首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The framework model of protein folding requires the hydrogen-bonded secondary structure to be formed early in folding (i.e. the formation of secondary structure precedes the tertiary structure) (Kim, P. S., and Baldwin, R. L. (1982) Annu. Rev. Biochem. 51, 459-489). To test the framework model directly the kinetics of bovine growth hormone (bGH) folding were compared utilizing two methods of detection, one that measures the secondary structure (far ultraviolet circular dichroism) and another that measures the tertiary structure (near ultraviolet absorbance). The results demonstrate that, under identical folding conditions, the kinetics observed by far ultraviolet circular dichroism are faster than those observed by ultraviolet absorption. The faster kinetics observed by circular dichroism indicate the existence of a helix-containing intermediate which is consistent with the framework model. The effect of protein concentration and denaturant concentration on the kinetics of refolding were studied. The rate of refolding measured by absorbance and circular dichroism was dependent on protein concentration. The protein concentration dependence on refolding is due to the transient formation of an associated intermediate. The concentration dependence of folding is taken as evidence that folding is a sequential process with partially folded monomers responsible for the observed association effect. At dilute protein concentrations the refolding can be studied independent of the association phenomena. The growth hormones utilized in this study were derived from Escherichia coli through recombinant DNA technology and from bovine pituitaries. The pituitary-derived bGH has been shown to be heterogeneous at the NH2 terminus (Lorenson, M. F., and Ellis, S. (1975) Endocrinology 96, 833-838), whereas the recombinant DNA-derived bGH contains a single NH2 terminus. No differences in the folding kinetics between the recombinant DNA and pituitary derived-bGH were observed. It is concluded that the heterogeneity of the NH2 terminus of growth hormone obtained from bovine pituitaries does not affect the observed in vitro folding kinetics.  相似文献   

2.
D N Brems  H A Havel 《Proteins》1989,5(1):93-95
Previous results from equilibrium and kinetic studies of the folding of bovine growth hormone (bGH) have demonstrated that bGH does not follow a simple two-step folding mechanism. These results are summarized and interpreted according to the "molten globule" model. The molten globule state of bGH is characterized as a folding intermediate which is largely alpha-helical, retains a compact hydrodynamic radius, has packing of the aromatic side chains that is similar to the unfolded state, and possesses a solvent-exposed hydrophobic surface along helix 106-127 that readily leads to association.  相似文献   

3.
Intrinsic tryptophans of CRABPI as probes of structure and folding.   总被引:2,自引:1,他引:1       下载免费PDF全文
The native state fluorescence and CD spectra of the predominantly beta-sheet cellular retinoic acid-binding protein I (CRABPI) include contributions from its three tryptophan residues and are influenced by the positions of these residues in the three-dimensional structure. Using a combination of spectroscopic approaches and single Trp-mutants of CRABPI, we have deconvoluted these spectra and uncovered several features that have aided in our analysis of the development of structure in the folding pathway of CRABPI. The emission spectrum of native CRABPI is dominated by Trp 7. Trp 109 is fluorescence-silent due to its interaction with the guanidino group of Arg 111. Although the far-UV CD spectrum of CRABPI is largely determined by the protein's secondary structure, aromatic clustering around Trp 87 and the aromatic-charge interaction between Arg 111 and Trp 109 give rise to a characteristic feature in the CD spectrum at 228 nm. The near-UV CD bands of CRABPI arise largely from additive contributions of the three tryptophan residues. Trp 7 and Trp 87 give a negative CD band at 275 nm. The near-UV CD band from Trp 109 is positive and shifted to longer wavelengths (to 302 nm) due to the charge-aromatic interaction between Arg 111 and Trp 109. Our deconvolution of the equilibrium spectra have been used to interpret kinetic folding experiments monitored by stopped-flow fluorescence. These dynamic experiments suggest the early evolution of a well-populated, hydrophobically collapsed intermediate, which undergoes global rearrangement to form the fully folded structure. The results presented here suggest several additional strategies for dissecting the folding pathway of CRABPI.  相似文献   

4.
An analogue of the BPTI folding intermediate that contains only the disulphide bonds between Cys14 and Cys38 and between Cys30 and Cys51 has been prepared in Escherichia coli by protein engineering methods. The other two Cys residues of native BPTI (at positions 5 and 55) have been replaced by Ser. Essentially complete proton resonance assignments of the analogue were obtained by employing two-dimensional 1H nuclear magnetic resonance techniques. The intermediate has a more extended conformation in the N-terminal (residues 1 to 7) region and there are other differences in the C-terminal (residues 55 to 58) region. The remainder of the protein is substantially identical to native BPTI. The conformational properties of the analogue can explain several aspects of the kinetic role that the normal (14-38, 30-51) intermediate plays in the folding of BPTI.  相似文献   

5.
Methionine adenosyl transferase (MAT) is an essential enzyme that synthesizes AdoMet. The liver-specific MAT isoform, MAT III, is a homodimer of a 43.7-kDa subunit that organizes in three nonsequential alpha-beta domains. Although MAT III structure has been recently resolved, little is known about its folding mechanism. Equilibrium unfolding and refolding of MAT III, and the monomeric mutant R265H, have been monitored using different physical parameters. Tryptophanyl fluorescence showed a three-state folding mechanism. The first unfolding step was a folding/association process as indicated by its dependence on protein concentration. The monomeric folding intermediate produced was the predominant species between 1.5 and 3 m urea. It had a relatively compact conformation with tryptophan residues and hydrophobic surfaces occluded from the solvent, although its N-terminal region may be very unstructured. The second unfolding step monitored the denaturation of the intermediate. Refolding of the intermediate showed first order kinetics, indicating the presence of a kinetic intermediate within the folding/association transition. Its presence was confirmed by measuring the 1,8-anilinonaphtalene-8-sulfonic acid binding in the presence of tripolyphosphate. We propose that the folding rate-limiting step is the formation of an intermediate, probably a structured monomer with exposed hydrophobic surfaces, that rapidly associates to form dimeric MAT III.  相似文献   

6.
An analogue of the bovine pancreatic trypsin inhibitor (BPTI) folding intermediate that contains only the disulphide bond between Cys5 and Cys55 has been prepared in Escherichia coli by protein engineering methods, with the other four Cys residues replaced by Ser. Two-dimensional 1H nuclear magnetic resonance studies of the analogue have resulted in essentially complete resonance assignments of the folded form of the protein. The folded protein has a compact conformation that is structurally very similar to that of native BPTI, although there are subtle differences and the folded conformation is not very stable. Approximately half of the protein molecules are unfolded at 3 degrees C, and this proportion increases at higher temperatures. The folded and unfolded conformations are in slow exchange. The conformational properties of the analogue can explain many aspects of the kinetic role that the normal (5-55) intermediate plays in the folding of BPTI.  相似文献   

7.
The biological activities of human (hGH) and bovine (bGH) growth hormone derivatives obtained by chemical modification of the lysine residues were studied by radioreceptor assays using rabbit liver homogenates for somatotropic activity (SA). Control treatment with BH4 had a very slight effect on the SA, whereas the methylation and ethylation drastically reduced the acitivty of both hormones. Guanidination of these hormones and even acetimidination at a lower rate are accompanied by a considerable loss of biological activity. These results show the involvement of lysine residues in the interaction of hGH and bGH with somatotropic receptors. The structure-function relationship of these molecules is discussed, suggesting that the lysine or arginine residues in positions 41, 64, 70 and 115 might be particularly implicated.  相似文献   

8.
The Saccharomyces cerevisiae non-Mendelian factor [URE3] propagates by a prion-like mechanism, involving aggregation of the chromosomally encoded protein Ure2. The N-terminal prion domain (PrD) of Ure2 is required for prion activity in vivo and amyloid formation in vitro. However, the molecular mechanism of the prion-like activity remains obscure. Here we measure the kinetics of folding of Ure2 and two N-terminal variants that lack all or part of the PrD. The kinetic folding behaviour of the three proteins is identical, indicating that the PrD does not change the stability, rates of folding or folding pathway of Ure2. Both unfolding and refolding kinetics are multiphasic. An intermediate is populated during unfolding at high denaturant concentrations resulting in the appearance of an unfolding burst phase and "roll-over" in the denaturant dependence of the unfolding rate constants. During refolding the appearance of a burst phase indicates formation of an intermediate during the dead-time of stopped-flow mixing. A further fast phase shows second-order kinetics, indicating formation of a dimeric intermediate. Regain of native-like fluorescence displays a distinct lag due to population of this on-pathway dimeric intermediate. Double-jump experiments indicate that isomerisation of Pro166, which is cis in the native state, occurs late in refolding after regain of native-like fluorescence. During protein refolding there is kinetic partitioning between productive folding via the dimeric intermediate and a non-productive side reaction via an aggregation prone monomeric intermediate. In the light of this and other studies, schemes for folding, aggregation and prion formation are proposed.  相似文献   

9.
The folding pathway of the third domain of PDZ from the synaptic protein PSD-95 was characterized using kinetic and equilibrium methods by monitoring the fluorescence signal from a Trp residue that is incorporated at a near-surface position. Kinetic folding of this domain showed multiple exponential phases, whereas unfolding showed a single exponential phase. The slow kinetic phases were attributed to isomerization of proline residues, since there are five proline residues in this domain. We found that the logarithms of the rate constants for the fast phase of folding and unfolding are linearly dependent on the concentrations of denaturant. The unfolding free energy derived from these rate constants at zero denaturant was close to the value measured using the equilibrium method, suggesting the absence of detectable sub-millisecond folding intermediates. However, native-state hydrogen exchange experiments detected a partially unfolded intermediate under native conditions. It was further confirmed by a protein engineering study. These data suggest that a hidden intermediate exists after the rate-limiting step in the folding of the third domain of PDZ.  相似文献   

10.
The folding pathways of four mutants in which bulky hydrophobic residues in the B helix of apomyoglobin (ApoMb) are replaced by alanine (I28A, L29A, I30A, and L32A) have been analyzed using equilibrium and kinetic methods employing NMR, CD, fluorescence and mass spectrometry. Hydrogen exchange pulse-labeling followed by mass spectrometry reveals detectable intermediates in the kinetic folding pathways of each of these mutants. Comparison of the quench-flow data analyzed by NMR for the wild-type protein and the mutants showed that the substitutions I28A, L29A and L32A lead to destabilization of the B helix in the burst phase kinetic intermediate, relative to wild-type apomyoglobin. In contrast, the I30A mutation apparently has a slight stabilizing effect on the B helix in the burst phase intermediate; under weak labeling conditions, residues in the C helix region were also relatively stabilized in the mutant compared to the wild-type protein. This suggests that native-like helix B/helix C packing interactions occur in the folding intermediate. The L32A mutant showed significantly lower proton occupancies in the burst phase for several residues in the G helix, specifically F106, I107, E109 and A110, which are in close proximity to L32 in the X-ray structure of myoglobin, providing direct evidence that native-like helix B/helix G contacts are formed in the apomyoglobin burst phase intermediate. The L29A mutation resulted in an increase in burst phase proton occupancies for several residues in the E helix. Since these regions of the B and E helices are not in contact in the native myoglobin structure, these effects suggest the possibility of non-native B/E packing interactions in the kinetic intermediate. The differing effects of these B helix mutations on the apomyoglobin folding process suggests that each side-chain plays a different and important role in forming stable structure in the burst phase intermediate, and points to a role for both native-like and non-native contacts in stabilization of the folding intermediate.  相似文献   

11.
The folding of CheY mutant F14N/V83T was studied at 75 residues by NMR. Fluorescence, NMR, and sedimentation equilibrium studies at different urea and protein concentrations reveal that the urea-induced unfolding of this CheY mutant includes an on-pathway molten globule-like intermediate that can associate off-pathway. The populations of native and denatured forms have been quantified from a series of 15N-1H HSQC spectra recorded under increasing concentrations of urea. A thermodynamic analysis of these data provides a detailed picture of the mutant's unfolding at the residue level: (1) the transition from the native state to the molten globule-like intermediate is highly cooperative, and (2) the unfolding of this state is sequential and yields another intermediate showing a collapsed N-terminal domain and an unfolded C-terminal tail. This state presents a striking similarity to the kinetic transition state of the CheY folding pathway.  相似文献   

12.
Mutations at many different sites in the gene encoding human Cu,Zn superoxide dismutase (SOD) are known to be causative agents in amyotrophic lateral sclerosis (ALS). One explanation for the molecular basis of this pathology is the aggregation of marginally soluble, partially structured states whose populations are enhanced in the protein variants. As a benchmark for testing this hypothesis, the equilibrium and kinetic properties of the reversible folding reaction of a metal-free variant of SOD were investigated. Reversibility was achieved by replacing the two non-essential cysteine residues with non-oxidizable analogs, C6A/C111S, to produce apo-AS-SOD. The metal-free pseudo-wild-type protein is folded and dimeric in the absence of chemical denaturants, and its equilibrium folding behavior is well described by an apparent two-state mechanism involving the unfolded monomer and the native dimer. The apparent free energy of folding in the absence of denaturant and at standard state is -20.37(+/- 1.04) kcal (mol dimer)(-1). A global analysis of circular dichroism kinetic traces for both unfolding and refolding reactions, combined with results from small angle X-ray scattering and time-resolved fluorescence anisotropy measurements, supports a sequential mechanism involving the unfolded monomer, a folded monomeric intermediate, and the native dimer. The rate-limiting monomer folding reaction is followed by a near diffusion-limited self-association reaction to form the native dimer. The relative population of the folded monomeric intermediate is predicted not to exceed 0.5% at micromolar concentrations of protein under equilibrium and both strongly unfolding and refolding conditions for metal-free pseudo-wild-type SOD.  相似文献   

13.
In the preceding paper [Havel, H. A., Kauffman, E. W., Plaisted, S. M., & Brems, D. N. (1986) Biochemistry (preceding paper in this issue)], an associated intermediate was shown to be highly populated during the equilibrium denaturation of bovine growth hormone. In this paper, we describe its partial characterization and propose a mechanism for association. The associated equilibrium intermediate is populated under conditions that induce partial denaturation and at protein concentrations greater than 0.2 mg/mL. The remaining nativelike helical structure present in the partially denatured species is implicated in the mechanism of association as demonstrated by similar concentration dependencies and thermal stabilities of the helix and the associated equilibrium intermediate. Furthermore, it is suggested that a putative amphiphilic helix from residues 110-127 plays a critical role in the association as demonstrated by a diminution of the associated equilibrium intermediate when mixed with the peptide fragment 96-133. A model is proposed to account for these results in which partial denaturation exposes the segment of the protein corresponding to the hydrophobic face of the putative amphiphilic helix 110-127. This metastable form is the species from which association occurs. Association is stabilized by the hydrophobic interactions resulting from intermolecular packing of the lipophilic faces of the helices. The implications of these results to protein folding studies are described.  相似文献   

14.
The contributions of some amino acid residues in the A, B, G, and H helices to the formation of the folding nucleus and folding intermediate of apomyoglobin were estimated. The effects of point substitutions of Ala for hydrophobic amino acid residues on the structural stability of the native (N) protein and its folding intermediate (I), as well as on the folding/unfolding rates for four mutant apomyoglobin forms, were studied. The equilibrium and kinetic studies of the folding/unfolding rates of these mutant proteins in a wide range of urea concentrations demonstrated that their native state was considerably destabilized as compared with the wild-type protein, whereas the stability of the intermediate state changed moderately. It was shown that the amino acid residues in the A, G, and H helices contributed insignificantly to the stabilization of the apomyoglobin folding nucleus in the rate-limiting I ? N transition, taking place after the formation of the intermediate, whereas the residue of the B helix was of great importance in the formation of the folding nucleus in this transition.  相似文献   

15.
Reproductive performance was studied in transgenic males from lines expressing and transmitting four hybrid genes: mouse metallothionein-I/human growth hormone (GH) (MT/hGH), MT/hGH placental variant (MT/hGH.V), MT/bovine GH (MT/bGH) and phosphoenolpyruvate carboxykinase/bGH (PEPCK/bGH). Each male was exposed to three normal females for 1 week and to three different normal females for another week. Females were examined for vaginal plugs and necropsied on day 14 of pregnancy. Males were killed for analysis of organ weights, numbers of testicular spermatids, numbers of epididymal sperm and measurements of plasma glucose concentration. Fertility of MT/hGH and MT/hGH.V transgenic males was significantly lower than in normal males, primarily because most males failed to impregnate any females. In females that became pregnant, the numbers of corpora lutea, total fetuses and live fetuses did not differ from those in females mated to normal (nontransgenic) males. Fetal crown-rump length on day 14 of pregnancy did not differ between litters sired by normal or by transgenic males. Weights of testes and seminal vesicles were significantly greater in all four types of transgenic male, but daily sperm production per unit weight (g-1) of testis was not affected and epididymal sperm reserves were either normal or slightly higher than normal. Plasma glucose concentrations were significantly higher in PEPCK/bGH mice than in other mice. Average or individual reproductive performance of transgenic males from the various lines did not correlate with any of the parameters examined except for significantly heavier seminal vesicles in MT/hGH and MT/hGH.V males than in normal males; these transgenic males exhibited a high incidence of infertility. Since hGH and hGH.V, but not bGH, are lactogenic in rodents, it was concluded that chronic stimulation of GH and prolactin receptors by ectopically produced human GHs in transgenic mice compromises male fertility by an unknown mechanism. Reduced fertility of transgenic males with MT/hGH or MT/hGH.V hybrid genes is due to failure to inseminate or impregnate females rather than to reduced numbers of spermatozoa or gross changes in the male reproductive system.  相似文献   

16.
17.
The unfolding transition and kinetic refolding of dimeric creatine kinase after urea denaturation were monitored by intrinsic fluorescence and far ultraviolet circular dichroism. An equilibrium intermediate and a kinetic folding intermediate were identified and characterized. The fluorescence intensity of the equilibrium intermediate is close to that of the unfolded state, whereas its ellipticity at 222 nm is about 50% of the native state. The transition curves measured by these two methods are therefore non-coincident. The kinetic folding intermediate, formed during the burst phase of refolding under native-like conditions, possesses 75% of the native secondary structure, but is mostly lacking in native tertiary structure. In moderate concentrations of urea, only the initial, rapid change in fluorescence intensity or negative ellipticity is observed, and the final state values do not reach the equivalent unfolding values. The unfolding and refolding transition curves measured under identical conditions are non-coincident within the transition from intermediate to fully unfolded state. It is observed by SDS-PAGE that disulfide bond-linked dimeric or oligomeric intermediates are formed in moderate urea concentrations, especially in the refolding reaction. These rapidly formed, soluble intermediates represent an off-pathway event that leads to the hysteresis in the refolding transition curves.  相似文献   

18.
The folding mechanisms of two proteins in the family of intracellular lipid binding proteins, ileal lipid binding protein (ILBP) and intestinal fatty acid binding protein (IFABP), were examined. The structures of these all-beta-proteins are very similar, with 123 of the 127 amino acids of ILBP having backbone and C(beta) conformations nearly identical to those of 123 of the 131 residues of IFABP. Despite this structural similarity, the sequences of these proteins have diverged, with 23% sequence identity and an additional 16% sequence similarity. The folding process was completely reversible, and no significant concentrations of intermediates were observed by circular dichroism or fluorescence at equilibrium for either protein. ILBP was less stable than IFABP with a midpoint of 2. 9 M urea compared to 4.0 M urea for IFABP. Stopped-flow kinetic studies showed that both the folding and unfolding of these proteins were not monophasic, suggesting that either multiple paths or intermediate states were present during these processes. Proline isomerization is unlikely to be the cause of the multiphasic kinetics. ILBP had an intermediate state with molten globule-like spectral properties, whereas IFABP had an intermediate state with little if any secondary structure during folding and unfolding. Double-jump experiments showed that these intermediates appear to be on the folding path for each protein. The folding mechanisms of these proteins were markedly different, suggesting that the different sequences of these two proteins dictate different paths through the folding landscape to the same final structure.  相似文献   

19.
We simulate the aggregation thermodynamics and kinetics of proteins L and G, each of which self-assembles to the same alpha/beta [corrected] topology through distinct folding mechanisms. We find that the aggregation kinetics of both proteins at an experimentally relevant concentration exhibit both fast and slow aggregation pathways, although a greater proportion of protein G aggregation events are slow relative to those of found for protein L. These kinetic differences are correlated with the amount and distribution of intrachain contacts formed in the denatured state ensemble (DSE), or an intermediate state ensemble (ISE) if it exists, as well as the folding timescales of the two proteins. Protein G aggregates more slowly than protein L due to its rapidly formed folding intermediate, which exhibits native intrachain contacts spread across the protein, suggesting that certain early folding intermediates may be selected for by evolution due to their protective role against unwanted aggregation. Protein L shows only localized native structure in the DSE with timescales of folding that are commensurate with the aggregation timescale, leaving it vulnerable to domain swapping or nonnative interactions with other chains that increase the aggregation rate. Folding experiments that characterize the structural signatures of the DSE, ISE, or the transition state ensemble (TSE) under nonaggregating conditions should be able to predict regions where interchain contacts will be made in the aggregate, and to predict slower aggregation rates for proteins with contacts that are dispersed across the fold. Since proteins L and G can both form amyloid fibrils, this work also provides mechanistic and structural insight into the formation of prefibrillar species.  相似文献   

20.
An analogue of the BPT1 folding intermediate that contains only the disulphide bond between Cys-5 and Cys-55 has been prepared by mutation of the other four Cys residues to Ser. On the basis of its circular dichroism and 1H-nuclear magnetic resonance spectra and its electrophoretic mobility, this intermediate is shown to be at least partially folded at low temperatures. This probably accounts for several of the unique properties of this intermediate observed during folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号