and dynamics of sugars within the endospermal vacuole are unchanged. The loss of epidermal identity has severe consequences for further embryo development and is followed by disruption of the symplast within the parenchyma, the breach of the developmental gradient, lower sucrose and starch levels and initiation of callus-like growth. It is concluded that the E2748 gene controls differentiation of the cotyledonary epidermis into transfer cells and thus is required for the regional specialisation with a function in embryo nutrition.  相似文献   

9.
Cells in the neurectoderm of Drosophila face a choice between neural and epidermal fates. On the notum of the adult fly, neural cells differentiate sensory bristles in a precise pattern. Evidence has accumulated that the bristle pattern arises from the spatial distribution of small groups of cells, proneural clusters, from each of which a single bristle will result. One class of genes, which includes the genes of the achaete-scute complex, is responsible for the correct positioning of the proneural clusters. The cells of a proneural cluster constitute an equivalence group, each of them having the potential to become a neural cell. Only one cell, however, will adopt the primary, dominant, neural fate. This cell is selected by means of cellular interactions between the members of the group, since if the dominant cell is removed, one of the remaining, epidermal, cells will switch fates and become neural. The dominant cell therefore prevents the other cells of the group from becoming neural by a phenomenon known as lateral inhibiton. They, then, adopt the secondary, epidermal, fate. A second class of genes, including the gene shaggy and the neurogenic genes mediate this process. There is some evidence that a proneural cluster is composed of a small number of cells, suggesting a contact-based mechanism of communication. The molecular nature of the protein products of the neurogenic genes is consistent with this idea.  相似文献   

10.
Circumnutation of Phaseolus vulgaris L. cv. Blanc de Juillet twining shoots was examined at the cellular level. Cell growth was monitored inside the free-moving part of the shoot as a function of time and position with respect to the terminal bud. Complete elongation of epidermal cells required >7 days. A 60% increase in length of the cells in the bending zone was observed. Scanning and transmission electron microscopy studies showed the elasticity of cell walls, the extent of plasmodesmata and endoplasmic reticulum of epidermal cells. The osmotic potential in epidermal cells of the bending zone displayed significant differences only between the concave and convex sides. The pattern of cell growth in twining shoots is discussed. Circumnutation could be seen as a consequence of periodic turgor changes inducing periodic growth.  相似文献   

11.
The ontogeny of large, globular, epidermal cytoplasmic inclusions (ECI) in P. virgatum roots was studied at the ultrastructural level. These ECI were seen to originate in meristematic cells as small electron translucent vesicles. Subsequently, the ECI, which appeared to be temporary storage sites, were seen to enlarge and increase in density by accumulating masses of a granular matrix as well as some small vesicular inclusions. In the zone of elongation, as the epidermal cells matured, the ECI within each cell gradually fused and the contents were lost. The pattern of the ontogeny of the ECI in the growing epidermal cells was consistent with the presence of cells of different physiologies in the zone of cell elongation of these roots.  相似文献   

12.
13.
The Notch locus of Drosophila plays an important role in cell fate decisions within the neurogenic ectoderm, a role thought to involve interactions at the cell surface. We have assayed the requirement for Notch gene expression in epidermal cells by two kinds of genetic mosaics. First, with gynandromorphs, we removed the wild-type gene long before the critical developmental events to produce large mutant clones. The genotype of cells in large clones was scored by means of an antibody to the Notch protein. Second, using mitotic recombination, we removed the gene at successively later times after completion of the mitotically active early cleavage stages, to produce small clones. These clones were detected by means of a linked mutation of cuticle pattern, armadillo. The results of both experiments demonstrate a requirement for Notch expression by epidermal cells, and thus argue against the model that the Notch product acts as a signal required only in the neuroblast to influence neighboring epidermal cells. The mitotic recombination experiment revealed that Notch product is required by epidermal cells subsequent to neuroblast delamination. This result implies that the Notch gene functions to maintain the determined state of epidermal cells, possibly by mediating cell surface interactions within the epidermis.  相似文献   

14.
Alignment of the flattened keratinizing cells of the upper strata of mammalian epidermis leads to the formation of columnar units of structure. In mouse epidermis, mitoses have been found to occur relatively infrequently in the region beneath the center of each cell column where a non-keratinocyte dendritic cell, usually with freatures typical of an epidermal Langerhans cell, is situated. The observed pattern of mitosis could therefore be due either to displacement of central keratinocytes by Langerhans cells or indicate some control of keratinocyte proliferation related either to the Langerhans cells or to the over-lying cell columns. No relationship exists between the position of Langerhans cells and epidermal cell columns in hamster epidermis but measurement of the position of mitosis has shown a reduced frequency of occurrence of mitosis beneath the central region. This pattern of mitosis is therefore unrelated to Langerhans cells and appears to reflect differences in the mitotic potential of basal keratinocytes which could be associated with feedback from the overlying cell columns or with an intrinsic pattern of basal cell activity.  相似文献   

15.
16.
Plant cell shapes are defined by their surrounding walls, but microtubules and F-actin both play critical roles in cell morphogenesis by guiding the deposition of wall materials in expanding cells. Leaf epidermal cells have lobed shapes, which are thought to arise through a microtubule-dependent pattern of locally polarized growth. We have isolated a recessive mutation, brk1, which blocks the formation of epidermal cell lobes in the maize leaf. Mutant epidermal cells expand to the same extent as wild-type cells but fail to establish polar growth sites from which lobes arise. In expanding brk1 epidermal cells, microtubule organization differs little from that in wild-type, but localized enrichments of cortical F-actin seen at the tips of emerging lobes in wild-type cells fail to form. These observations suggest a critical role for F-actin in lobe formation and together with additional effects of brk1 on the morphogenesis of stomata and hairs suggest that Brk1 promotes multiple, actin-dependent cell polarization events in the developing leaf epidermis. The Brk1 gene encodes a novel, 8 kD protein that is highly conserved in plants and animals, suggesting that BRK1-related proteins may function in actin-dependent aspects of cell polarization in a wide spectrum of eukaryotic organisms.  相似文献   

17.
The roles of cell replication and shape change as morphogenetic forces in epithelial invagination were examined in instar II Artemia. The epidermal cells underwent a fixed pattern of cell division during the first 5 hr of instar II. Greater cell replication in the thoracopod bud (ThB) than in the arthrodial membrane (AM) region resulted in a higher density of epidermal cells in the ThB region (differential cell density). The ratio of cell density (AM/ThB) declined from 1.0 to less than 0.80 by Hour 2 of instar II. Invagination of the AM occurred during Hour 4 when the AM/ThB reached 0.75. A 2-hr pulse with 5'-fluorodeoxyuridine (FudR) during instar I delayed completion of the cell replication pattern and development of transverse cell files in the ThB region for a period equal to the length of the exposure. The delay in the cell division program resulted in a cell density ratio of 0.93 at Hour 4, a value normally observed in Hour 2 larvae, and evagination of the epidermis did not occur at apolysis (Hour 4). The FudR treatment did not perturb the cytoskeleton or the initial steps in cell shape change and the larvae formed small segments during instar III. Cell shape change within the AM began during Hour 4 as this region became significantly thinner than the neighboring ThB region (thickness ratio, AM/ThB = 0.77). Before apolysis the AM cells became wedge shaped, a change which occurred when the basal region of the cell enlarged. The microtubules and microfilaments were reorganized from the apical cytoplasm to the lateral border of apposing AM cells. Following apolysis (Late Hour 4) shape change was completed as the cells attained a thin spindle form, with microtubule- and microfilament-rich filopodial extensions which overlapped adjacent AM cells. As contact with ThB cells shifted from lateral to apicolateral, the AM cells formed the innermost edge of the invagination. Microtubules in the differentiating AM cells contained tyrosinated, detyrosinated, and acetylated alpha-tubulin isoforms. Treatment with nocodazole, colchicine, taxol, or cytochalasin B blocked AM cell shape change and inhibited segmentation, but did not affect the mitotic pattern or differential cell density. We conclude that the specific pattern of cell division led to differential cell density which, along with AM cell shape change, established the conditions necessary to achieve epidermal evagination.  相似文献   

18.
Tsai SL  Harris PJ  Lovell PH 《Planta》2003,217(2):238-244
The great majority of angiosperm species form a group in which either every cell in the root epidermis produces a root hair, or the cells that produce these hairs are randomly distributed. We describe, for the first time, pattern in the root epidermal cells of a species within this group. The seedling root of Echium plantagineum L. (Boraginaceae) has an epidermis in which almost every cell produces a root hair, but these are of two types, short hairs (up to 200 micro m) and long hairs (>200 micro m), which are in separate cell files, with the cells bearing long hairs usually separated by one or two files of cells bearing short hairs; the epidermal cells with the long root hairs are longer than the epidermal cells with the short root hairs. The long root hairs are initiated and develop earlier than the short root hairs. Transverse sections of the region of the root which contains only developing long root hairs show that the hair cells are located above anticlinal walls between underlying cortical cells. We regard the distribution of root epidermal cells in E. plantagineum as a sub-type of this group. We discuss the possible evolution, from this sub-type, of another group that is characterised by hair cells and non-hair cells occurring in separate files.  相似文献   

19.
20.
Lectin binding pattern in the developing chick embryonic epidermis was studied using peroxidase labeling method. The epidermis of the 13-day-old embryo is in an undifferentiated state. Little binding of soybean agglutinin (SBA), specific for N-acetyl-D-galactosamine, and peanut agglutinin (PNA), specific for β-D-galactose, was seen in such epidermal cells. As the epidermis developed toward keratinization, the cell membrane of the differentiating flattened cells was positively stained with SBA and PNA. The positive staining was also seen in the supranuclear region of the cells located between the flattened cells and the basal cells. The basal cells remained unstained in all the stages of development. Similar staining pattern with SBA and PNA was seen in the cultured skin explants during the epidermal differentiation in vitro. These observations show that the SBA- and PNA-reactive glycoconjugates accumulate during the epidermal cell differentiation, suggesting their important roles in the maintenance of the ordered structure of the epidermis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号