首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
SEVERAL investigators have speculated that the basis for all cellular contractile activity resides in a common molecular mechanism involving an interaction between actin and myosin1–4. Thin filaments resembling the actin filaments of muscle have indeed been widely observed3–5 and the recent demonstrations of heavy meromyosin binding to thin filaments4–6 suggest that these ubiquitous filaments are, in fact, actin. Although muscle-like thick filaments have not been observed in non-muscle cells, myosin thick filaments have been reconstituted from blood platelet preparations1. To our knowledge, however, no one has presented evidence for the natural occurrence of ordered arrays of thick and thin filaments in non-muscle cells.  相似文献   

2.
Myocytes are long, fusiform cells found in the osculum and other contractile areas of many sponges. Myocytes in the oscular sphincter of Tedania ignis and the osculum and dermal membrane of Microciona prolifera were studied with light- and electron-microscopes to compare their structure to that of muscles. Salient points of similarity between myocytes and smooth muscles were their long, fusiform shape, their red color after staining with Mallory's triple stain, and the presence of filaments running longitudinally in the cytoplasm. Microciona myocytes have thick filaments of 150–250 Å diameter and thin filament of 50–70 Å diameter, and in transverse sections the thin filaments occasionally appear as a ring of dots around a thick filament. Longitudinal sections of Tedania myocytes show only one type of filament, which varies from 100 Å to 200–300 Å diameter in thick regions of the filament. Although transverse sections show light material around the dense filaments, a distinct pattern of thick and thin filaments is not seen in Tedania. Due to infrequent contacts between cells, the large extra-cellular space observed with the electron microscope (49% in Tedania, 57% in Microciona), and the absence of nerves, each myocyte probably acts as an independent contractile unit.  相似文献   

3.
4.
The organization and fine structure of the muscles of the scolex of the cysticercoid of Hymenolepis microstoma are described. The contractile apparatus consists of thick (175–325 Å diameter × 1.4 μm) and thin (60–80 Å diameter × 1 μm) filaments. The thick filaments are occasionally attached to the thin filaments by cross bridges. The thin filaments are attached to the dense bodies or to a dense zone at the sarcolemma at muscle insertions. In contracted muscle the thick filaments appear as quasi-hexagonal arrays or in lines. Each thick filament is surrounded by an orbit of up to 12 thin filaments, which in turn may be shared by adjacent thick filaments. Thin filaments may be present in quasi-rectangular or hexagonal groupings indicating some low order degree of actin lattice. The fusiform dense bodies (1,500 Å × 900 Å), consisting of up to 25 discrete substructures, are distributed uniformly throughout the myofiber and/or attached to the sarcolemma at attachment plaques. The sarcoplasmic reticulum, consisting of a presumed anastomosing network of tubules is structurally connected to the sarcolemma by periodic deposits of electron opaque material. Sarcoplasmic extensions of the myofiber(s) contain the nucleus, Golgi complexes, rough endoplasmic reticulum, ribosomes, β-glycogen, mitochondria and membrane bound electron dense structures. Upon activation of the metacestode, groups of α-glycogen and enlargement of the rough endoplasmic reticulum were observed. Microtubules which were conspicuously absent from the sarcoplasm of the unactivated worms appeared adjacent to the myofibers in activated worms.  相似文献   

5.
6.
Germlings were grown from Monostroma latissimum Wittr. reproductive cells on nylon ropes. Holdfast threads and some uniseriate filaments were observed to have penetrated the fibers of the dispersed ropes. The algal filaments were easily isolated and prepared for cultivation, in comparison to the methods of enzymatically isolated algal protoplasts. Under low light (60–100 μmol photons · m?2 · s?1), the algal filaments grew to form a filamentous mass. When cultivated under stronger light (300–600 μmol photons · m?2 · s?1), they grew to initially form tubular thalli and then, when cultivated under light intensities >700 μmol photons · m?2 · s?1, formed foliaceous thalli. Consequently, the filaments were homogenized into small sections and then sewed on the nylon rope for algal mass cultivation. Under high‐intensity natural light, they grew to form leafy thalli.  相似文献   

7.
The structure of actin bundles from internodal cells of Chara australis, an algal plant, was studied by electron microscopy of negatively stained specimens and optical diffraction. Gently prepared bundles revealed paracrystalline structures resembling the Mg2+-induced paracrystals of rabbit skeletal muscle actin (Hanson, 1968). In addition, the algal actin bundles sometimes had transverse striations at intervals of about 130 Å, as has been observed in actin bundles from sea urchin eggs (DeRosier et al., 1977; Spudich & Amos, 1979) and sea urchin coelomocytes (De Rosier & Edds, 1980; Otto & Bryan, 1981). This finding suggests that a common mechanism might be working in a variety of cells to organize actin filaments into functional bundles.  相似文献   

8.
To assess the possible role of filaments in subcellular motility, particular cultured cells were studied by light and electron microscopy. Motile cell margins always contained meshworks of ~50 Å diam. filaments. Organelles moved within cytoplasm occupied by a meshwork of 50–100 Å filaments and microtubules. When cells were treated with cytochalasin B, movements of cell margins stopped, but organelle movements continued; electron microscopically, while subplasmalemmal filaments had disappeared, subcortical filaments and microtubules remained. When cells were treated with hypertonic medium, organelle movements ceased but marginal movements continued; electron microscopically, although cell margins contained normal filament arrays, few subcortical filaments remained. It is concluded that while cell margins are moved by a meshwork of filaments, organelle movement is mediated by a subcortical meshwork of filaments and microtubules.  相似文献   

9.
A method is presented for the release of “native” thin filaments from 13-day old embryonic chick muscle without tryptic digestion or desoxycholate (DOC) solubilization of Z bands. The isolated filaments were 50–60 Å in diameter, of variable length, and formed “arrowhead-like” complexes with heavy meromyosin (HMM). In addition, the filaments interacted with purified myosin to form actomyosin as effectively as action extracted from an acetone powder of muscle. The Mg++-dependent ATPase activity and extent of superprecipitation of the synthetic actomyosin required a low concentration of Ca++, strongly suggesting the presence of troponin and tropomyosin on the thin filaments isolated from muscle at this stage of embryogenesis. The native thin filaments were more sensitive to trypsin than synthetic F-actin prepared from an acetone powder based on measurements of flow birefrengence, viscosity and the ability to activate myosin ATPase.  相似文献   

10.
Upon bacterial infection lipopolysaccharide (LPS) induces migration of monocytes/macrophages to the invaded region and production of pro‐inflammatory mediators. We examined mechanisms of LPS‐stimulated motility and found that LPS at 100 ng/ml induced rapid elongation and ruffling of macrophage‐like J774 cells. A wound‐healing assay revealed that LPS also activated directed cell movement that was followed by TNF‐α production. The CD14 and TLR4 receptors of LPS translocated to the leading lamella of polarized cells, where they transiently colocalized triggering local accumulation of actin filaments and phosphatidylinositol 4,5‐bisphosphate. Fractionation of Triton X‐100 cell lysates revealed that LPS induced polymerization of cytoskeletal actin filaments by 50%, which coincided with the peak of cell motility. This microfilament population appeared at the expense of short filaments composing the plasma membrane skeleton of unstimulated cells and actin monomers consisting prior to the LPS stimulation about 60% of cellular actin. Simultaneously with actin polymerization, LPS stimulated phosphorylation of two actin‐regulatory proteins, paxillin on tyrosine 118 by 80% and N‐WASP on serine 484/485 by 20%, and these events preceded activation of NF‐κB. LPS‐induced protein phosphorylation and reorganization of the actin cytoskeleton were inhibited by PP2, a drug affecting activity of tyrosine kinases of the Src family. The data indicate that paxillin and N‐WASP are involved in the reorganization of actin cytoskeleton driving motility of LPS‐stimulated cells. Disturbances of actin organization induced by cytochalasin D did not inhibit TNF‐α production suggesting that LPS‐induced cell motility is not required for TNF‐α release. J. Cell. Biochem. 113: 80–92, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

11.
Muscle cell differentiation in the tail of the ascidian, Perophora orientalis, from early tail-bud embryos to swimming larvae, were studied cytologically and ultrastructurally. Myogenic cells did not form multinucleated myotubes, but remained as mononucleated cells. Nucleolar component increased prior to a marked increase in cytoplasmic RNA. Cytoplasmic RNA appeared first around nucleus and later concentrated in the peripheral cytoplasm. The fine filaments measuring 20–30 Å in their thin parts and 30–45 Å in their thick parts in diameter appeared initially, forming loose networks, in the peripheral cytoplasm where ribosome clusters had been concentrated. These filaments were tightly attached by particles of various size and density. These filaments tended to be arranged in parallel as they increased in their size. They seemed to be precursors of both actin and myosin filaments of formed myofibrils. Z band precursors were found as dense patches in association with loosely arranged myofilaments and consisted of particulate and filamentous materials. The myofibrils seemed to grow further by organizing free filaments into bundles and further by aligning bundles of myofilaments at both ends.  相似文献   

12.
The bilobal lactoferrin is an approximately 76 kDa glycoprotein. It sequesters two Fe3+ ions together with two ions. The C‐terminal half (residues, Tyr342–Arg689, C‐lobe) of bovine lactoferrin (BLF) (residues Ala1–Arg689) was prepared by limited proteolysis using trypsin. Both C‐lobe and intact BLF were saturated to 100%. Both of them retained up to nearly 85% of iron at pH 6.5. At pH 5.0, C‐lobe retained 75% of iron whereas intact protein could retain only slightly more than 60%. At pH 4.0 both contained 25% iron and at pH 2.0 they were left with iron concentration of only 10%. The structure of iron saturated C‐lobe was determined at 2.79 Å resolution and refined to Rcryst and Rfree factors of 0.205 and 0.273, respectively. The structure contains two crystallographically independent molecules, A and B. They were found to have identical structures with an r.m.s. shift of 0.5 Å for their Cα atoms. A high solvent content of 66% was observed in the crystals. The average value of an overall B‐factor was 68.0 Å2. The distance of 2.9 Å observed for the coordination bond between Fe3+ ion and Ne2 of His595 appeared to be considerably longer than the normally observed values of 1.9–2.2 Å. This indicated that the coordination bond involving His595 may be absent. Other coordination distances were observed in the range of 2.1–2.3 Å. Based on the present structure of iron saturated C‐lobe, it may be stated that His595 is the first residue to dissociate from ferric ion when the pH is lowered. Proteins 2016; 84:591–599. © 2016 Wiley Periodicals, Inc.  相似文献   

13.
Cadmium is a highly toxic metal entering cells by a variety of mechanisms. Its toxic action is far from being completely understood, although specific interaction with the cellular calcium metabolism has been indicated. Metal ions that influence intracellular Ca2+ concentrations or compete with Ca2+ for protein binding sites may exert an effect on actin filaments, whose assembly and disassembly are both regulated by a number of calcium-dependent factors. Cadmium is such a metal. Much evidence demonstrates that cadmium interferes with the dynamics of actin filaments in various types of cells. Here we show that, at high (0.8–1.0 mM) concentrations, CdCl2 causes actin denaturation. At such Cd2+ concentrations, actin precipitates (really actin, as shown by SDS-PAGE, see Fig. 1B) in the form of irregular, disordered clots, clearly appreciable by electron microscopy. Denaturation seems to be reversible since, after Cd2+ removal by dialysis, the polymerizability of sedimented actin is restored almost completely. On the other hand, at concentrations ranging from 0.25 to 0.6 mM, CdCl2 is more effective as an actin polymerizing agent than both MgCl2 and CaCl2. The Cd-related increase in the actin assembly rate is ascribable to an enhanced nucleation rather than to an increased monomer addition to filament growing ends. The latter, in contrast, appears quite slow. Critical concentration measurements revealed that the extent of polymerization of both Mg- and Cd-assembled actin are very close (Cc ranges from 0.25 to 0.5 μM), while Ca-polymerized actin shows a polymerization extent markedly lower (Cc=4.0 μM). By both the fluorescent Ca2+ chelator Quin-2 assay and limited proteolysis of actin by trypsin and α-chymotrypsin, the real substitution of G-actin-bound Ca2+ by Cd2+ has been appreciated. The increase in Quin-2 fluorescence after addition of excess CdCl2 indicates that, in our experimental conditions, Ca2+ tightly-bound to actin is partially (60–70%) replaced by Cd2+, forming Cd-actin. Electrophoretic patterns after limited proteolysis reveal that the trypsin cleavage sites in the segment 61–69 of the actin polypeptide chain are less accessible in Cd-actin than in Ca-actin, although the cation-dependent effect is less pronounced in Cd-actin than in Mg-actin. Our results are consistent with some of the consequences on microfilament organization observed in Cd2+-treated cells; however, considering the positive effect of Cd2+ on actin polymerization in solution we have noticed that this was never observed in vivo. A different indirect effect of Cd2+ on some cellular event(s) influencing cytoplasmic actin polymerization appears to be reasonable. © 1997 Elsevier Science B.V. All rights reserved.  相似文献   

14.
In the cortex of a motile cell, membrane-anchored actin filaments assemble into structures of varying shape and function. Filopodia are distinguished by a core of bundled actin filaments within finger-like extensions of the membrane. In a recent paper by Medalia et al1 cryo-electron tomography has been used to reconstruct, from filopodia of Dictyostelium cells, the 3-dimensional organization of actin filaments in connection with the plasma membrane. A special arrangement of short filaments converging toward the filopod''s tip has been called a “terminal cone”. In this region force is applied for protrusion of the membrane. Here we discuss actin organization in the filopodia of Dictyostelium in the light of current views on forces that are generated by polymerizing actin filaments, and on the resistance of membranes against deformation that counteracts these forces.Key Words: actin network, cytoskeleton, Dictyostelium, electron tomography, filopodia, membrane bending  相似文献   

15.
We have examined the structure of actin-binding molecules in solution and interacting with actin filaments. At physiological ionic strength, actin-binding protein has a Mr value of 540 × 103 as determined by direct and indirect hydrodynamic measurements. It is an asymmetrical dimer composed of 270 × 103 dalton subunits. Viewed in the electron microscope after negative staining or low angle shadowing, actin-binding protein molecules assume a broad range of conformations varying from closed circular structures to fully extended strands 162 nm in contour length. All configurations are apparently derived from the same structure which consists of two monomer chains connected end-to-end. The radius of gyration determined from the electron microscopic images was 21.3 nm in agreement with the value of 17.6 nm calculated from hydrodynamic assays. The average axial ratio from hydrodynamic measurements was 17:1, whereas fully extended dimer molecules in the electron microscope would have an axial ratio of 54:1. All of these observations indicate that actin-binding protein dimers are extremely flexible. The flexibility parameter λ (Landau &; Lifshits, 1958) for actinbinding protein is 0.18 nm?1.As determined by sedimentation, actin-binding protein binds to actin filaments with a Ka value of 2 × 106m?1 and a capacity of one dimer to 14 actin monomers in filaments. After incubation of high concentrations (molar ratio to actin ≥ 1:10) of actin-binding protein with actin filaments, long filament bundles are visible in the electron microscope. Under these conditions, actin-binding protein molecules decorate the actin filaments in the bundles at regular 40 nm intervals or once every 15 monomers, approximately equivalent to the binding capacity measured by sedimentation. Low concentrations of actin-binding protein (molar ratio to actin ≥ 1:50) which promote the gelation of actin filaments in solution, did not detectably alter the isotropy of the actin filaments. Direct visualization of actinbinding protein molecules between actin filaments in the electron microscope showed that dimers are sufficient for crossbridging of actin filaments and that actinbinding protein dimers are bipolar, composed of monomers connected head-to-head and having actin-binding sites located on the free tails.We conclude that actin-binding protein is a dimer at physiological ionic strength. Each dimer has two actin filament binding sites and is therefore sufficient to gel actin filaments in solution. The length and flexibility of the actin-binding protein subunits render this molecule structurally suited for the crosslinking of large helical filaments into isotropic networks.  相似文献   

16.
The plant cytoskeleton orchestrates such fundamental processes in cells as division, growth and development, polymer cross-linking, membrane anchorage, etc. Here, we describe the influence of Cd2+, Ni2+, Zn2+, and Cu2+ on root development and vital organization of actin filaments into different cells of Arabidopsis thaliana line expressing GFP-FABD2. CdSO4, NiSO4, CuSO4, and ZnSO4 were used in concentrations of 5–20 µM in this study. It was found that Cd, Ni, and Cu cause dose-dependent primary root growth inhibition and alteration of the root morphology, whereas Zn slightly stimulates root growth and does not affect the morphology of Arabidopsis roots. This growth inhibition/stimulation correlated with the various sensitivities of microfilaments to Cd, Ni, Cu, and Zn action. It was established that Cd, Ni, and Cu affected predominantly the actin filaments of meristematic cells. Cells of transition and elongation zones demonstrated strong actin filament sensitivity to Cd and Cu. Microfilaments of elongating root cells were more sensitive to Ni and Cu. Although Cd, Ni, and Cu stimulated root hair growth after long-term treatment, actin filaments were destroyed after 1 h exposure with these metals. Zn did not disrupt native actin filament organization in root cells. Thus, our investigation shows that microfilaments act as sensitive cellular targets for Cd, Ni, and Cu. More data on effects on native actin filaments organization would contribute to a better understanding of plant tolerance mechanisms to the action of these metals.  相似文献   

17.
Mutations at protein–protein recognition sites alter binding strength by altering the chemical nature of the interacting surfaces. We present a simple surface energy model, parameterized with empirical values, yielding mean energies of ?48 cal mol?1 Å?2 for interactions between hydrophobic surfaces, ?51 to ?80 cal mol?1 Å?2 for surfaces of complementary charge, and 66–83 cal mol?1 Å?2 for electrostatically repelling surfaces, relative to the aqueous phase. This places the mean energy of hydrophobic surface burial at ?24 cal mol?1 Å?2. Despite neglecting configurational entropy and intramolecular changes, the model correlates with empirical binding free energies of a functionally diverse set of rigid‐body interactions (r = 0.66). When used to rerank docking poses, it can place near‐native solutions in the top 10 for 37% of the complexes evaluated, and 82% in the top 100. The method shows that hydrophobic burial is the driving force for protein association, accounting for 50–95% of the cohesive energy. The model is available open‐source from http://life.bsc.es/pid/web/surface_energy/ and via the CCharpPPI web server http://life.bsc.es/pid/ccharppi/ . Proteins 2015; 83:640–650. © 2015 Wiley Periodicals, Inc.  相似文献   

18.
E Lazarides  D R Balzer 《Cell》1978,14(2):429-438
The extent of invariance and heterogeneity in desmin, the major component of the muscle form of 100 Å filaments, has been investigated in avian and mammalian muscle and nonmuscle cells with two-dimensional gel electrophoresis and indirect immunofluorescence. Desmin from chick, duck and quail, smooth, skeletal and cardiac muscle cells is resolved into two isoelectric variants, α and β, with each possessing the same charge and electrophoretic mobility in all three avian species irrespective of muscle type. Guinea pig and rat muscle desmin resolves into only one variant; it also possesses the same charge and electrophoretic mobility in the two mammalian species, but it is more acidic and slower in electrophoretic mobility than the two avian variants.In immunofluorescence, desmin is localized together with α-actinin along myofibril Z lines. Antibodies to chick smooth muscle desmin, prepared against the protein purified by preparative SDS gel electrophoresis prior to immunization, cross-react with myofibril Z lines in all three avian species. These antibodies do not cross-react with either rat or guinea pig myofibril Z lines. Similarly, they do not cross-react with avian or mammalian nonmuscle cells grown in tissue culture and known to contain cytoplasmic 100 Å filaments.These results demonstrate that desmin is highly conserved within avian muscle cells and within mammalian muscle cells. It is, however, both biochemically and immunologically distinguishable between avian and mammalian muscle cells, and between muscle and nonmuscle cells. We conclude that there are biochemically and immunologically specific forms of desmin for avian and mammalian muscle cells. Furthermore, within a particular vertebrate species, there are at least two separate classes of 100 Å filaments: the muscle class whose major component is desmin, and the nonmuscle class whose major component is distinct from desmin. Taking into consideration the immunological specificity reported by other laboratories for the 100 Å filaments in glial cells, for neurofilaments and for the epidermal 80 Å keratin filaments, we propose that a given vertebrate species contains at least four major distinguishable classes of 100 Å filaments: muscle 100 Å filaments (desmin filaments), glial filaments, neurofilaments and epidermal keratin filaments.  相似文献   

19.
Diphtheria toxin (DT) and its N-terminal fragment A (FA) catalyse the transfer of the ADP-ribose moiety of nicotinamide adenine dinucleotide (NAD) into a covalent linkage with eukaryotic elongation factor 2 (eEF2). DT-induced cytotoxicity is versatile, and it includes DNA cleavage and the depolymerisation of actin filaments. The inhibition of the ADP-ribosyltransferase (ADPrT) activity of FA did not affect the deoxyribonuclease activity of FA or its interaction with actin. The toxin entry rate into cells (HUVEC) was determined by measuring the ADP-ribosyltransferase activity. DT uptake was nearly 80% after 30 min. The efficiency was determined as Km = 2.2 nM; Vmax = 0.25 pmol.min−1. The nuclease activity was tested with hyperchromicity experiments, and it was concluded that G-actin has an inhibitory effect on DT nuclease activity. In thepresence of DT and mutant of diphtheria toxin (CRM197), F-actin depolymerisation was determined with gel filtration, WB and fluorescence techniques. In the presence of DT and CRM197, 60–65% F-actin depolymerisation was observed. An in vitro FA-actin interaction and F-actin depolymerisation were reported in our previous paper. The present study thus confirms the depolymerisation of actin cytoskeleton in vivo.  相似文献   

20.
Actin detected in Mouse Neuroblastoma Cells by Binding of Heavy Meromyosin   总被引:12,自引:0,他引:12  
HEAVY meromyosin (HMM) fragments of myosin from striated muscle specifically bind with actin filaments to form complexes that are readily observed by electron microscopy1 in both negatively-stained preparations and sectioned material. The composite or “decorated filaments” appear like a line of arrowheads. The existence of such decorated filaments in cells or some cell fraction after treatment with HMM indicates that actin is present. Ishikawa et al.2 used this to demonstrate actin in a number of cultured cell types. More recently, other workers have similarly demonstrated actin filaments in slime mould3, amoebae4,5, blood platelets6, microvilli7, macrophages8 and, less convincingly, in sperm tails9 and the mitotic spindle10. We prove here that filaments from the cortical region of mouse neuroblastoma cells bind HMM and therefore contain actin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号