首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Experiments with models made on thin flat plates were made in front of a wind tunnel in order to determine the relationship between their coefficients of lift and drag (Fig. 2) and the angle of attack as well as their aspects of flow (Fig. 8). The following results were achieved. When the plates were covered on one side with the fur from aPetaurus' flight skin, coefficients of lift at average angles of attack were improved, the critical angle of attack was increased and the characteristics of flow separation were flattened. However, these positive effects were only achieved by physiological orientation of the fur (i.e. placed on the upper surface with fur lying backwards; Fig. 3). The gliding number is improved at very high angles of attack only (Fig. 6). Thus the fur of aPetaurus acts as a lift generator within high (critical) angles of attack, during gliding flight (Nachtigall, 1979). Other natural and synthetic furs show a qualitatively similar, but quantitatively less distinct effect (Fig. 7). The aerodynamic efficiency of a fur coating is due to the boundary layer effects provided by the individual hairs which seem to act as miniature back-flow breaks (Fig. 8,9). The bionic transferability of this effect to technical wings is discussed.

Mit Unterstützung der Deutschen Forschungsgemeinschaft

Für melßtechnische Mitarbeit danke ich Frfiulein Hedwig Reichel und Herrn Rainer Grosch. Frau Lore Dinnendahl danke ich für Literaturhinweise.  相似文献   

2.
R. A. Bloodgood 《Protoplasma》1981,106(3-4):183-192
Summary Flagella are generally recognized as organelles of motility responsible for the ability ofChlamydomonas to swim through its environment. However, the same flagella are also responsible for an alternative form of whole cell locomotion, termed gliding. Use of paralyzed flagella mutants demonstrates that gliding is independent of axonemal bend propagation. Gliding motility results from an interaction of the flagellar surface with a solid substrate. Gliding is characterized by bidirectional movements at 1.6±0.3 m/second and occurs when the cell is in a characteristic gliding configuration, where the two flagella are oriented at 180° to one another. A variety of observations suggest that the leading flagellum is responsible for the force transduction resulting in cell locomotion, although both flagella have the capacity to function as the active flagellum. The characteristics of gliding motility have been compared with theChlamydomonas flagellar surface motility phenomenon defined as surface translocation of polystyrene microspheres.  相似文献   

3.
Aerodynamic theory postulates that gliding airspeed, a major flight performance component for soaring avian migrants, scales with bird size and wing morphology. We tested this prediction, and the role of gliding altitude and soaring conditions, using atmospheric simulations and radar tracks of 1346 birds from 12 species. Gliding airspeed did not scale with bird size and wing morphology, and unexpectedly converged to a narrow range. To explain this discrepancy, we propose that soaring‐gliding birds adjust their gliding airspeed according to the risk of grounding or switching to costly flapping flight. Introducing the Risk Aversion Flight Index (RAFI, the ratio of actual to theoretical risk‐averse gliding airspeed), we found that inter‐ and intraspecific variation in RAFI positively correlated with wing loading, and negatively correlated with convective thermal conditions and gliding altitude, respectively. We propose that risk‐sensitive behaviour modulates the evolution (morphology) and ecology (response to environmental conditions) of bird soaring flight.  相似文献   

4.
Predictions from flight mechanical theory concerning optimal flight speeds were tested in the field in two Mediterranean seabirds, the Cory’s shearwater Calonectris diomedea and the Audouin’s gull Larus audouinii. Both species were commuting off the coast of Isola di San Pietro, 6 km south-west of the coast of Sardinia. Heading and airspeed were obtained by vector calculation of flight tracks and measured wind. The Cory’s shearwater used a mixture of gliding and active flight. At low wind speeds the proportion of active flight was large but it decreased with increasing wind speed. The mean airspeed was 12.0 m s–1, which is not significantly different from minimum power speed (V mp) in active flight or the speed for best glide (V bg) used in gliding flight. However, the shearwaters showed a significant response to wind increment/decrement, indicating that they were not flying at V mp, which should be unaffected by head and tailwind. Furthermore, shearwaters can potentially reduce induced drag by the ground effect while flying close to the sea surface at weak winds, which leads to a reduction in characteristic flight speed. We suspect that the predictions for gliding flight are most valid for shearwaters at moderate to high wind speeds, when they should be maximising distance by using V bg. Audouin’s gulls used active flight exclusively, with a mean airspeed of 11.3 m s–1 that was significantly different from the predicted V mp. Interestingly, though, the gulls did not show any significant wind response, indicating that they were flying close to their true V mp when foraging along the coast. Received: 17 May 2000 / Received in revised form: 21 November 2000 / Accepted: 8 January 2001  相似文献   

5.
Intermittent flight through flap‐gliding (alternating flapping phases and gliding phases with spread wings) or bounding (flapping and ballistic phases with wings folded against the body) are strategies to optimize aerial efficiency which are commonly used among small birds today. The broad morphological disparity of Mesozoic birds suggests that a range of aerial strategies could have evolved early in avian evolution. Based on biomechanics and aerodynamic theory, this study reconstructs the flight modes of two small enantiornithines from the Lower Cretaceous fossil site of Las Hoyas (Spain): Concornis lacustris and Eoalulavis hoyasi. Our results show that the short length of their wings in relation to their body masses were suitable for flying through strict flapping and intermittent bounds, but not through facultative glides. Aerodynamic models indicate that the power margins of these birds were sufficient to sustain bounding flight. Our results thus suggest that C. lacustris and E. hoyasi would have increased aerial efficiency through bounding flight, just as many small passerines and woodpeckers do today. Intermittent bounding appears to have evolved early in the evolutionary history of birds, at least 126 million years ago.  相似文献   

6.
Summary The flight activity of Epiphyas postvittana was studied at two sites near Melbourne with the aid of suction traps, over a period of 4 years. Maximum numbers were found to fly during the period September to March with peak activity coinciding with the emergence of winter, spring and summer generation moths. E. postivittana is predominantly a nocturnal flier with maximum activity around 20.00–24.00 h. The lower temperature threshold of flight was 8–11°C. The upper temperature threshold varied from 20–21°C, 24–25°C and 27–28°C for the winter, spring and summer generation moths respectively. Flight was highly influenced by the prevailing wind. The lower wind speed threshold was 0.5–0.8 m-s and the upper wind speed threshold was 2.6–2.7 m-s. The relationship between wind speed and the amount of flight was non-linear, with the frequency of flights decreasing sharply with increasing wind speed. No flights occurred at wind speeds greater than 2.8 m-s. Variation in relative humidity had no influence on flight, but lack of rain favoured flight. The amount of flight activity and the amount of rainfall were negatively correlated; flights did not occur when the daily precipitation exceeded 32.5 mm, and with a precipitation exceeding 39 mm no flights could be expected. The value of these findings to pest control programmes is discussed.  相似文献   

7.
Summary As a comparison to the many studies of larger flying insects, we carried out an initial study of heat balance and thermal dependence of flight of a small butterfly (Colias) in a wind tunnel and in the wild.Unlike many larger, or facultatively endothermic insects, Colias do not regulate heat loss by altering hemolymph circulation between thorax and abdomen as a function of body temperature. During flight, thermal excess of the abdomen above ambient temperature is weakly but consistently coupled to that of the thorax. Total heat loss is best expressed as the sum of heat loss from the head and thorex combined plus heat loss from the abdomen because the whole body is not isothermal. Convective cooling is a simple linear function of the square root of air speed from 0.2 to 2.0 m/s in the wind tunnel. Solar heat flux is the main source of heat gain in flight, just as it is the exclusive source for warmup at rest. The balance of heat gain from sunlight versus heat loss from convection and radiation does not appear to change by more than a few percent between the wings-closed basking posture and the variable opening of wings in flight, although several aspects require further study. Heat generation by action of the flight muscles is small (on the order of 100 m W/g tissue) compared to values reported for other strongly flying insects. Colias appears to have only very limited capacity to modulate flight performance. Wing beat frequency varies from 12–19 Hz depending on body mass, air speed, and thoracic temperature. At suboptimal flight temperatures, wing beat frequency increases significantly with thoracic temperature and body mass but is independent of air speed. Within the reported thermal optimum of 35–39°C, wing beat frequency is negatively dependent on air speed at values above 1.5 m/s, but independent of mass and body temperature. Flight preference of butterflies in the wind tunnel is for air speeds of 0.5–1.5 m/s, and no flight occurs at or above 2.5 m/s. Voluntary flight initiation in the wild occurs only at air speeds 1.4 m/s.In the field, Colias fly just above the vegetation at body temperatures of 1–2°C greater than when basking at the top of the vegetation. These measurements are consistent with our findings on low heat gain from muscular activity during flight. Basking temperatures of butterflies sheltered from the wind within the vegetation were 1–2°C greater than flight temperatures at vegetation height.  相似文献   

8.
Gliding flight is a postural activity which requires the wings to be held in a horizontal position to support the weight of the body. Postural behaviors typically utilize isometric contractions in which no change in length takes place. Due to longer actin-myosin interactions, slow contracting muscle fibers represent an economical means for this type of contraction. In specialized soaring birds, such as vultures and pelicans, a deep layer of the pectoralis muscle, composed entirely of slow fibers, is believed to perform this function. Muscles involved in gliding posture were examined in California gulls (Larus californicus) and tested for the presence of slow fibers using myosin ATPase histochemistry and antibodies. Surprisingly small numbers of slow fibers were found in the M. extensor metacarpi radialis, M. coracobrachialis cranialis, and M. coracobrachialis caudalis, which function in wrist extension, wing protraction, and body support, respectively. The low number of slow fibers in these muscles and the absence of slow fibers in muscles associated with wing extension and primary body support suggest that gulls do not require slow fibers for their postural behaviors. Gulls also lack the deep belly to the pectoralis found in other gliding birds. Since bird muscle is highly oxidative, we hypothesize that fast muscle fibers may function to maintain wing position during gliding flight in California gulls. J. Morphol. 233:237–247, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

9.
In contrast to the patagial membranes of gliding vertebrates, the aerodynamic surfaces used by falling wingless ants to direct their aerial descent are unknown. We conducted ablation experiments to assess the relative contributions of the hindlegs, midlegs and gaster to gliding success in workers of the Neotropical arboreal ant Cephalotes atratus (Hymenoptera: Formicidae). Removal of hindlegs significantly reduced the success rate of directed aerial descent as well as the glide index for successful flights. Removal of the gaster alone did not significantly alter performance relative to controls. Equilibrium glide angles during successful targeting to vertical columns were statistically equivalent between control ants and ants with either the gaster or the hindlegs removed. High-speed video recordings suggested possible use of bilaterally asymmetric motions of the hindlegs to effect body rotations about the vertical axis during targeting manoeuvre. Overall, the control of gliding flight was remarkably robust to dramatic anatomical perturbations, suggesting effective control mechanisms in the face of adverse initial conditions (e.g. falling upside down), variable targeting decisions and turbulent wind gusts during flight.  相似文献   

10.
Summary As a means of exploring behavioral and morphological adaptations for thermoregulation in Colias butterflies, convective heat transfer coefficients of real and model butterflies were measured in a wind tunnel as a function of wind speed and body orientation (yaw angle). Results are reported in terms of a dimensionless heat transfer coefficient (Nusselt number, Nu) and a dimensionless wind speed (Reynolds number, Re), for a wind speed range typical of that experienced by basking Colias in the field. The resultant Nusselt-Reynolds (Nu-Re) plots thus indicate the rates of heat transfer by forced convection as a function of wind speed for particular model geometries.For Reynolds numbers throughout the measured range, Nusselt numbers for C. eurytheme butterflies are consistently lower than those for long cylinders, and are independent of yaw angle. There is significant variation among individual butterflies in heat transfer coefficients throughout the Re range. Model butterflies without artificial fur have Nu-Re relations similar to those for cylinders. Heat transfer in these models depends upon yaw angle, with higher heat transfer at intermediate yaw angles (30–60°); these yaw effects increase with increasing Reynolds number. Models with artificial fur, like real Colias, have Nusselt numbers which are consistently lower than those for models without fur at given Reynolds numbers throughout the Re range. Unlike real Colias, however, the models with fur do show yaw angle effects similar to those for models without fur.The independence of heat loss from yaw angle for real Colias is consistent with field observations indicating no behavioral orientation to wind direction. The presence of fur on the models reduces heat loss but does not affect yaw dependence. The large individual variation in heat transfer coefficients among butterflies is probably due to differences in fur characteristics rather than to differences in wing morphology.Finally, a physical model of a butterfly was constructed which accurately simulates the body temperatures of basking Colias in the field for a variety of radiation and wind velocity conditions. The success of the butterfly simulator in mimicking Colias thermal characteristics confirms our preliminary understanding of the physical bases for and heat transfer mechanisms underlying thermoregulatory adaptations in these butterflies.  相似文献   

11.
RETO SPAAR 《Ibis》1997,139(3):523-535
The comparison of flight styles and flight parameters of migrating raptors in Israel revealed the following. (1) Climbing rate in thermal circling did not differ between species, indicating that chiefly the strength of thermal updrafts determined the climbing rate and that morphological features were less relevant. (2) In interthermal gliding, air speed was positively and gliding angle negatively related to the species' average body mass. Heavier species glided faster and had smaller gliding angles. (3) In soaring and gliding flight, cross-country speed relative to the air was positively related to the species' body mass; it was obviously the result of the gliding ability increasing with body mass. (4) Eagles and buzzards used soaring and gliding flight for more than 95% of the observation time. Additional soaring in a straight line whilst gliding was extensively used by the Steppe Eagle Aquila nipalensis, Lesser Spotted Eagle Aquila pomarina and Booted Eagle Hieraætus pennatus and even more frequently by the resident species, the Griffon Vulture Gyps fulvus and Shorttoed Eagle Circaetus gallicus. Smaller species, such as the Levant Sparrowhawk Accipiter brevipes, harriers (Circus sp.) and small falcons (Falco sp.). showed the highest proportion of flapping and gliding flight (9–33%). (5) In a comparison of the flight parameters and proportions of flight styles, a cluster analysis distinguished two main groups: The first consisted of Montagu's Harrier Circus pygargus, Pallid Harrier Circus macrourus, Levant Sparrowhawk and small falcons; their flight behaviour was characterized by both the high proportion of flapping and the low gliding performance. The second group comprised the typical soaring migrants: Steppe Eagle, Lesser Spotted Eagle, Booted Eagle, Steppe Buzzard Buteo buteo vulpinus, Honey Buzzard Pernis apivorus and Egyptian Vulture Neophron percnopterus, and they had very similar flight behaviour and were closely clustered. The Black Kite Milvus migrans and Marsh Harrier Circus aeruginosus were intermediate between typical soarers and flappers. The two resident species, Griffon Vulture and Short-toed Eagle, were grouped separately from the soaring migrants.  相似文献   

12.
Use of a dialysis microchamber has allowed continuous observations on the same set of gliding bacteria during changes in the composition of the perfused medium. This procedure has revealed the presence of an adaptive, cyanide-insensitive metabolic pathway, which allows cyanide-treated Flexibacter BH3 to begin gliding again at a reduced rate when glucose is the substrate. In addition, it has revealed that individual flexibacter cells can maintain their gliding motility for up to 20 h in the absence of exogenous substrate.Gliding in Flexibacter BH3 was prevented by those inhibitors blocking the electron transport process. Inhibitors of glucose metabolism did not prevent motility, since the flexibacters obviously metabolize endogenous substrate under such circumstances. Proton ionophores, which induce membrane depolarization, rapidly inhibited gliding in Flexibacter BH3. This inhibition was irreversible in the case of gramicidin S. Gliding was not inhibited by cytochalasin B or antiactin antibody. High concentrations of Ca2+ were particularly inhibitory to the gliding process. The significance of these results is discussed in relation to a possible mechanism of gliding involving the generation of rhythmical contractions in the outer cell membrane of Flexibacter BH3.Abbreviations used CCCP carbonyl cyanide m-chlorophenyl hydrazone - DNP p-dinitrophenol - GMCS gramicidin S - HQNO 2-heptyl-4-hydroxyquinoline N-oxide - PCMB p-chloromercuribenzoate - CM complete Lewin's medium - BS Lewin's basal salts  相似文献   

13.
Aerodynamic corrections for the flight of birds and bats in wind tunnels   总被引:2,自引:0,他引:2  
Few wind tunnel studies of animal flight have controlled or corrected for distortions to behaviour, physiology or flight aerodynamics representing the difference between flight in the tunnel and flight in free air. Aerodynamic correction factors are derived based on lifting-line theory and the method of images for an animal flying freely within closed- and open-section wind tunnels; the method is very similar to that used to model flight in ground effect, and as in ground effect the corrections to induced drag may be substantial. These correction factors are used to estimate bound wing circulation, drag and mechanical power for comparison with free flight, and to derive testable predictions of optimum flight strategies for an animal in a tunnel. In an open-section tunnel, mechanical power is increased compared to free flight, and the animal should fly at the tunnel centre. In a closed tunnel mechanical power is usually reduced, and substantial savings are available, particularly at low speeds, if the animal flies close to the tunnel roof. Anecdotal observations confirm that birds and bats adopt this strategy. The mechanical power-speed curve in a closed tunnel is flatter than the curve for free flight, and this may explain the flat metabolic power-speed curves for birds and bats obtained in some measurements.  相似文献   

14.
Pigeon flight in a wind tunnel   总被引:2,自引:0,他引:2  
Summary Core temperatureT c, breast temperatureT s–br and leg temperatureT s–1 were measured simultaneously in pigeons during rest and flight in a wind tunnel, using thermistors.MeanT c at rest is 39.8±0.7°C and is independent of ambient temperatureT a (10–30°C). In the first minutes of flight,T c increases to 1.5–3.0°C above resting level and remains at this higher level. This hyperthermia increases withT a (v=const.). It is±constant in the lowT a range (10.6–13.9°C) at flight speeds v ranging from 10–18 m s–1 and normal body mass, but increases with v and elevated body mass in the highT a range (23.7–28.8°C). T s–1 is adapted toT a at rest and increases in flight up to 3–4°C belowT c. This increase inT s–1 is linear toT a. T s–br is always lower thanT c, in extreme cases reaching restingT c in flight.Supported by the Deutsche Forschungsgemeinschaft  相似文献   

15.
Aerodynamic characteristic of the beetle, Trypoxylus dichotomus, which has a pair of elytra (forewings) and hind wings, is numerically investigated. Based on the experimental results of wing kinematics, two-dimensional (2D) and three-dimensional (3D) computational fluid dynamic simulations were carried out to reveal aerodynamic performance of the hind wing. The roles of the spiral Leading Edge Vortex (LEV) and the spanwise flow were clarified by comparing 2D and 3D simulations. Mainly due to pitching down of chord line during downstroke in highly inclined stroke plane, relatively high averaged thrust was produced in the free forward flight of the beetle. The effects of the local corrugation and the camber variation were also investigated for the beetle's hind wings. Our results show that the camber variation plays a significant role in improving both lift and thrust in the flapping. On the other hand, the local corrugation pattern has no significant effect on the aerodynamic force due to large angle of attack during flapping.  相似文献   

16.
Gliding is an active movement displayed by a microorganism in contact with a solid substrate where there is no evidence of a motility organelle or of a conformational change in the organism. Gliding may be accompanied by rotations, reversals, flectional activity, and mucilage sheath production, as well as linear translation. Previous explanations of the mechanism responsible did not consider all these aspects of behavior. The gliding behavior and ultrastructure of the blue-green alga Oscillatoria princeps Vaucher were examined. O. princeps has a maximum observed gliding rate of 11.1 μm/sec. The trichomes can glide in either longitudinal direction following rapid and occasionally frequent reversals. Right-handed trichome rotation was always observed, which means that any surface point on these trichomes traces a 60-deg right-handed helix. A mucilage sheath envelopes the moving trichomes. The rate of gliding was reduced by viscous substrates, extreme pH, lysozyme, DNP, and cyanide, while sustained darkness had no inhibitory effect. Ultrastructurally, the cell wall is composed of an L-1 layer which is 10 nm thick and often ill-defined. The L-2 layer which is outside this is 200 nm thick and participates in septum formation. The L-3 layer is outside the L-2 and is continuous over the trichome surface. The L-4 “membrane” lies outside the L-3 layer. Grazing surface sections and freeze-etch replicas show a parallel and tight array of 6–9 nm wide continuous fibrils in the cell wall on the surface of the distinctive L-2 layer. Isolated wall fragments were tightly coiled inside out with the fibrils on the inside. The angle of orientation for the fibrils was to the right in a helix with a pitch of 60 deg. O. animalis, a blue-green alga with a movement tracing a left-handed helix, showed a similar array of fibrils oriented in a left-handed helix with a pitch of 60 deg. It is proposed that gliding is produced by unidirectional waves of bending in the fibrils which, act against the sheath or substrate, tints displacing the trichome.  相似文献   

17.
Wind tunnels, in which birds fly against an artificially generated air flow, have since long been used to evaluate aerodynamic properties of steady bird flight. A new generation of wind tunnels has also allowed the many processes associated with migratory flights to be studied in captivity. We review how wind tunnel studies of aerodynamics and migratory performance together have helped advancing our understanding of bird migration. Current migration theory is based on the power‐speed relationship of flight as well as flight range equations, both of which can be evaluated using birds flying in wind tunnels. In addition, and depending on wind tunnel properties, performance during gliding and climbing flight, and effects of air pressure, humidity and turbulence on bird flight has been measured. Long‐distance migrant species have been flown repeatedly for up to 16 h non‐stop, allowing detailed studies of the energy expenditure, fuel composition, protein turnover, water balance, immunocompetence and stress associated with sustained migratory flights. In addition, wind tunnels allow the fuelling periods between migratory flights to be studied from new angles. We end our review by suggesting several important topics for future wind tunnel studies, ranging from on of the key questions remaining, the efficiency at which chemical power in converted to mechanical power, to new useful avenues, such as improving and calibrating the techniques used for tracking of individual birds in the wild.  相似文献   

18.
The effect of growth rate, growth phase, pH, and temperature on the permanent adhesion of a glidingFlexibacter sp. and three nongliding bacteria,Pseudomonas fluorescens, Enterobacter cloacae, andChromobacterium sp., to polystyrene substrata was investigated. The permanent adhesion of the flexibacter appeared to be related to growth, as levels of adhesion increased with increased growth rate in continuous culture and declined rapidly with death phase in batch culture. With the three nongliding bacteria, there was no relationship between growth rate and levels of permanent adhesion. The permanent adhesion of the nongliding bacteria was maximum between pH 5.5 and pH 7 and between 20 and 30°C, whereas the adhesion of the flexibacter progressively decreased with increasing temperature and pH. The effect of different nutrient conditions on the gliding motility of the flexibacter across agar was also investigated. Gliding motility was inhibited by increased nutrient concentration and was affected by carbon source. Inhibition appeared to be related to the accumulation of a viscous exopolymer. It is proposed that the differences in the permanent adhesion of the gliding and nongliding bacteria may be related to their adaptation to different ecological niches.  相似文献   

19.
The effect of wind speed and distance from the source on the male response of the aphid parasitoid, Aphidius ervi (Hymenoptera: Aphidiidae), to a pheromone source was studied in a wind tunnel. The number of males taking flight, entering the plume and successfully reaching the source, decreased at wind speeds >50 cm/s. Furthermore, the proportion of those attempting upwind flight that fell to the ground increased with increasing wind speed. In contrast, distance from the source had no significant effect on any of the parameters examined. While male flight behavior was significantly reduced at 70 cm/s, some males walked to the source when there was a bridge connecting the pheromone source and the release platform. This suggests that ambulatory behavior could be a significant component of male mate searching in A. ervi when wind conditions are too strong for upwind flight. The possible effects of variation in atmospheric pressure on male flight behavior to the long distance pheromone, as well as to the short distance one, were also investigated. No significant effects of atmospheric pressure were observed. These findings differ significantly from those previously reported for another aphid parasitoid, A. nigripes, and the reasons for such differences are discussed.  相似文献   

20.
A computer-controlled video system for real-time recording of insect flight in three dimensions is described. The flight paths of moths were recorded in a flight tunnel using two CCD cameras placed adjacent to each other at angles of 45 and 135° to the flight tunnel axis and separated by a distance of 120 cm. They were connected to two 28-level gray-scale frame grabbers via two external synchronizers. The two-dimensional coordinates of the flying insect were obtained from the two cameras at 40-ms intervals and transferred to host computer for processing and monitor for real-time display. Due to speed limitation in the image acquisition hardware, construction of the three-dimensional file was carried off-line. The flying insect was rendered as a dark spot in a bright background using a homogeneous light source. As the insect enters into the field of view of the two cameras, the light distribution changes, and the frame grabber detects only those variation in the light distribution which results from a flying insect. The target insect can be as small as 3 pixels and can be tracked in a stereoscopic field of view 60 cm long and 50 cm high. A method was developed that allowed for scalar scoring of various pheromone sources to assess their attractiveness using vector flight parameters. This method was applied successfully for optimization of pheromone blend of the grapevine moth, Lobesia botrana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号