首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparisons of chlorophyll a fluorescence characteristics ofC3 and CAM forms of Mesembryanthemum crystallinum were usedto identify features of the photosynthetic mechanism associatedwith CAM. The reduction status, Q, was lower and predicted PSII activityhigher in the C3 form than in the CAM form throughout the photoperiod.These differences were particularly pronounced during the firsthour of illumination when non-photochemical quenching attributableto the intrathylakoid proton gradient was also at its highestin the CAM form. It is argued that this high proton gradientdiminishes PSII activity and serves a protective role againstphotoinhibition at a time in the CAM cycle when both CO2 concentrationwithin the leaf, and carbon cycle enzyme activation levels arelikely to be low. Differences in fluorescence characteristics between the C3 andCAM forms also indicate modification of the energy transductionmechanisms of the CAM form possibly related to the increasedoverall demand for ATP in CAM photosynthesis. Total non-photochemicalquenching was higher in the CAM form than in the C3 form. Aninverse relationship between fast and slowly-relaxing componentsof non-photochemical quenching can be interpreted in terms ofthe changing demand for ATP in the different phases of CAM. Key words: C3/CAM photosynthesis, chlorophyll fluorescence, state transitions, cyclic photophosphorylation  相似文献   

2.
Cyanobacteria are capable of using dissipation of phycobilisome-absorbed energy into heat as part of their photoprotective strategy. Non-photochemical quenching in cyanobacteria cells is triggered by absorption of blue-green light by the carotenoid-binding protein, and involves quenching of phycobilisome fluorescence. In this study, we find direct evidence that the quenching is accompanied by a considerable reduction of energy flow to the photosystems. We present light saturation curves of photosystems’ activity in quenched and non-quenched states in the cyanobacterium Synechocystis sp. PCC 6803. In the quenched state, the quantum efficiency of light absorbed by phycobilisomes drops by about 30-40% for both photoreactions—P700 photooxidation in the photosystem II-less strain and photosystem II fluorescence induction in the photosystem I-less strain of Synechocystis. A similar decrease of the excitation pressure on both photosystems leads us to believe that the core-membrane linker allophycocyanin APC-LCM is at or beyond the point of non-photochemical quenching. We analyze 77 K fluorescence spectra and suggest that the quenching center is formed at the level of the short-wavelength allophycocyanin trimers. It seems that both chlorophyll and APC-LCM may dissipate excess energy via uphill energy transfer at physiological temperatures, but neither of the two is at the heart of the carotenoid-binding protein-dependent non-photochemical quenching mechanism.  相似文献   

3.
The alterations in the PSII activity of leaves, subsequent toa mild or severe heat stress were characterized by monitoringthe Chl a fluorescence and thermoluminescence emission fromintact leaves. The Chl a fluorescence measurements were carriedout in leaves adapted to either ‘state I’ or ‘stateII’ since under these two conditions the photosyntheticapparatus is known to have distinctly different structure-functionrelationships. The pattern of Chl a fluorescence induction instate II-adapted leaves was different from that of state I-adaptedleaves due to the alterations in the extent of photochemical(qQ) and non-photochemical (qE) quenching during the time courseof induction. The pattern of changes in qQ and qE values wasalso altered by heat treatment depending on the severity ofheat stress; severe heat stress (47°C) suppressing theseparameters drastically. Mild heat treatment (42°C) did notaffect the ability of leaves to undergo state I to state IItransition whereas the severe heat stress totally abolishedsuch transition. The fluorescence and thermoluminescence characteristicsof the leaves that have been exposed to the severe heat stresssuggest that a large number of affected PSII units retain afunctional water-oxidizing complex at the donor side. (Received June 14, 1994; Accepted July 19, 1995)  相似文献   

4.
Michael Bradbury  Neil R. Baker 《BBA》1984,765(3):275-281
Estimations of the changes in the reduction-oxidation state of Photosystem II electron acceptors in Phaseolus vulgaris leaves were made during the slow decline in chlorophyll fluorescence emission from the maximal level at P to the steady-state level at T. The relative contributions of photochemical and non-photochemical processes to the fluorescence quenching were determined from these data. At a low photon flux density of 100 μmol · m?2 · s?1, non-photochemical quenching was the major contributor to the fluorescence decline from P to T, although large charges were observed in photochemical quenching immediately after P. On increasing the light intensity 10-fold, the contribution of photochemical processes to fluorescence quenching was markedly diminished, with nearly all the P-to-T fluorescence decline being attributable to changes in non-photochemical quenching. The possible factors responsible for changes in non-photochemical quenching within the leaves are discussed.  相似文献   

5.
Resistance of Photosynthesis to Hydrogen Peroxide in Algae   总被引:18,自引:0,他引:18  
The effects of H2O2 on the photosynthetic fixation of CO2 andon thiol-modulated enzymes involved in the photosynthetic reductionof carbon in algae were studied in a comparison with those inchloroplasts isolated from spinach leaves. In both systems,H2O2-scavenging enzymes were inhibited by addition of 0.1 mMNaN3 1 h prior to the addition of H2O2. A concentration (10-4M) of H2O2 caused strong inhibition of the CO2 fixation by intactspinach chloroplasts, as observed by Kaiser [(1976) Biochim.Biophys. Acta 440: 476], but not that by Euglena and Chlamydomonascells. The same results were also obtained with cells of thecyanobacteria Synechococcus PCC 7942 and Synechocystis PCC 6803in the presence of 1 mM hydroxylamine. These results indicatethat algal photosynthesis is rather resistant to H2O2. The insusceptibilityto H2O2 of thiolmodulated enzymes, namely, fructose-1,6-bisphosphatase,NADP-glyceraldehyde-3-phosphate dehydrogenase, and ribulose-5-phosphatekinase, was also observed in the chloroplasts of Euglena andChlamydomonas and in cyanobacterial cells. It seems likely thatthe resistance of photosynthesis to H2O2 is due in part to theinsusceptibility of the algal thiol-modulated enzymes to H2O2. (Received April 22, 1995; Accepted June 29, 1995)  相似文献   

6.
After exposure to 80 ppb of ozone for a single 4 h period, asignificant reduction in photosynthetic activity was rapidlyinduced in two cultivars of Phaseolus vulgaris, cv. Pinto, O3-sensitiveand cv. Groffy, O3-resistant. Pinto displayed a strong and irreversiblereduction in Amax accompanied by stomatal closure and an increasein intercellular CO2 concentration. The fluorescence parametersindicated that the electron transport around PSII had been altered.The increase in non-photochemical quenching was related to anenergy dissipation through non-radiative mechanisms. Photosynthesiswas also reduced in the cv. Groffy, but the effect was reversiblewith time. Groffy showed alteration in the photochemical functioningof the thylakoids and specific disturbances of the water-splittingenzyme system of PSII, but these alterations disappeared only20 h after the end of fumigation. Recovery of photosyntheticability was more delayed with time and needed 7 d to show valuessimilar to the controls. Physiological tools, such as gas exchangeand chlorophyll fluorescence, play a major role in the earlydetection of environmental stress such as O3 pollution, andin distinguishing the responses between cultivars with differentO3-sensitivity. Key words: Gas exchange measurements, nonphotochemical quenching, Phaseolus vulgaris, photochemical quenching, stomatal conductance  相似文献   

7.
The CO2-, H2O- and 16O2/18O2 isotopic-gas exchange and the fluorescencequenching by attached leaves of the wild-type and of the phytochrome-deficienttomato aurea mutant was compared in relation to water stressand the photon fluence rate. The chlorophyll content of aurealeaves was reduced and the ultra-structure of the chloroplastswas altered. Nevertheless, the maximum rate of net CO2 uptakein air by the yellow-green leaves of the aurea mutant was similarto that by the dark-green wild-type leaves. However, less O2was produced by the leaves of the aurea mutant than by leavesof the wild-type. This result indicates a reduced rate of photosyntheticelectron flux in aurea mutant leaves. No difference in bothphotochemical and non-photochemical fluorescence quenching wasfound between wild-type and aurea mutant leaves. Water stresswas correlated with a reversible decrease in the rates of bothnet CO2 uptake and transpiration by wild-type and aurea mutantleaves. The rate of gross 16O2 evolution by both wild-type andaurea mutant leaves was fairly unaffected by water stress. Thisresult shows that in both wild-type and aurea leaves, the photochemicalprocesses are highly resistant to water stress. The rate ofgross 18O2 uptake by wild-type leaves increased during waterstress when the photon fluence rate was high. Under the sameconditions, the rate of gross 18O2 uptake by aurea mutant leavesremained unchanged. The physiological significane of this differencewith respect to the (presumed) importance of oxygen reductionin photoprotection is discussed. Key words: Water stress, gas exchange, fluorescence quenching, Lycopersicon esculentum, mutant (tomato, aurea), energy dissipation  相似文献   

8.
Internodal cells of Nitellopsis were made tonoplast-free byperfusion with a medium containing EGTA. Cytoplasmic concentrationsof solutes were controlled by a second perfusion with mediaof known composition. The electrogenic pump current (Ip), whichwas calculated from electrical data obtained from cells withand without ATP, was compared with the current carried by H+(IH+) across the plasma membrane. A close correlation betweenIp and IH+ was found under various internal and external conditions.(1) Ip and IH+ depended on the internal ATP and showed Michaelis-Mententype saturation curves. For Ip, Km was 120 µM and themaximum current Vmax was 15.1 mA m–2, while for IH+, Kmwas 160 µM and Vmax was 16.6 mA m–2. (2) Ip andIH+ showed almost the same IH2+ dependence. The Mg2+-dependentIp was 19.5 mA m–2, while the Mg2+-dependent IH2+ was17.7 mA m–2. (3) IH2+ was maximal at an external pH of8 and decreased both in acidic and alkaline pH ranges. Ip wasnearly equal to IH+ in the pH range between 8 and 5. (4) IH+became maximal at an internal pH of 7.3, which is nearly thesame as the pH for maximal electrogenecity found by Mimura andTazawa (1984). All these facts support the idea proposed in our previous paper(Takeshige et al. 1985) that the electrogenic ion pump locatedin the plasma membrane of Nitellopsis is the H+ pump. 1 Dedicated to Professor Dr. Erwin Bünning on the occasionof his 80th birthday. (Received June 21, 1985; Accepted December 20, 1985)  相似文献   

9.
 以砂培菊芋(Helianthus tuberosus)幼苗作为试验材料,分别进行不同浓度NaCl (50、 100、150、200、250 mmol&;#8226;L-1)和Na2CO3 (25、50、 75、100、125 mmol&;#8226;L-1)胁迫处理,以1/2全营养液作为对照,处理7 d后研究NaCl和Na2CO3胁迫处理对菊芋幼苗叶片光合作用及叶绿素动力学 参数的影响。结果表明:1)在NaCl处理下,当浓度小于150 mmol&;#8226;L-1时,增加了菊芋的叶绿素含量、净光合速率(Net photosynthetic rate, Pn)和气孔导度(Stomatal conductivity, Gs),对荧光参数PSⅡ的电子传递情况( Fm/Fo)、PSⅡ原初光能转换效率(Fv/Fm)、PSⅡ量子效率 (Actual quantum yield of PSⅡ under actinic irradiation,φPSⅡ)和光化学猝灭系数(Photochemical quenching coefficient, qP)和非 光化学猝灭系 数(Non-photochemical quenching coefficient, NPQ)没有显著影响,随着浓度的增加,各项生理指标与对照相比除了NPQ显著 增加,其余均显著降低;2)在Na2CO3胁迫处理下,随着Na2CO3浓度的增加,与对照相比菊芋幼苗叶绿素含量、Pn、Gs以及叶绿素a荧光诱导动力 学参数Fm/Fo、Fv/Fm、φPSⅡ和qP均显著降低,NPQ显著增加;3)就NaCl和Na2CO3相比而言,在相同Na+浓度情况下,处于Na2CO3胁迫下的菊芋 幼苗的叶绿素含量、Pn、Gs以及叶绿素a荧光诱导动力学参数Fm/Fo、Fv/Fm、φPSⅡ和qP下降幅度和NPQ的增加幅度均显著大于NaCl,这说明 NaCl和Na2CO3胁迫均对菊芋幼苗造成不同程度的伤害,但在相同Na+浓度情况下,Na2CO3的伤害程度大于NaCl。由此说明菊芋对盐的忍耐程度高 于碱。  相似文献   

10.

The saturation pulse method provides a means to distinguish between photochemical and non-photochemical quenching, based on the assumption that the former is suppressed by a saturating pulse of light (SP) and that the latter is not affected by the SP. Various types of non-photochemical quenching have been distinguished by their rates of dark relaxation in the time ranges of seconds, minutes, and hours. Here we report on a special type of non-photochemical quenching, which is rapidly induced by a pulse of high-intensity light, when PS II reaction centers are closed, and rapidly relaxes again after the pulse. This high-intensity quenching, HIQ, can be quantified by pulse-amplitude-modulation (PAM) fluorimetry (MULTI-COLOR-PAM, high sensitivity combined with high time resolution) via the quasi-instantaneous post-pulse fluorescence increase that precedes recovery of photochemical quenching in the 100–400-µs range. The HIQ amplitude increases linearly with the effective rate of quantum absorption by photosystem II, reaching about 8% of maximal fluorescence yield. It is not affected by DCMU, is stimulated by anoxic conditions, and is suppressed by energy-dependent non-photochemical quenching (NPQ). The HIQ amplitude is close to proportional to the square of maximal fluorescence yield, Fm′, induced by an SP and varied by NPQ. These properties are in line with the working hypothesis of HIQ being caused by the annihilation of singlet excited chlorophyll a by triplet excited carotenoid. Significant underestimation of maximal fluorescence yield and photosystem II quantum yield in dark-acclimated samples can be avoided by use of moderate SP intensities. In physiologically healthy illuminated samples, NPQ prevents significant lowering of effective photosystem II quantum yield by HIQ, if excessive SP intensities are avoided.

  相似文献   

11.
To determine the mechanism of carotenoid-sensitized non-photochemical quenching in cyanobacteria, the kinetics of blue-light-induced quenching and fluorescence spectra were studied in the wild type and mutants of Synechocystis sp. PCC 6803 grown with or without iron. The blue-light-induced quenching was observed in the wild type as well as in mutants lacking PS II or IsiA confirming that neither IsiA nor PS II is required for carotenoid-triggered fluorescence quenching. Both fluorescence at 660 nm (originating from phycobilisomes) and at 681 nm (which, upon 440 nm excitation originates mostly from chlorophyll) was quenched. However, no blue-light-induced changes in the fluorescence yield were observed in the apcE mutant that lacks phycobilisome attachment. The results are interpreted to indicate that interaction of the Slr1963-associated carotenoid with - presumably - allophycocyanin in the phycobilisome core is responsible for non-photochemical energy quenching, and that excitations on chlorophyll in the thylakoid equilibrate sufficiently with excitations on allophycocyanin in wild type to contribute to quenching of chlorophyll fluorescence.  相似文献   

12.
The effect of pretreatment with abscisic acid (ABA) on the physiologyof the moss Atrichum androgynum during a desiccation–rehydrationcycle was examined. During rehydration following desiccationfor 16 h, net CO2fixation recovered much more slowly than photosystemII (PSII) activity, conditions conducive to the formation ofreactive oxygen species (ROS) in the photosynthetic apparatus.Pretreatment with ABA increased the rate of recovery of photosynthesisand PSII activity, and also doubled non-photochemical quenching(NPQ). Increased NPQ activity will reduce ROS formation, andmay explain in part how ABA hardens the moss to desiccation.In ABA-pretreated, but not untreated mosses, desiccation significantlyincreased the concentration of soluble sugars. Sugar accumulationmay promote vitrification of the cytoplasm and protect membranesduring desiccation. Starch concentrations in freshly collectedA. androgynum were only approx. 40 mg g-1dry mass; they roseslightly during desiccation but were only slightly affectedby ABA pretreatment. ABA did not reduce chlorophyll breakdownduring desiccation. Copyright 2001 Annals of Botany Company Moss, desiccation, abscisic acid, photosynthesis, chlorophyll fluorescence  相似文献   

13.
Mistletoes usually have slower rates of photosynthesis thantheir hosts. This study examines CO2assimilation, chlorophyllfluorescence and the chlorophyll content of temperate host–parasitepairs (nine hosts parasitized by Ileostylus micranthus and Carpodetusserratus parasitized by Tupeia antarctica). The hosts of I.micranthus had higher mean annual CO2assimilation (3.59 ±0.41 µmol m-2 s-1) than I. micranthus(2.42 ± 0.20µmol m-2 s-1), and C. serratus(2.41 ± 0.43 µmolm-2 s-1) showed higher CO2assimilation than T. antarctica(0.67± 0.64 µmol m-2 s-1). Hosts saturated at significantlyhigher electron transport rates (ETR) and light levels thanmistletoes. The positive relationship between CO2assimilationand electron transport suggests that the lower CO2assimilationrates in mistletoes are a consequence of lower electron transportrates. When photosynthetic rates, ETR and chlorophyll a /b ratioswere adjusted for photosynthetically active radiation, hostsdid not have significantly higher CO2assimilation (3.21 ±0.37 µmol m-2 s-1) than mistletoes (2.54 ± 0.41µmol m-2 s-1), but still had significantly higher ETRand chlorophyll a / b ratios. The electron transport rates,saturating light and chlorophyll a / b ratios of sun leavesfrom mistletoes were similar to host shade leaves. These responsesindicate that in comparison with their hosts, mistletoe leaveshave the photosynthetic characteristics of the leaves of shadeplants. Copyright 2000 Annals of Botany Company CO2assimilation, photosynthetic active radiation (PAR), chlorophyll fluorescence, electron transport rate (ETR), photochemical quenching (qp), non-photochemical quenching (qn), sun and shade leaves, chlorophyll content, Ileostylus micranthus, Tupeia antarctica, New Zealand  相似文献   

14.
Addition of ethylene glycol (EG) or NaCl to cells of Chlamydomonasreinhardtii induced transient non-photochemical quenching ofChl fluorescence correlated with the inhibition of photosyntheticoxygen evolution. The induction of the quenching and subsequentrecovery proceeded not only in the light but also in the dark.The quenching was almost unaffected by the protonophore nigericin,suggesting the involvement of a type of non-photochemical quenchingattributable to a state 2 transition. Higher concentrationsof EG or NaCl caused a delay of the recovery of the maximumfluorescence yield (Fm'). Dark reduction rate of P700+ afterthe application of a flash light in the presence of DCMU wasenhanced by the hyperosmotic shock, suggesting a stimulatedreduction of the intersystem electron carriers. It is proposedthat the osmotic stress stimulates electron donation from stromalcomponents via the NAD(P)H dehydrogenase, which results in thereduction of the intersystem chain and triggering of a state2 transition leading to stimulated cyclic PSI activity. (Received May 16, 1995; Accepted July 26, 1995)  相似文献   

15.
ATP is proposed to be a major inhibitory neurotransmitter in the gastrointestinal (GI) tract, causing hyperpolarization and smooth muscle relaxation. ATP activates small-conductance Ca2+-activated K+ channels that are involved in setting the resting membrane potential and causing inhibitory junction potentials. No reports are available examining the effects of ATP on voltage-dependent inward currents in GI smooth muscle cells. We previously reported two types of voltage-dependent inward currents in murine proximal colonic myocytes: a low-threshold voltage-activated, nonselective cation current (IVNSCC) and a relatively high-threshold voltage-activated (L-type) Ca2+ current (IL). Here we have investigated the effects of ATP on these currents. External application of ATP (1 mM) did not affect IVNSCC or IL in dialyzed cells. ATP (1 mM) increased IVNSCC and decreased IL in the perforated whole-cell configuration. UTP and UDP (1 mM) were more potent than ATP on IVNSCC. ADP decreased IL but had no effect on IVNSCC. The order of effectiveness was UTP = UDP > ATP > ADP. These effects were not blocked by pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid) (PPADS), but the phospholipase C inhibitor U-73122 reversed the effects of ATP on IVNSCC. ATP stimulation of IVNSCC was also reversed by protein kinase C (PKC) inhibitors chelerythrine chloride or bisindolylmaleimide I. Phorbol 12,13-dibutyrate mimicked the effects of ATP. RT-PCR showed that P2Y4 is expressed by murine colonic myocytes, and this receptor is relatively insensitive to PPADS. Our data suggest that ATP activates IVNSCC and depresses IL via binding of P2Y4 receptors and stimulation of the phospholipase C/PKC pathway. inhibitory junction potentials; smooth muscle; enteric nervous system  相似文献   

16.
We used the short-circuit current (Isc) technique to investigate the effects of the isoflavone genistein on the electrogenic Cl secretion of the mouse jejunum. Genistein stimulated a sustained increase in Isc that was dose dependent. Bumetanide inhibited 76 ± 5% of the genistein-stimulated Isc consistent with activation of Cl secretion. Genistein failed to stimulate Isc following maximal activation of the cAMP pathway by forskolin. In addition, forskolin had a reduced effect on Isc of the mouse jejunum in the presence of genistein. Glibenclamide, a blocker of CFTR, eliminated the genistein-stimulated increase of Isc and reduced the forskolin-activated Isc. Clotrimazole, a Ca2+-activated K+ channel blocker, failed to reduce the genistein-stimulated Isc. Vanadate, a blocker of tyrosine-dependent phosphatases, reduced the genistein-activated Isc. Tyrphostin A23, a tyrosine kinase inhibitor, reduced basal Isc, after which genistein failed to stimulate Isc. These data suggest that genistein activated a sustained Cl secretory response of the mouse jejunum and that the effect of genistein was via a tyrosine-dependent phosphorylation pathway. 1-ethyl-2-benzimidazolone; vanadate; tyrphostin A23; cantharidic acid; phosphatase  相似文献   

17.
The effects ofintracellular nucleotide triphosphates on time-dependent changes inmuscarinic receptor cation currents (Icat) wereinvestigated using the whole cell patch-clamp technique in guinea pigileal muscle. In the absence of nucleotide phosphates in the patchpipette, Icat evoked every 10 min decayedprogressively. This decay was slowed dose dependently by inclusion ofmillimolar concentrations of ATP in the pipette. This required acomparable concentration of Mg2+, was mimicked by UTP andCTP, and was attenuated by simultaneous application of alkalinephosphatase or inhibitors of tyrosine kinase. In contrast, a suddenphotolytic release of millimolar ATP (probably in the free form) causeda marked suppression of Icat. Submillimolarconcentrations of GTP dose dependently increased the amplitude ofIcat as long as ATP and Mg2+ were inthe pipette, but, in their absence, GTP was ineffective at preventingIcat decay. The decay ofIcat was paralleled by altered voltage-dependentgating, i.e., a positive shift in the activation curve and reduction inthe maximal conductance. It is thus likely that ATP exerts tworeciprocal actions on Icat, throughMg2+-dependent and -independent mechanisms, and that theenhancing effect of GTP on Icat is essentiallydifferent from that of ATP.

  相似文献   

18.
The features of the two types of short-term light-adaptations of photosynthetic apparatus, State 1/State 2 transitions, and non-photochemical fluorescence quenching of phycobilisomes (PBS) by orange carotene-protein (OCP) were compared in the cyanobacterium Synechocystis sp. PCC 6803 wild type, CK pigment mutant lacking phycocyanin, and PAL mutant totally devoid of phycobiliproteins. The permanent presence of PBS-specific peaks in the in situ action spectra of photosystem I (PSI) and photosystem II (PSII), as well as in the 77 K fluorescence excitation spectra for chlorophyll emission at 690 nm (PSII) and 725 nm (PSI) showed that PBS are constitutive antenna complexes of both photosystems. The mutant strains compensated the lack of phycobiliproteins by higher PSII content and by intensification of photosynthetic linear electron transfer. The detectable changes of energy migration from PBS to the PSI and PSII in the Synechocystis wild type and the CK mutant in State 1 and State 2 according to the fluorescence excitation spectra measurements were not registered. The constant level of fluorescence emission of PSI during State 1/State 2 transitions and simultaneous increase of chlorophyll fluorescence emission of PSII in State 1 in Synechocystis PAL mutant allowed to propose that spillover is an unlikely mechanism of state transitions. Blue–green light absorbed by OCP diminished the rout of energy from PBS to PSI while energy migration from PBS to PSII was less influenced. Therefore, the main role of OCP-induced quenching of PBS is the limitation of PSI activity and cyclic electron transport under relatively high light conditions.  相似文献   

19.
Terrestrial mats of cyanobacteria with other associated microscopicalcryptogams were obtained from various sites in the tropics,i.e. rocks of mountains and rock-outcrops and bare soil surfaces,a valley in the Austrian Alps and a glasshouse. Species diversityof each sample was analysed qualitatively. The samples camefrom very different light climates. Responses to light and desiccationstress were studied using the saturation pulse method for recordingchlorophyll fluorescence variables as well as by measuring netCO2 and O2 exchange in order to confirm results by independentmethods. Under light stress, shade and high-light, samples showeda reduction of gas exchange and of the fluorescence variablesphotochemical fluorescence quenching coefficient (qp), potentialquantum yield of photosystem II (FvIFm) and effective quantumyield (  相似文献   

20.
The electrical conductance of the plasmalemma of cells of Charainflata, due to the diffusion of ions, consists predominantlyof K+, Cl and leak components. When the membrane electricalpotential difference is stepped in a negative direction witha voltage-clamp, the resulting inward current has componentsIK, ICl and IL (leak). During such voltage-clamp steps IK isinactivated, and Ic activated with voltage-dependent half-times.Increases in the external NaCl concentration reduce the magnitudeof IK and increase the magnitude of Ic, but reduce the half-timeof inactivation or activation. The NaCl-induced changes in Ikand ICl and their kinetics were more pronounced at pH0 =6.5than at pH0 =9.5. When the concentration of external CaCl2 wasincreased, Ik, ICl and the half-time of inactivation, (T1/2),of Ik were all reduced. The half-time of activation of ICl wasincreased. The NaCI-induced changes could result from increases in bothexternal ion concentration and osmotic pressure. Previous experimentshave shown that an increase in external osmotic pressure alonealters the properties of the conductances. In this paper weattempt to separate the purely ionic effects from the osmoticones. Key words: Chara inflata, ionic effects, K+ and Cl currents  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号