首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Neurotrophins are a family of proteins with pleiotropic effects mediated by two distinct receptor types, namely the Trk family, and the common neurotrophin receptor p75NTR. Binding of four mammalian neurotrophins, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4/5 (NT-4/5), to p75NTR is studied by molecular modeling based on X-ray structures of the neurotrophins and the extracellular domain of p55TNFR, a homologue of p75NTR. The model of neurotrophin/receptor interactions suggests that the receptor binding domains of neurotrophins (loops I and IV) are geometrically and electrostatically complementary to a putative binding site of p75NTR, formed by the second and part of the third cysteine-rich domains. Geometric match of neurotrophin/receptor binding domains in the complexes, as characterized by shape complementarity statistic Sc, is comparable to known protein/protein complexes. All charged residues within the loops I and IV of the neurotrophins, previously determined as being critical for p75NTR binding, directly participate in receptor binding in the framework of the model. Principal residues of the binding site of p75NTR include Asp47, Lys56, Asp75, Asp76, Asp88, and Glu89. The additional involvement of Arg80 and Glu53 is specific for NGF and BDNF, respectively, and Glu73 participates in binding with NT-3 and NT-4/5. Neurotrophins are likely to induce similar, but not identical, conformational changes within the p75NTR binding site.  相似文献   

2.
The low-affinity p75 molecule and trk tyrosine kinases serve as receptors for target-derived neurotrophins. While the mechanism by which receptor tyrosine kinases impart intracellular signaling has become well understood, the precise roles of the p75 receptor are not fully defined. The p75 neurotrophin receptor belongs to a family of transmembrane molecules which also serve as receptors for the tumor necrosis factor family of cytokines. Each receptor shares a common extracellular structure highlighted by conserved cysteine-rich repeats. Because NGF, BDNF, NT-3, and NT-4/5 bind to p75 with similar affinity, p75 may either act as a common subunit in a neurotrophin receptor complex with trk family members, or act by independent mechanisms to mediate biological actions of each neurotrophin. 1994 John Wiley & Sons, Inc.  相似文献   

3.
The study of structure–function relationships in the neurotrophin family has in recent years increased our understanding of several important aspects of neurotrophin function. Site-directed mutagenesis studies have localized amino acid residues important for binding to the low-affinity (p75LNGFR), as well as to the members of the Trk family of tyrosine kinase receptors. A cluster of positively charged residues has been shown to form a surface for binding to p75LNGFR in all four neurotrophins. Differences in the spatial distribution of these charges among the different neurotrophins may explain some of their distinct binding properties. Elimination of these positive charges drastically reduces binding to P75LNGFR but not to the Trk family members, and it does not impair the biological properties of the neurotrophins in vitro, arguing that binding to and activation of Trk receptors is sufficient to mediate the biological responses of neurotrophins. In contrast. the binding sites to Trk receptors appear to be formed by discontinuous stretches of amino acid residues distributed throughout the primary sequence of the molecule. These include the N-terminus, some of the variable loop regions and a β-strand. Despite their apparent distribution, when viewed in the three-dimensional structure of NGF, these residues appear grouped on one side of the neurotrophin dimer, delineating a continuous surface extending approximately parallel to the twofold symmetry axis of the molecule. Two symmetrical surfaces are formed along the axis of the neurotrophin dimer providing a model for ligand-mediated receptor dimerization. In the neurotrophin family, co-evolution of cognate ligands and Trk receptors has developed specific contacts through different residues in the same variable regions of the neurotrophins. Thus, binding specificity is determined by the cooperation of distinct active and inhibitory binding determinants that restrict ligand-receptors interactions. Binding determinants to the Trk receptors can be manipulated independently in a rational fashion to create neurotrophin analogues with novel ligand-binding properties. In this way, second-generation chimeric neurotrophins with multiple specificities (pan-neurotrophins) have been engineered which may have valuable applications in the treatment of neurodegeneration and nerve damage. 1994 John Wiley & Sons, Inc.  相似文献   

4.
Myelin inhibitors activate a p75(NTR)-dependent signaling cascade in neurons that not only inhibits axonal growth but also prevents neurotrophins (NT) from stimulating growth. Most intriguingly, in addition to Trk receptors, neurotrophins also bind to p75(NTR). We have designed a "mini-neurotrophin" called B(AG) to activate TrkB in the absence of p75(NTR) binding. We find that B(AG) is as effective as the natural TrkB ligands (brain-derived neurotrophic factor (BDNF) and NT-4) at promoting neurite outgrowth from cerebellar neurons. Furthermore, the neurite outgrowth responses stimulated by BDNF and B(AG) are inhibited by a common set of reagents, including the Trk receptor inhibitor K252a, as well as protein kinase A and phosphoinositide 3-kinase inhibitors. However, in contrast to BDNF, B(AG) promotes growth in the presence of a myelin inhibitor or when antibodies directly activate the p75(NTR) inhibitory pathway. On the basis of this observation, we postulated that the binding of BDNF to the p75(NTR) might compromise the ability of BDNF to stimulate neurite outgrowth in an inhibitory environment. To test this, we used NGF, and an NGF-derived peptide, to compete for the BDNF/p75(NTR) interaction; remarkably, in the presence of either agent, BDNF acquired the ability to promote neurite outgrowth in the presence of a myelin inhibitor. The data suggest that in an inhibitory environment, the BDNF/p75(NTR) interaction compromises regeneration. Agents that activate Trk receptors in the absence of p75(NTR) binding, or agents that inhibit neurotrophin/p75(NTR) binding, might therefore be better therapeutic candidates than neurotrophins.  相似文献   

5.
Survival and maintenance of vertebrate neurons are influenced by neurotrophic factors which mediate their signal by binding to specific cell surface receptors. We determined the binding sites of human neurotrophin-3 (NT-3) to its receptors trkC and gp75 by mutational analysis and compared them to the analogous interactions of nerve growth factor (NGF) with trkA and gp75. The trkC binding site extends around the central beta-strand bundle and in contrast to NGF does not make use of non-conserved loops and the six N-terminal residues. The gp75 epitope is dominated by loop residues and the C-terminus of NT-3. A novel rapid biological screening procedure allowed the identification of NT-3 mutants that are able to signal efficiently through the non-preferred receptors trkA and trkB, which are specific for NGF and BDNF respectively. Mutation of only seven residues in NT-3 resulted in a human neurotrophin variant which bound to all receptors of the trk family with high affinity and efficiently supported the survival of NGF-, BDNF- and NT-3-dependent neurons. Our results suggest that the specificity among neurotrophic factors is not solely encoded in sequence diversity, but rather in the way each neurotrophin interacts with its preferred receptor.  相似文献   

6.
7.
Target-derived neurotrophins regulate neuronal survival and growth by interacting with cell-surface tyrosine kinase receptors. The p75 neurotrophin receptor (p75 NTR) is coexpressed with Trk receptors in long-range projection neurons, in which it facilitates neurotrophin binding to Trk and enhances Trk activity. Here, we show that TrkA and TrkB receptors undergo robust ligand-dependent ubiquitination that is dependent on activation of the endogenous Trk activity of the receptors. Coexpression of p75 NTR attenuated ubiquitination of TrkA and TrkB and delayed nerve growth factor-induced TrkA receptor internalization and receptor degradation. These results indicate that p75 NTR may prolong cell-surface Trk-dependent signalling events by negatively regulating receptor ubiquitination.  相似文献   

8.
The neurotrophin family includes NGF, brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4). Previous studies have demonstrated that expression of NGF and its low-affinity receptor is induced in nonneuronal cells of the distal segment of the transected sciatic nerve suggesting a role for NGF during axonal regeneration (Johnson, E. M., M. Taniuchi, and P. S. DeStefano. 1988. Trends Neurosci. 11:299-304). To assess the role of the other neurotrophins and the members of the family of Trk signaling neurotrophin receptors, we have here quantified the levels of mRNAs for BDNF, NT-3, and NT-4 as well as mRNAs for trkA, trkB, and trkC at different times after transection of the sciatic nerve in adult rats. A marked increase of BDNF and NT-4 mRNAs in the distal segment of the sciatic nerve was seen 2 wk after the lesion. The increase in BDNF mRNA was mediated by a selective activation of the BDNF exon IV promoter and adrenalectomy attenuated this increase by 50%. NT-3 mRNA, on the other hand, decreased shortly after the transection but returned to control levels 2 wk later. In Schwann cells ensheathing the sciatic nerve, only trkB mRNA encoding truncated TrkB receptors was detected with reduced levels in the distal part of the lesioned nerve. Similar results were seen using a probe that detects all forms of trkC mRNA. In the denervated gastrocnemius muscle, the level of BDNF mRNA increased, NT-3 mRNA did not change, while NT-4 mRNA decreased. In the spinal cord, only small changes were seen in the levels of neutrophin and trk mRNAs. These results show that expression of mRNAs for neurotrophins and their Trk receptors is differentially regulated after a peripheral nerve injury. Based on these results a model is presented for how the different neurotrophins could cooperate to promote regeneration of injured peripheral nerves.  相似文献   

9.
TrkB is a member of the Trk family of tyrosine kinase receptors. In vivo, the extracellular region of TrkB is known to bind, with high affinity, the neurotrophin protein brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT-4). We describe the expression and purification of the second Ig-like domain of human TrkB (TrkBIg(2)) and show, using surface plasmon resonance, that this domain is sufficient to bind BDNF and NT-4 with subnanomolar affinity. BDNF and NT-4 may have therapeutic implications for a variety of neurodegenerative diseases. The specificity of binding of the neurotrophins to their receptor TrkB is therefore of interest. We examine the specificity of TrkBIg(2) for all the neurotrophins, and use our molecular model of the BDNF-TrkBIg(2) complex to examine the residues involved in binding. It is hoped that the understanding of specific interactions will allow design of small molecule neurotrophin mimetics.  相似文献   

10.
The members of the family of neurotrophic factors known as neurotrophins, NGF, BDNF, NT-3 and NT4/5 are known to be cleaved intracellularly from immature precursors, the proneurotrophins. NGF and the other neurotrophins regulate neurite outgrowth and neuronal survival during development via binding to Trk receptor tyrosine kinases and the p75 neurotrophin receptor. Surprisingly, the proneurotrophins were shown to be also biologically active ligands. ProNGF and proBDNF induce neuronal apoptosis via binding to a complex of p75 and sortilin. Therefore, life and death seems to be a delicate interplay between 'cleavage' or 'not cleavage' of the proneurotrophins. However, there is a third aspect to this story. In general, peptide-hormone precursors are known to give rise to several biologically active peptides from one precursor molecule. The paradox with the proneurotrophins is that although they have several additional potential cleavage sites that would necessarily give rise to other peptides besides the neurotrophins and thus new members in the neurotrophin family, this aspect has been largely neglected. This article aims to review evidence for biologically active peptides other than the NGF and NT-3 that can be generated from the proNGF and proNT-3.  相似文献   

11.
Retinoic acid (RA) induces the differentiation of many cell lines, including those derived from neuroblastoma. RA treatment of SH-SY5Y cells induces the appearance of functional Trk B and Trk C receptors. Acute stimulation of RA-predifferentiated SH-SY5Y cells with brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3), or neurotrophin 4/5 (NT-4/5), but not nerve growth factor (NGF), induces Trk autophosphorylation, followed by phosphorylation of Akt and the extracellular signal-regulated kinases (ERKs) 1 and 2. In addition, BDNF, NT-3, or NT-4/5, but not NGF, promotes cell survival and neurite outgrowth in serum-free medium. The mitogen-activated protein kinase and ERK kinase (MEK) inhibitor PD98059 blocks BDNF-induced neurite outgrowth and growth-associated protein-43 expression but has no effects on cell survival. On the other hand, the phosphatidylinositol 3-kinase inhibitor LY249002 reverses the survival response elicited by BDNF, leading to a cell death with morphological features of apoptosis.  相似文献   

12.
Neurotrophin-3 (NT-3) has low-affinity (Kd = 8 x 10(-10) M), as well as high-affinity receptors (Kd = 1.8 x 10(-11) M) on embryonic chick sensory neurons, the latter in surprisingly high numbers. Like the structurally related proteins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), NT-3 also binds to the low-affinity NGF receptor, a molecule that we suggest to designate low-affinity neurotrophin receptor (LANR). NT-3 dissociates from the LANR much more rapidly than BDNF, and more slowly than NGF. The binding of labelled NT-3 to the LANR can be reduced by half using a concentration of BDNF corresponding to the Kd of BDNF to the LANR. In contrast, the binding of NT-3 to its high-affinity neuronal receptors can only be prevented by BDNF or NGF when used at concentrations several thousand-fold higher than those corresponding to their Kd to their high-affinity neuronal receptors. Thus, specific high-affinity NT-3 receptors exist on sensory neurons that can readily discriminate between three structurally related ligands. These findings, including the remarkable property of the LANR to bind three related ligands with similar affinity, but different rate constants, are discussed.  相似文献   

13.
During development, neurons pass through a critical phase in which survival is dependent on neurotrophin support. In order to dissect the potential role of p75NTR, the common neurotrophin receptor, in neurotrophin dependence, we expressed wild-type and mutant p75NTR in cells that do not express endogenous p75NTR or Trk family members (NIH3T3). Expression of wild-type p75NTR created a state of neurotrophin dependence: cells could be rescued by nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), or neurotrophin-3 (NT-3), but not by a mutant NGF that binds well to Trk A but poorly to p75NTR. Similarly, expression of p75NTR in human prostate cancer cells in culture rendered a metastatic tumor cell line (PC-3) sensitive to the availability of neurotrophins for survival. Moreover, expression of mutant p75NTR's in another neurotrophin-insensitive cell line (HEK293T) showed that a domain within the intracellular domain governs alternate responses to neurotrophins: the carboxy terminus of the intracellular domain of p75NTR including the sixth alpha helix domain is necessary for rescue by BDNF, but not NGF. These results, when considered with previous studies of the timing of p75NTR expression, support the hypothesis that p75NTR is a mediator of neurotrophin dependence during the critical phase of developmental cell death and during the progression of carcinogenesis in prostate cancer.  相似文献   

14.
Abstract: K-252b potentiates the neurotrophic effects of neurotrophin-3 (NT-3) in primary cultures of rat central cholinergic and peripheral sensory neurons and in a rat pheochromocytoma PC12 cell line. The ligand and receptor specificity, and role of the low-affinity neurotrophin receptor (p75NTR) in the potentiation response induced by K-252b, are unknown. To address the issues of ligand and receptor specificity of K-252b potentiation, we have examined neurotrophin-induced DNA synthesis ([3H]thymidine incorporation) in NIH3T3 cells expressing trkA, trkB, or trkC . Neither NT-3 nor K-252b alone could stimulate mitogenic activity in the trkA -overexpressing clone. However, coaddition of K-252b (EC50 of ∼2 n M ) with 10–100 ng/ml NT-3 led to incorporation of [3H]thymidine in trkA expressing cells to a level induced by optimal concentrations of nerve growth factor (NGF). The K-252b- and NT-3-induced [3H]thymidine incorporation correlated with an increase in the tyrosine autophosphorylation of the trkA receptor as well as tyrosine phosphorylation of trk -associated phospholipase C-γ1 and SH2-containing proteins. K-252b did not potentiate submaximal doses of NGF, or maximal doses of brain-derived neurotrophic factor (BDNF) or neurotrophin-4/5 (NT-4/5) in trkA -expressing cells. Furthermore, K-252b did not potentiate DNA synthesis by submaximal doses of BDNF, NT-4/5, or NT-3 in trkB - or trkC -expressing NIH3T3 cells, suggesting that the potentiation profile for K-252b was specific for NT-3 in trkA -expressing cells. We found no expression of p75NTR in the trk -expressing NIH3T3 cells. This is the first demonstration that K-252b potentiates a trkA -mediated biological nonneuronal response by NT-3 that occurs independent of p75NTR and appears to be both ligand and receptor specific.  相似文献   

15.
神经生长因子家族及其受体研究进展   总被引:9,自引:0,他引:9  
过去几年在神经营养因子、受体和神经元细胞程序性死亡的研究领域中取得了几项引人注目的进展:(1)神经生长因子(NGF)基因家族的其他一些成员包括脑源性神经营养因子(BDNF)、神经营养素-3(NT-3)、神经营养素-4(NT-4)、神经营养素-5(NT-5)的发现;(2)神经生长因子三维结构及功能和进化之关系的阐明;(3)定性了两种神经生长因子受体P75^NGFR和原癌基因p140^trkA以及相关  相似文献   

16.
17.
The isthmo-optic nucleus (ION) of chick embryos is a model system for the study of retrograde trophic signaling in developing CNS neurons. The role of brain-derived neurotrophic factor (BDNF) is well established in this system. Recent work has implicated neurotrophin-4 (NT-4), glial cell line-derived neurotrophic factor (GDNF), and insulin-like growth factor I (IGF-I) as additional trophic factors for ION neurons. Here it was examined in vitro and in vivo whether these factors are target-derived trophic factors for the ION in 13- to 16-day-old chick embryos. Unlike BDNF, neither GDNF, NT-4, nor IGF-I increased the survival of ION neurons in dissociated cultures identified by retrograde labeling with the fluorescent tracer DiI. BDNF and IGF-I promoted neurite outgrowth from ION explants, whereas GDNF and NT-4 had no effect. Injections of NT-4, but not GDNF, in the retina decreased the survival of ION neurons and accelerated cell death in the ION. NT-4-like immunoreactivity was present in the retina and the ION. Exogenous, radiolabeled NT-4, but not GDNF or IGF-I, was retrogradely transported from the retina to the ION. NT-4 transport was significantly reduced by coinjection of excess cold nerve growth factor (NGF), indicating that the majority of NT-4 bound to p75 neurotrophin receptors during axonal transport. Binding of NT-4 to chick p75 receptors was confirmed in L-cells, which express chick p75 receptors. These data indicate that GDNF has no direct trophic effects on ION neurons. IGF-I may be an afferent trophic factor for the ION, and NT-4 may act as an antagonist to BDNF, either by competing with BDNF for p75 and/or trkB binding or by signaling cell death via p75.  相似文献   

18.
Neurotrophin-4 (NT-4) is a member of a family of neurotrophic factors, the neurotrophins, that control survival and differentiation of vertebrate neurons (2–4). Besides being the most recently discovered neurotrophin in mammals, and the least well understood, several aspects distinguish NT-4 from other members of the neurotrophin family. It is the most divergent member and, in contrast to the other neurotrophins, its expression is ubiquitous and appears to be less influenced by environmental signals. NT-4 seems to have the unique requirement of binding to the lowaffinity neurotrophin receptor (p75LNGFR) for efficient signalling and retrograde transport in neurons. Moreover, while all other neurotrophin knock-outs have proven lethal during early postnatal development, mice deficient in NT-4 have so far only shown minor cellular deficits and develop normally to adulthood. Is NT-4 a recent addition to the neurotrophic factor repertoire in search of a crucial function, or is it an evolutionary relic, a kind of wisdom tooth of the neurotrophin family?  相似文献   

19.
Neurotrophins play an essential role in nerve systems. Recent reports indicated that neurotrophins [nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4/5 (NT-4/5)] have numerous effects on non-neural cells, especially on immune cells. However, whether lung cells express neurotrophins and/or their receptors (TrkA for NGF, TrkB for BDNF and NT-4/5, and TrkC for NT-3) has never been systematically investigated. We investigated constitutive expression of neurotrophin family and their Trk receptor family in alveolar macrophages and other peripheral lung cells of mice. New findings were: (1) RT-PCR for neurotrophins and their receptors detected NT-3 and NT-4/5 in alveolar macrophages, BDNF, NT-4/5, trkA, the truncated form of trkB, and trkC in lung homogenate, but no trks in alveolar macrophages, (2) immunohistochemistry for neurotrophin receptors detected TrkA in capillary cells, the truncated form of TrkB, and TrkC in interstitial macrophages, (3) immunoelectron microscopy for TrkC revealed expression of TrkC on the surface of interstitial macrophages, and (4) in situ hybridization for neurotrophins detected BDNF in interstitial macrophages and alveolar type I cells, NT-3 in alveolar macrophages, and NT-4/5 in alveolar and interstitial macrophages. These findings indicate that a previously unknown signal trafficking occurs through neurotrophins in peripheral lung.  相似文献   

20.
Trk receptors: mediators of neurotrophin action   总被引:46,自引:0,他引:46  
The four mammalian neurotrophins - NGF, BDNF, NT-3 and NT-4 - each bind and activate one or more of the Trk family of receptor tyrosine kinases. Through these receptors, neurotrophins activate many intracellular signaling pathways, including those controlled by Ras, the Cdc42/Rac/RhoG protein family, MAPK, PI3K and PLC-gamma, thereby affecting both development and function of the nervous system. During the past two years, several novel signaling pathways controlled by Trk receptors have been characterized, and it has become clear that membrane transport and sorting controls Trk-receptor-mediated signaling because key intermediates are localized to different membrane compartments. Three-dimensional structures of the Trk receptors, in one instance in association with a neurotrophin, have revealed the structural bases underlying specificity in neurotrophin signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号