首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 342 毫秒
1.
Acetylcholinesterase (AChE) is found both in motor end-plate (MEP)-free and MEP-rich regions of rat or mouse muscle. We studied the developmental aspects of the localization of asymmetric 16S AChE in both regions of the sternocleidomastoid muscle, which has a well-defined zone of motor innervation. In the rat, the proportion of 16S AChE to total AChE increases in the MEP-rich region, and becomes significantly higher than in the MEP-free regions between the first and the second weeks after birth. In the mouse, at birth, the MEP-rich region already has a higher relative content in 16S AChE than the MEP-free regions. Total 16S AChE amounts increase during postnatal development, not only in the MEP-rich region but also in the MEP-free regions. Thus, 16S AChE is not eliminated from MEP-free regions during muscle maturation and growth. Two distinct pools of 16S AChE are distinguished in the muscles, both of which increase during postnatal development: junctional and background 16S AChE.  相似文献   

2.
Denervated neonatal rat sternocleidomastoid muscle has decreased levels of total AChE when compared to control muscle. Denervated versus control values of total muscle AChE present a three-phase curve in function of time after denervation. There is a rapid initial fall 0-3 days after denervation, an increase during about 2 weeks, then again a decrease in total AChE. Thus, there is a transitory net accumulation of AChE after the initial fall of activity in denervated developing muscle. Extrasynaptic areas of high AChE activity develop between 1 and 2 weeks after denervation and remain visible up to 1 month after denervation before vanishing. An electron microscope study shows that these accumulations are internal to the muscle fiber, close to a limited number of muscle nuclei and associated to the sarcoplasmic reticulum and nuclear envelope, but not to the T-tubule system. As found in adult rat muscle, the initial fall in AChE affects first the 16 S AChE form, and soon after, the 4 S and 10 S AChE forms. A main difference with adult muscle is the sudden increase and predominance over other forms of 10 S AChE 2 weeks after denervation at birth. Later, the decrease in AChE affects 16 S and 4 S AChE before 10 S AChE. The regions rich in extrasynaptic sites of AChE accumulation possess a very high proportion of 10 S AChE. Thus, the mechanisms of biosynthesis, intracellular transport and/or secretion of AChE may be very different in young, developing muscle compared to adult muscle.  相似文献   

3.
With the aim of investigating the roles of motor innervation and activity on muscle characteristics, we studied the molecular forms of acetylcholinesterase (AChE) in fast-twitch (semimembranosus accessorius; SMa) and slow-twitch (semimembranosus proprius; SMp) muscles of the rabbit. We have shown that SMa and SMp express different patterns and tissue distribution of AChE forms and that the effect of long denervation varies with age. Three principal findings concerning expression of AChE molecular forms emerge from these studies. (1) The activity of AChE and the pattern of its molecular forms are particularly altered in adult denervated SMa and SMp muscles. AChE activity increases by 10-fold in both muscles, but asymmetric forms disappear in SMa and increase by 20-fold in SMp muscles. A similar alteration of AChE is found after tenotomy of these muscles, showing that the effect of denervation may be partly due to suppression of muscle activity. (2) The different changes occurring in the composition of AChE molecular forms in adult denervated SMa and SMp muscles are consistent with fluorescent staining with anti-AChE monoclonal antibodies and with DBA or VVA lectins, which bind to AChE asymmetric, collagen-tailed forms. These lectins poorly stain denervated SMa muscle surfaces but intensely stain neuromuscular junctions and extrasynaptic areas in denervated SMp muscle. (3) In contrast with the adult, denervation of 1-day-old muscles does not markedly modify the total amount of AChE or the proportions of its molecular forms, despite dramatic effects on muscle structure. These results are supported by studies of labeling with fluorescent DBA: the lectin only slightly stains the muscle fiber surface of denervated 15-day-old SMp muscle. Taken together, these data show that denervated muscles escape physiological regulation, producing increased levels of AChE with highly variable cellular distribution and patterns of molecular forms, depending on the age of operation and on the type of muscle.  相似文献   

4.
Experimental denervation of adult mouse sternocleidomastoid muscle results in a decrease in total AChE. The most rapid change essentially affects the tailed, asymmetric 16 S AChE, since one day after nerve section, “16S” AChE is already significantly decreased to about 70% of its control value. We found that both background and junctional “16S” AChE are affected by this rapid decrease. Later, a sharp fall in “10S” and “4S” AChE occurs about seven days after denervation when muscle atrophy develops with loss of weight and proteins. A gaussian analysis of the sedimentation profiles of AChE extracted from denervated muscle shows that there is not only an early rapid decrease in 16 S AChE but also a decrease in the monomeric 3.3S AChE. This result suggests that there is a very rapid turn-over of two molecular forms of AChE, the supposedly monomeric precursor and the complex asymmetric 16S AChE.  相似文献   

5.
Acetylcholinesterase (AChE) molecular forms in denervated rat muscles, as revealed by velocity sedimentation in sucrose gradients, were examined from three aspects: possible differences between fast and slow muscles, response of junctional vs extrajunctional AChE, and early vs late effects of denervation. In the junctional region, the response of the asymmetric AChE forms to denervation is similar in fast extensor digitorum longus (EDL) and slow soleus (SOL) muscle: (a) specific activity of the A12 form decreases rapidly but some persists throughout and even increases after a few weeks; (b) an early and transient increase of the A4 AChE form lasting for a few weeks may be due to a block in the synthetic process of the A12 form. In the extrajunctional regions, major differences with regard to AChE regulation exist already between the normal EDL and SOL muscle. The extrajunctional asymmetric AChE forms are absent in the EDL because they became completely repressed during the first month after birth, but they persist in the SOL. Differences remain also after denervation and are, therefore, not directly due to different neural stimulation patterns in both muscles: (a) an early but transient increase of the G4 AChE occurs in the denervated EDL but not in the SOL; (b) no significant extrajunctional activity of the asymmetric AChE forms reappears in the EDL up till 7 wk after denervation. In the SOL, activity of the asymmetric AChE forms is decreased early after denervation but increases thereafter.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Abstract: The formation of ectopic junctions between the foreign fibular nerve and the soleus muscle of young (35-day-old) and mature (200-day-old) adult rats was induced by severing the normal nerve 4 weeks after implanting the foreign nerve. The various molecular forms of ace-tylcholinesterase (AChE) were studied both at the implanted region and at the original denervated endplates. The velocity of contraction was also studied. In young rats the 16S form was first detected in the ectopic junctions around day 5 after reinnervation; this form rapidly increased during the following weeks, reaching a plateau by day 20. By contrast, in mature rats the appearance of the 16S AChE was dramatically delayed; in fact, it could not be observed before day 80 after reinnervation. (The 16S AChE form appeared at day 20 after reinnervation in the original denervated endplates of young rats; however, at the same time, no effect was observed in mature animals.) The original, slow muscle fibers of the soleus became faster upon reinnervation; this change occurred also much earlier in younger than in mature rats. Our results indicate a loss of plasticity in the skeletal muscle of mature rats. We suggest caution in the use of the ectopic innervation model to study development in mature adult rats.  相似文献   

7.
Rat soleus muscles were ectopically innervated by implanting a foreign nerve in an endplate-free region of muscle and, 2–3 weeks later, cutting the original nerve. The junctional, 16 S form of acetylcholinesterase (AChE) and focal staining for AChE disappeared from the old endplate region within a few days after denervation. In muscles with an ectopic nerve, but not in paired control muscles, 16 S AChE and focal staining were restored in the old endplate region 1–2 weeks after denervation even though nerve fibers could not be detected in that region. These results suggest that the nerve exerts a local effect, specifying the site at which junctional AChE appears, and a nonlocal effect, perhaps mediated by muscle activity, regulating the amount of junctional AChE.  相似文献   

8.
Most of mouse diaphragm muscle acetylcholinesterase (AChE) is irreversibly inhibited after a single intraperitoneal injection of a methyl-phosphorothiolate derivative (MPT), an organophosphorus compound which phosphorylates the active site. The muscle recovers its AChE (de novo synthesis) and we studied the time course of reappearance of AChE and its multiple active molecular forms. After inhibition, there is an initial (3 to 15 hr) rapid recovery of total AChE (which evolves from 20-28% to 50-60% of the control values), followed by a slow phase of AChE return. After 3 days, the recovery is still incomplete (reaching 70-80% of control values). Among the main molecular forms present in diaphragm muscle (16 S, 10 S and 4 S, accompanied by minor components), the 16 S and 10 S forms are the most sensitive to MPT treatment. During the rapid initial phase of AChE recovery, the absolute rate of recovery of the 4 S form is faster than for the other forms with a correspondingly much higher relative proportion to total AChE. These observations are consistent with the hypothesized precursor role of the 4 S form. The 16 S form, which is found concentrated in the motor end-plate (MEP)-rich regions and in low amounts in MEP-free regions, is similarly partially recovered in both regions, suggesting that there is 16 S biosynthesis not only in the MEP-rich regions but also in the MEP-free regions.  相似文献   

9.
10.
The effects of rat obturator nerve extracts on total and 16S acetylcholinesterase (AChE) activity were studied in endplate regions of denervated anterior gracilis muscles maintained in organ culture for 48 hr. The decrease of total AChE activity in cultured muscles was similar to that observed in denervated muscles in vivo. This decrease in activity was partly prevented by addition of either 100 or 200 μl nerve extract (2.7 mg/ml protein) to the nutrient medium. Nerve extract treatment also decreased the release of AChE activity from the muscle into the bathing medium. Conversely, rat serum (20 μl; 90 mg/ml protein) had no effect on total AChE activity in muscle endplates, nor on release of the enzyme by the muscle. The 16S form of AChE was confined to motor endplate muscle regions and its activity was drastically decreased by denervation in both organ culture and in vivo preparations in a comparable manner. Nerve-extract supplemented cultures contained a significantly (p ? 0.001) larger amount of endplate 16S AChE activity (140–145%) than the corresponding controls (100-). Our results suggest that some nerve soluble substance, other than serum contaminants or 16S AChE itself, affects the maintenance of 16S AChE at the neuromuscular junction.  相似文献   

11.
SHPS-1 (Src homology 2 domain containing protein tyrosine phosphatase substrate 1) is a transmembrane glycoprotein containing three immunoglobulin-like motifs in its extracellular domain and immunoreceptor tyrosine-based inhibitory motifs (ITIM) that interact with SHP-2 (Src homology 2 domain containing protein tyrosine phosphatase-2) in its cytoplasmic region. SHPS-1 is highly expressed in brain, but at much lower levels in skeletal muscle. In this study, we found that the level of the SHPS-1 mRNA increases in rat skeletal muscle after denervation. Western blot analysis also confirmed the increase of SHPS-1 in denervated muscle. Moreover, it was found that the glycosylation of SHPS-1 is N-linked in a muscle-specific manner, and that this is altered upon innervation or denervation. Immunohistochemistry revealed SHPS-1 immunoreactivity at neuromuscular junctions (NMJs) under innervation, whereas immunoreactivity was observed extrasynaptically in muscle fibers after denervation. Our results indicate that the expression, glycosylation, and localization of SHPS-1 are strongly regulated by the nervous system, and that SHPS-1 may play an important role in denervated skeletal muscle.  相似文献   

12.
13.
Abstract— In sucrose gradient centrifugation, acetylcholinesterase (AChE, EC 3.1.1.7.) from the rat superior cervical ganglion (SCG) has been found to contain four molecular forms, characterized by their sedimentation coefficients (4 S, 6.5 S, 10 S and 16 S). Homogenization of the ganglia in various media showed that the 4 S enzyme was readily solubilized in water whereas solubilization of the 6.5 S and 10 S forms was quantitative only in media containing Triton X-100. In order to solubilize the 16 S form, high concentrations of salt (NaCl 1 M) and detergent had to be present. AChE analysed by non-denaturing polyacrylamide gel electrophoresis separated into five bands. Although both distribution patterns were stable, i.e. each form or band preserved its characteristic sedimentation or electrophoretic migration when reanalysed, there was no 1:1 correlation between the forms isolated by sedimentation and the bands obtained by electrophoresis: one band might contain more than one form of enzyme, and conversely one form gave rise to several bands. It was therefore impossible to derive molecular weights from electrophoretic migration in non-denaturing gels. However, it could be shown that the results obtained by both methods of analysis were consistent. Acetylcholinesterase from other nervous structures was analysed: in pre- and postganglionic nerves, the main forms were 10 S and 6.5 S, with a small proportion of 4 S; the 16 S form was not detected. In other sympathetic ganglia, the distribution of forms was identical to that of the superior cervical ganglion. In rachidian ganglia, no 16 S form could be found. Following the section of the preganglionic nerve, the acetylcholinesterase activity of the superior cervical ganglion decreased by 50% in 3 days, and then rose again to about 80% of its original value after 2 weeks. These effects mainly reflected variations in the major 4 S and 10 S forms. The 16 S form, in contrast to its disappearance from denervated muscles, increased transiently during the first 2 weeks after denervation, reaching about twice its original activity. A concomitant cytochemical study of normal and denervated ganglia showed that after preganglionic denervation, AChE localized in the sympathetic neurones decreased markedly and remained low even during the recovery phase. During this period a cholinesterasic activity appeared in the perineuronal glia. Controls established that the enzyme synthetized in the glia is AChE.  相似文献   

14.
Molecular forms and histochemical localization of acetylcholinesterase and nonspecific cholinesterase were analysed in muscle regenerates obtained from rat EDL and soleus muscles after ischaemic-toxic degeneration and irreversible inhibition of preexistent enzymes. Regenerating myotubes and myofibres produce the 16S AChE form in the absence of innervation. The 10S AChE form prevails over 4S form with maturation into striated fibres. Although the patterns of AChE molecular forms in normal EDL and soleus muscles differ significantly no such differences were observed in noninnervated regenerates from both muscles. Two types of focal accumulation of AChE appear on the sarcolemma of regenerating muscles: first, in places of former motor endplates and, second, in extrajunctional regions. The 4S form of nonspecific cholinesterase is prevailing in regenerating myotubes whereas its asymmetric forms or focal accumulations could not be identified reliably. The satellite cells which survive after muscle degeneration probably originate from some type of late myoblasts and transmit the information concerning the ability to synthesize the asymmetric AChE forms and to focally accumulate AChE to regenerating muscle cells. Synaptic basal lamina from former motor endplates may locally induce AChE accumulations in regenerating muscles.Special Issue Dedicated to Dr. Abel Lajtha.  相似文献   

15.
A comparative study of the molecular forms of acetylcholinesterase (AChE) was made in various smooth muscles (intestine, vas deferens, ciliary body, iris, nictitating membrane retractor, ureter, arteries, anococcygeus muscles) of some mammals (cat, guinea-pig, rat, rabbit, mouse), seeking for a correlation between the presence of 16 S (asymmetric, tailed) form of AChE in smooth muscles and their type of innervation defined by morphological criteria, as well as by the nature of the main neurotransmitters involved in their neuroeffector junctions. Contrary to previous assertions, many smooth muscles contain 16 S AChE, although all those examined here exhibited a proportion clearly less than that of striated muscles. There are large species-specific and individual variations in the percentage of 16 S AChE. The highest percentages of 16 S AChE were found in ciliary and iris muscles, which are provided with an individual (= multiunit) cholinergic innervation. The vas deferens muscles, which are also individually, but noradrenergically innervated contain practically no 16 S AChE. In the muscles having a fascicular (= unitary) innervation, the differences are striking: 16 S AChE is in rather high amount in intestine muscle layers, whereas it is very low or virtually absent in ureter or arterial muscles. Thus, the type of innervation is not clearly involved in the amount of 16 S AChE present in smooth muscles. As for the nature of neurotransmitter a clear correlation exists only in the case of individual innervation, in which only one neurotransmitter is involved or largely predominant.  相似文献   

16.
The evolution of acetylcholinesterase (AChE) activity and AChE molecular form distribution were studied in slow-tonic anterior latissimus dorsi (ALD) and in fast-twitch posterior latissimus dorsi (PLD) muscles of chickens 2-18 days of age. In ALD as well as in PLD muscles, the AChE-specific activity increased transiently from day 2 to day 4; the activity then decreased more rapidly in PLD muscle. During this period asymmetric AChE forms decreased dramatically in ALD muscle and the globular forms increased. In PLD muscle, the most striking change was the decline in A8 form between days 2 and 18 of development. Denervation performed at day 2 delayed the normal decrease in AChE-specific activity in PLD muscle, whereas little change was observed in ALD muscle. Moreover, A forms in these two muscles were virtually absent 8 days after denervation. Direct electrical stimulation depressed the rise in AChE-specific activity in denervated PLD muscle and prevented the loss of the A forms. Furthermore, the different molecular forms varied according to the stimulus pattern. In ALD muscle, electrical stimulation failed to prevent the effect of denervation. This study emphasizes the differential response of denervated slow and fast muscles to electrical stimulation and stresses the importance of the frequency of stimulation in the regulation of AChE molecular forms in PLD muscle during development.  相似文献   

17.
During several months of denervation, rat mixed muscles lose slow myosin, though with variability among animals. Immunocytochemical studies showed that all the denervated fibers of the hemidiaphragm reacted with anti-fast myosin, while many reacted with anti-slow myosin as well. This has left open the question as to whether multiple forms of myosin co-exist within individual fibers or a unique, possibly embryonic, myosin is present, which shares epitopes with fast and slow myosins. Furthermore, one can ask if the reappearance of embryonic myosin in chronically denervated muscle is related both to its re-expression in the pre-existing fibers and to cell regeneration. To answer these questions we studied the myosin heavy chains from individual fibers of the denervated hemidiaphragm by SDS PAGE and morphologically searched for regenerative events in the long term denervated muscle. 3 mo after denervation the severely atrophic fibers of the hemidiaphragm showed either fast or a mixture of fast and slow myosin heavy chains. Structural analysis of proteins sequentially extracted from muscle cryostat sections showed that slow myosin was still present 16 mo after denervation, in spite of the loss of the selective distribution of fast and slow features. Therefore muscle fibers can express adult fast myosin not only when denervated during their differentiation but also after the slow program has been expressed for a long time. Light and electron microscopy showed that the long-term denervated muscle maintained a steady-state atrophy for the rat's life span. Some of the morphological features indicate that aneural regeneration events continuously occur and significantly contribute to the increasing uniformity of the myosin gene expression in long-term denervated diaphragm.  相似文献   

18.
Abstract: Velocity sedimentation analysis of acetylcholinesterase (AChE) molecular forms in the fast extensor digitorum longus muscle and in the slow soleus muscle of the rat was carried out on days 4, 8, and 14 after induction of muscle paralysis by botulinum toxin type A (BoTx). The results were compared with those observed after muscle denervation. In addition, the ability of BoTx-paralyzed muscles to resynthesize AChE was studied after irreversible inhibition of the preexistent enzyme by diisopropyl phosphorofluoridate. Major differences were observed between the effects of BoTx treatment and nerve section on AChE in the junctional region of the muscles. A precipitous drop in content of the asymmetric A12 AChE form was observed after denervation, whereas its decrease was much slower and less extensive in the BoTx-paralyzed muscles. Recovery of junctional AChE and of its A12 form after irreversible inhibition of the preexistent AChE in BoTx-paralyzed muscles was nevertheless very slow. It seems that a greater part of the junctional A12 AChE form pertains to a fraction with a very slow turnover that is rapidly degraded after denervation but not after BoTx-produced muscle paralysis. The postdenervation decrease in content of junctional A12 AChE is therefore not primarily due to muscle inactivity. The extrajunctional molecular forms of AChE seem to be regulated mostly by muscle activity because they undergo virtually identical changes both after denervation and BoTx paralysis. The differences observed in this respect between the fast and slow muscles after their inactivation must be intrinsic to muscles.  相似文献   

19.
Endplate 16S acetylcholinesterase (16S-AChE) from rat anterior gracilis muscle was assessed, 6 hr to 10 days after denervation, by velocity sedimentation analysis on linear sucrose gradients. The innervating obturator nerve was transected either close (1-2 mm, short stump) or far (35-40 mm, long stump) from the muscle. In both instances, the activity of 16S-AChE gradually decreased and reached approximately the same level (10%-20% of control) by 6 days after denervation. However, enzymatic decay started considerably earlier in short stump (12-24 hr) as compared to long stump (4-5 days) preparations, i.e., the time of onset of 16S-AChE loss depended on the length of nerve that remained attached to the muscle. Whether this result extended to other AChE molecular forms (10S, 4S) in muscle endplates could not be determined because, in contrast to 16S-AChE, these forms were also detected in red blood cells (4S) and plasma (10S). Only small amounts of 16S-AChE were found in intact obturator nerves (1/100 of that in gracilis endplate regions). Thus a faster depletion of enzyme from shorter nerve stumps after axotomy could not entirely account for the substantial effect of nerve stump length on 16S-AChE. Since muscle contraction ceases immediately following nerve transection, regardless of nerve stump length, the results can be ascribed to the lack of some neural influence other than nerve-evoked muscle activity. The present findings are consistent with the view that maintenance of 16S-AChE at neuromuscular junctions primarily depends on regulatory substances which are conveyed by axonal transport and released from nerve terminals.  相似文献   

20.
Endplate 16S acetylcholinesterase (16S-AChE) from rat anterior gracilis muscle was assessed, 6 hr to 10 days after denervation, by velocity sedimentation analysis on linear sucrose gradients. The innervating obturator nerve was transected either close (1--2 mm, short stump) or far (35--40 mm, long stump) from the muscle. In both instances, the activity of 16S-AChE gradually decreased and reached approximately the same level (10%--20% of control) by 6 days after denervation. However, enzymatic decay started considerably earlier in short stump (12--24 hr) as compared to long stump (4--5 days preparations, i.e., the time of onset of 16S-AChE loss depended on the length of nerve that remained attached to the muscle. Whether this result extended to other AChE molecular forms (10S, 4S) in muscle endplates could not be determined because, in contrast to 16S-AChE, these forms were also detected in red blood cells (4S) and plasma (10S). Only small amounts of 16S-AChE were found in intact obturator nerves (1/100 of that in gracilis endplate regions). Thus a faster depletion of enzyme from shorter nerve stumps after axotomy could not entirely account for the substantial effect of nerve stump length on 16S-AChE. Since muscle contraction ceases immediately following nerve transection, regardless of nerve stump length, the results can be ascribed to the lack of some neural influence other than nerve-evoked muscle activity. The present findings are consistent with the view that maintenance of 16SAChE at neuromuscular junctions primarily depends on regulatory substances which are conveyed by axonal transport and released from nerve terminals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号