首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Mutations of parkin are associated with the occurrence of autosomal recessive familial Parkinson's disease (PD). Parkin acts an E3 ubiquitin ligase, which ubiquitinates target proteins and subsequently regulates either their steady‐state levels through the ubiquitin–proteasome system or biochemical properties. In this study, we identify a novel regulatory mechanism of parkin by searching for new regulatory factors. After screening human fetal brain using a yeast two hybrid assay, we found dual‐specificity tyrosine‐(Y)‐phosphorylation‐regulated kinase 1A (Dyrk1A) as a novel binding partner of parkin. We also observed that parkin interacts and co‐localizes with Dyrk1A in mammalian cells. In addition, Dyrk1A directly phosphorylated parkin at Ser‐131, causing the inhibition of its E3 ubiquitin ligase activity. Moreover, Dyrk1A‐mediated phosphorylation reduced the binding affinity of parkin to its ubiquitin‐conjugating E2 enzyme and substrate, which could be the underlying inhibitory mechanism of parkin activity. Furthermore, Dyrk1A‐mediated phosphorylation inhibited the neuroprotective action of parkin against 6‐hydroxydopamine toxicity in dopaminergic SH‐SY5Y cells. These findings suggest that Dyrk1A acts as a novel functional modulator of parkin. Parkin phosphorylation by Dyrk1A suppresses its E3 ubiquitin ligase activity potentially contributing to the pathogenesis of PD under PD‐inducing pathological conditions.

  相似文献   


7.
TNF-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily of cytokines that induces apoptosis in a variety of cancer cells, but not in normal cells. However, more and more tumor cells remain resistant to TRAIL, which limited its application for cancer therapy. Expression of the adenovirus serotype 5 (Ad5) E1A sensitizes tumor cells to apoptosis by TNF-alpha, Fas-ligand, and TRAIL. Here we asked whether E1A overcomes this resistance and enhances TRAIL-induced apoptosis in the tumor cells. Our results revealed that the tumor cell lines, HeLa and HepG2, with infection by Ad-E1A, were highly sensitive to TRAIL-induced apoptosis. Importantly, we found that in normal primary human lung fibroblast cells (HLF) TRAIL is capable of inducing apoptosis in combination with E1A as efficiently as in some tumor cell lines. The adenovirus type 5 encoding proteins, E1B19K and E3 gene products, have been shown to inhibit E1A and TRAIL-induced apoptosis of HLF cells by using the recombinant adenovirus AdDeltaE1B55K, with mutation of E1B55K, containing E1B19K and complete E3 region. Further results demonstrated that the expression of DR5 and TRAIL was down-regulated in the AdDeltaE1B55K co-infected HLF cells. These findings suggest that TRAIL may play an important role in limiting virus infections and the ability of adenovirus to inhibit killing may prolong acute and persistent infections. The results from this study have also suggested the possibility that the combination of E1A with TRAIL could be used in the treatment of human malignancy, or in the selection of the optimal adenovirus mutant as effective delivering vector for cancer therapy.  相似文献   

8.
The interaction of the hnRNP family member E1B-AP5 with p53   总被引:1,自引:0,他引:1  
  相似文献   

9.
10.
Adenovirus (Ad) E1A induces apoptosis in cells expressing wild-type p53, and stable transformation by Ad E1A requires the co-introduction of an anti-apoptotic gene such as Ad E1B 19K. Thus, cells immortalized by Ad E1A alone might have lost functional p53. In order to analyze the p53 in rat cells expressing Ad E1A, we established rat cell lines by transfecting primary rat embryo fibroblast (REF) and baby rat kidney (BRK) cells with cloned Ad5 E1A. By using a yeast functional assay, we analyzed p53 in six primary REF and three BRK cell lines immortalized by Ad5 E1A as well as five spontaneously immortalized rat cell lines (REF52, NRK, WFB, Rat-1 and 3Y1). The yeast functional assay revealed that all of the spontaneously and Ad5 ElA-immortalized rat cell lines except for 3Y1 expressed wild-type p53. All of the Ad5 E1A-immortalized rat cell lines contained p53 detectable by immunoprecipitation. Recombinant adenovirus expressing rat p53 cloned from a REF cell line immortalized by Ad5 E1A, as well as that expressing murine wild-type p53, induced apoptosis in p53-null cells in collaboration with E1A. Thus, it is suggested that the mutation of p53 appears to be not frequent in the spontaneous immortalization of primary rat cells, and that the functional loss of wild-type p53 is not a prerequisite of E1A-mediated immortalization.  相似文献   

11.
12.
The Carma1-Bcl10-Malt1 (CBM) complex bridges T-cell receptor (TCR) signalling to the canonical IκB kinase (IKK)/NF-κB pathway. NF-κB activation is triggered by PKCθ-dependent phosphorylation of Carma1 after TCR/CD28 co-stimulation. PKCθ-phosphorylated Carma1 was suggested to function as a molecular scaffold that recruits preassembled Bcl10-Malt1 complexes to the membrane. We have identified the serine-threonine protein phosphatase PP2A regulatory subunit Aα (PPP2R1A) as a novel interaction partner of Carma1. PPP2R1A is associated with Carma1 in resting as well as activated T cells in the context of the active CBM complex. By siRNA-mediated knockdown and in vitro dephosphorylation, we demonstrate that PP2A removes PKCθ-dependent phosphorylation of Ser645 in Carma1, and show that maintenance of this phosphorylation is correlated with increased T-cell activation. As a result of PP2A inactivation, we find that enhanced Carma1 S645 phosphorylation augments CBM complex formation, NF-κB activation and IL-2 or IFN-γ production after stimulation of Jurkat T cells or murine Th1 cells. Thus, our data define PP2A-mediated dephosphorylation of Carma1 as a critical step to limit T-cell activation and effector cytokine production.  相似文献   

13.
14.
HDAC2, one of the class I histone deacetylase regulates epigenetic landscape through histone modification. Because HDAC2 is overexpressed in many cancers, cancer therapeutics against HDAC2 have been developed. Here we show novel mechanism of HDAC2 regulation by E3 ligase RCHY1. We found inverse correlation RCHY1 and HDAC2 levels in tumor tissue from six independent dataset using meta-analysis. Ectopic expression of RCHY1 decreased the level of HDAC2 from cancer cells including p53 wildtype, mutant and null cells. In addition, HDAC2 was increased by RCHY1 knockdown. RCHY1 directly interacts with HDAC2. Ectopic expression of wild type but not RING mutant RCHY1 increased HDAC2 levels. These data provide an evidence that RCHY1 negatively regulates HDAC2.  相似文献   

15.
Adenovirus E1A protein perturbs the cell cycle and promotes cell transformation. Although E1A is relatively unstable, regulation of E1A stability has not been fully elucidated. Here, we showed that E1A was ubiquitinated and degraded using a proteasome in vivo system. Interestingly, we found that BS69, one of the E1A-binding proteins, inhibited ubiquitination of E1A. BS69 mutants lacking the MYND domain could not bind to E1A and did not inhibit ubiquitination of E1A. Moreover, we demonstrated that overexpression of BS69 stabilized E1A in vivo. These results suggest that BS69 controls E1A stability via inhibition of ubiquitination.  相似文献   

16.
Ca2+ plays a complex role in the differentiation of committed pre-adipocytes into mature, fat laden adipocytes. Stim1 is a single pass transmembrane protein that has an essential role in regulating the influx of Ca2+ ions through specific plasma membrane store-operated Ca2+ channels. Stim1 is a sensor of endoplasmic reticulum Ca2+ store content and when these stores are depleted ER-localized Stim1 interacts with molecular components of store-operated Ca2+ channels in the plasma membrane to activate these channels and induce Ca2+ influx. To investigate the potential role of Stim1 in Ca2+-mediated adipogenesis, we investigated the expression of Stim1 during adipocyte differentiation and the effects of altering Stim1 expression on the differentiation process. Western blotting revealed that Stim1 was expressed at low levels in 3T3-L1 pre-adipocytes and was upregulated 4 days following induction of differentiation. However, overexpression of Stim1 potently inhibited their ability to differentiate and accumulate lipid, and reduced the expression of C/EBP alpha and adiponectin. Stim1-mediated differentiation was shown to be dependent on store-operated Ca2+ entry, which was increased upon overexpression of Stim1. Overexpression of Stim1 did not disrupt cell proliferation, mitotic clonal expansion or subsequent growth arrest. siRNA-mediated knockdown of endogenous Stim1 had the opposite effect, with increased 3T3-L1 differentiation and increased expression of C/EBP alpha and adiponectin. We thus demonstrate for the first time the presence of store-operated Ca2+ entry in 3T3-L1 adipocytes, and that Stim1-mediated Ca2+ entry negatively regulates adipocyte differentiation. We suggest that increased expression of Stim1 during 3T3-L1 differentiation may act, through its ability to modify the level of Ca2+ influx through store-operated channels, to balance the level of differentiation in these cells in vitro.  相似文献   

17.
In the present study, we investigated whether a histone deacetylase sirtuin 1 (SIRT1) can regulate the protein stability of homeodomain-interacting protein kinase 2 (HIPK2). We observed the evidence of molecular interaction between SIRT1 and HIPK2. Interestingly, overexpression or pharmacological activation of SIRT1 promoted ubiquitination and the proteasomal degradation of HIPK2 whereas inhibition of SIRT1 activity increased the protein level of HIPK2. Furthermore, a SIRT1 activator decreased the level of HIPK2 acetylation whereas an inhibitor increased the acetylation level. These results suggest that SIRT1 may deacetylate and promote the ubiquitination and subsequent proteasomal degradation of HIPK2.  相似文献   

18.
E3b1, a binding partner of Eps8, plays a critical role in receptor tyrosine kinase (RTK)-mediated Rac activation by facilitating the interaction of Eps8 with Sos-1 and the consequent activation of the Rac-specific guanine nucleotide exchange factor activity of Sos-1. Here we present evidence that E3b1 levels are regulated by the Ca(2+)-activated protease calpain, and also by Pak, a downstream target of Rac signaling. Serum starvation of Rat2 or COS7 cells resulted in rapid loss of E3b1 that was reversed by calpain inhibitors. Loss was also prevented by expressing the constitutively active Pak1 mutant, Pak1(H83,86L). Activation of endogenous Pak by platelet-derived growth factor or the constitutively active Rac1 mutant, Rac1(G12V), also inhibited degradation. In contrast, inhibition of endogenous Pak activity by expressing the Pak auto-inhibitory domain caused degradation of over-expressed E3b1 even in the presence of serum. Taken together, these findings indicate that E3b1 is down-regulated by calpain activation and stabilized by Pak activation. They also suggest that RTK-mediated Rac activation can be modulated by changes in the level of E3b1 in response to signals that affect the activity of calpain or Pak.  相似文献   

19.
TPT1/TCTP (tumor protein, translationally-controlled 1) is highly expressed in tumor cells, known to participate in various cellular activities including protein synthesis, growth and cell survival. In addition, TPT1 was identified as a direct target of the tumor suppressor TP53/p53 although little is known about the mechanism underlying the anti-survival function of TPT1. Here, we describe a role of TPT1 in the regulation of the MTORC1 pathway through modulating the molecular machinery of macroautophagy/autophagy. TPT1 inhibition induced cellular autophagy via the MTORC1 and AMPK pathways, which are inhibited and activated, respectively, during treatment with the MTOR inhibitor rapamycin. We also found that the depletion of TPT1 potentiated rapamycin-induced autophagy by synergizing with MTORC1 inhibition. We further demonstrated that TPT1 knockdown altered the BECN1 interactome, a representative MTOR-independent pathway, to stimulate autophagosome formation, via downregulating BCL2 expression through activating MAPK8/JNK1, and thereby enhancing BECN1-phosphatidylinositol 3-kinase (PtdIns3K)-UVRAG complex formation. Furthermore, reduced TPT1 promoted autophagic flux by modulating not only early steps of autophagy but also autophagosome maturation. Consistent with in vitro findings, in vivo organ analysis using Tpt1 heterozygote knockout mice showed that autophagy is enhanced because of haploinsufficient TPT1 expression. Overall, our study demonstrated the novel role of TPT1 as a negative regulator of autophagy that may have potential use in manipulating various diseases associated with autophagic dysfunction.  相似文献   

20.
The MAP1LC3/LC3 family plays an essential role in autophagosomal biogenesis and transport. In this report, we show that the HECT family E3 ubiquitin ligase NEDD4 interacts with LC3 and is involved in autophagosomal biogenesis. NEDD4 binds to LC3 through a conserved WXXL LC3-binding motif in a region between the C2 and the WW2 domains. Knockdown of NEDD4 impaired starvation- or rapamycin-induced activation of autophagy and autophagosomal biogenesis and caused aggregates of the LC3 puncta colocalized with endoplasmic reticulum membrane markers. Electron microscopy observed gigantic deformed mitochondria in NEDD4 knockdown cells, suggesting that NEDD4 might function in mitophagy. Furthermore, SQSTM1 is ubiquitinated by NEDD4 while LC3 functions as an activator of NEDD4 ligase activity. Taken together, our studies define an important role of NEDD4 in regulation of autophagy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号