首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endoplasmic reticulum (ER) stress-mediated apoptosis plays an important role in the destruction of pancreatic beta-cells and contributes to the development of type 1 diabetes. The chaperone molecule, glucose-regulated proteins 78 (Grp78), is required to maintain ER function during toxic insults. In this study, we investigated the changes of Grp78 expression in different phases of streptozotocin (STZ)-affected beta-cells to explore the relationship between Grp78 and the response of beta-cells to ER stress. An insulinoma cell line (NIT-1) treated with STZ for different time periods and STZ-induced diabetic Balb/C mice at different time points were used as the model system. The level of Grp78 and C/EBP homologous protein (CHOP) mRNA were detected by real-time polymerase chain reaction and their protein by immunoblot. Apoptosis and necrosis was measured by flow cytometry. In addition, the changes of Grp78 protein in STZ-treated nondiabetic mice were also detected by immunoblot. Grp78 expression significantly increased in the early phase but decreased in the later phase of affected beta-cells, while CHOP was induced and apoptosis occurred along with the decrease of Grp78. Interestingly, the Grp78 protein of STZ-treated nondiabetic mice increased stably compared with that of the control. From the results, we can conclude that Grp78 may contribute to the response of beta-cells to ER stress, and more attention should be paid to Grp78 in the improvement of diabetes.  相似文献   

2.
The appearance of Fas receptor at the surface of pancreatic beta-cells affected by progressive insulitis strongly suggests that Fas-mediated beta-cell apoptosis plays an important role in the pathogenesis of type 1 diabetes. In support of this concept, the present study has shown that islet cells from NOD mice and the beta-cell line NIT-1 respond to the proinflammatory cytokines IL-1beta and IFN-gamma with Fas surface expression in a dose- and time-dependent manner. Moreover, the prevention of cytokine-induced surface Fas expression by actinomycin D, cycloheximide, and brefeldin A demonstrated that trafficking of Fas to the beta-cell surface requires RNA and protein synthesis and, in addition is critically dependent on intracellular protein transport. Compared with total cellular Fas protein, the amount of Fas at the cell surface was relatively small and indicated that Fas is preferentially expressed in cytoplasmic compartments of NIT-1 cells. It is concluded that inflammatory insults specifically induce translocation of Fas to the beta-cell surface and that interference with cell surface Fas expression is a new strategy to improve beta-cell survival in inflamed islets.  相似文献   

3.
Endothelial cells (ECs) are directly exposed to hypoxia and contribute to injury during myocardial ischemia/reperfusion. Hypoxic preconditioning (HPC) protects ECs against hypoxia injury. This study aimed to explore whether HPC attenuates hypoxia/reoxygenation (H/R) injury by suppressing excessive endoplasmic reticulum stress (ERS) in cultured microvascular ECs (MVECs) from rat heart. MVECs injury was measured by lactate dehydrogenase (LDH) leakage, cytoskeleton destruction, and apoptosis. Expression of glucose regulating protein 78 (GRP78) and C/EBP homologous protein (CHOP), activation of caspase-12 (pro-apoptosis factors) and phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) were detected by western blot analysis. HPC attenuated H/R-induced LDH leakage, cytoskeleton destruction, and cell apoptosis, as shown by flow cytometry, Bax/Bcl-2 ratio, caspase-3 activation and terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end labeling. HPC suppressed H/R-induced ERS, as shown by a decrease in expression of GRP78 and CHOP, and caspase-12 activation. HPC enhanced p38 MAPK phosphorylation but decreased that of protein kinase R-like ER kinase (PERK, upstream regulator of CHOP). SB202190 (an inhibitor of p38 MAPK) abolished HPC-induced cytoprotection, downregulation of GRP78 and CHOP, and activation of caspase-12, as well as PERK phosphorylation. HPC may protect MVECs against H/R injury by suppressing CHOP-dependent apoptosis through p38 MAPK mediated downregulation of PERK activation.  相似文献   

4.
Pro-inflammatory cytokines have been implicated in the death of pancreatic beta cells leading to type 1 diabetes. NIT-1 cells are an insulinoma cell line derived from mice expressing the SV40 large T antigen. These cells are a useful tool in analysis of beta cell death. NIT-1 cells are highly susceptible to caspase-dependent apoptosis induced by TNF-alpha alone. Primary islets are not susceptible to cell death induced by TNF-alpha alone; however, they are killed by TNF-alpha and IFN-gamma in a nitric oxide-dependent manner. We examined signal transduction in NIT-1 cells in response to cytokines to determine the mechanism for TNF-alpha-induced apoptosis. We found that NIT-1 cells are defective in the activation of nuclear factor-kappaB (NFkappaB) as a result of functionally deficient RelA activity, because overexpression of RelA protected NIT-1 cells from apoptosis. TNF-alpha also did not induce phosphorylation of c-Jun N-terminal kinase in NIT-1 cells. Together, these defects prevent expression of anti-apoptotic genes in NIT-1 cells and make them susceptible to TNF-alpha. To determine whether similar defects in primary beta cells would induce the same effect, we examined TNF-alpha-induced apoptosis in islets isolated from mice deficient in NFkappaB p50. These islets were as susceptible as wild-type islets to TNF-alpha and IFN-gamma-induced cell death. In contrast to wild-type islets, cell death was not prevented by inhibition of nitric oxide in p50-deficient islets. Blocking NFkappaB has been proposed as a mechanism for protection of beta cells from cytokine-induced cell death in vivo. Our results suggest that this would make beta cells equally or more sensitive to cytokines.  相似文献   

5.
目的检测内质网应激(endoplasmic reticulum stress,ERS)标志蛋白:葡萄糖调节蛋白(GRP78/Bip)、转录因子GADDl53/CHOP在糖尿病大鼠肾脏细胞中表达及其与肾脏固有细胞凋亡之间的关系,初步探讨ERS在糖尿病肾损害中的作用及机制。方法单侧肾切除大鼠腹腔注射链脲佐菌素诱发糖尿病,于8周应用免疫组织化学检测GRP78、GADDl53/CHOP的表达与定位,TUNEL染色检测细胞凋亡部位,流式细胞术检测细胞凋亡程度,并对GRP78、GAD-Dl53/CHOP表达水平进行半定量分析,同时观察尿蛋白、BUN、尿肌酐等反应肾功能的相关指标。结果建模8周,糖尿病大鼠较正常组的肾细胞凋亡率明显升高,GRP78、GADDl53/CHOP表达明显增加。结论糖尿病肾损害过程中,ERS被诱导并可能通过激活转录因子GADDl53/CHOP引起肾脏细胞过多丢失,在糖尿病肾病的发病机制中起重要作用。  相似文献   

6.
Apoptosis contributes to tubular epithelial cell death and atrophy in aldosterone (Aldo)-induced renal injury. This study aimed to determine mechanisms underlying Aldo-induced reactive oxygen species (ROS) and endoplasmic reticulum (ER) stress in tubular epithelial cells. Intracellular ROS generation was evaluated by 2',7'-dichlorofluorescin diacetate fluorescence. Apoptosis was detected by annexin V/propidium iodide staining and flow cytometry. ER stress induced protein and mRNA were evaluated by Western blot and real-time PCR, respectively. Aldo promoted tubular epithelial cell apoptosis, increased intracellular ROS production and induced ER stress, as evidenced by increased expression of glucose-regulated protein 78 (GRP78) and CAAT/enhancer-binding protein homologous protein (CHOP) in a dose- and time-dependent manner. Additionally, siRNA knockdown of CHOP and antioxidant N-acetyl-l-cysteine (NAC) attenuated ER stress-mediated apoptosis. NAC also could inhibit Aldo-induced expression of GRP78 and CHOP. Altogether, these observations suggest that Aldo induces apoptosis via ROS-mediated, CHOP-dependent activation in renal tubular epithelial cells.  相似文献   

7.
Type 2 diabetes mellitus is thought to be partially associated with endoplasmic reticulum (ER) stress toxicity on pancreatic beta cells and the result of decreased insulin synthesis and secretion. In this study, we showed that a well-known insulin sensitizer, metformin, directly protects against dysfunction and death of ER stress-induced NIT-1 cells (a mouse pancreatic beta cell line) via AMP-activated protein kinase (AMPK) and phosphatidylinositol-3 (PI3) kinase activation. We also showed that exposure of NIT-1 cells to metformin (5mM) increases cellular resistance against ER stress-induced NIT-1 cell dysfunction and death. AMPK and PI3 kinase inhibitors abolished the effect of metformin on cell function and death. Metformin-mediated protective effects on ER stress-induced apoptosis were not a result of an unfolded protein response or the induced inhibitors of apoptotic proteins. In addition, we showed that exposure of ER stressed-induced NIT-1 cells to metformin decreases the phosphorylation of c-Jun NH(2) terminal kinase (JNK). These data suggest that metformin is an important determinant of ER stress-induced apoptosis in NIT-1 cells and may have implications for ER stress-mediated pancreatic beta cell destruction via regulation of the AMPK-PI3 kinase-JNK pathway.  相似文献   

8.
Lee JW  Kim WH  Yeo J  Jung MH 《Molecules and cells》2010,30(6):545-549
Mitochondrial dysfunction induces apoptosis of pancreatic β-cells and leads to type 2 diabetes, but the mechanism involved in this process remains unclear. Chronic endoplasmic reticulum (ER) stress plays a role in the apoptosis of pancreatic β-cells; therefore, in current study, we investigated the implication of ER stress in mitochondrial dysfunction-induced β-cells apoptosis. Metabolic stress induced by antimycin or oligomycin was used to impair mitochondrial function in MIN6N8 cells, which are mouse pancreatic β-cells. Impaired mitochondria dysfunction increased ER stress proteins such as p-eIF2α, GRP78 and GRP 94, as well as ER stress-associated apoptotic factor, CHOP, and activated JNK. AMP-activated protein kinase (AMPK) was also activated under mitochondria dysfunction by metabolic stress. However, the inhibition of AMPK by treatment with compound C, inhibitor of AMPK, and overexpression of mutant dominant negative AMPK (AMPKK45R) blocked the induction of ER stress, which was consist-ent with the decreased β-cell apoptosis and increase of insulin content. Furthermore, mitochondrial dysfunction increased the expression of the inducible nitric oxide synthase (iNOS) gene and the production of nitric oxide (NO), but NO production was prevented by compound C and mutant dominant negative AMPK (AMPK-K45R). Moreover, treatment with 1400W, which is an inhibitor of iNOS, prevented ER stress and apoptosis induced by mitochondrial dysfunction. Treatment of MIN6N8 cells with lipid mixture, physiological conditions of impaired mitochondria function, activated AMPK, increased NO production and induced ER stress. Collectively, these data demonstrate that mitochondrial dysfunction activates AMPK, which induces ER stress via NO production, resulting in pancreatic β-cells apoptosis.  相似文献   

9.
To explore the protective effect of exercise training on the injury of myocardium tissues induced by streptozotocin (STZ) in diabetic rats and the relationship with endoplasmic reticulum stress (ERS), the male sprague-dawley (SD) rats were fed with high-fat and high-sugar diet for 4 weeks, followed by intraperitoneal injection of STZ, 40 mg/kg, to establish a diabetes model, and then 10 rats were randomly selected as diabetes mellitus (DM) controls and 20 eligible diabetic rats were randomized into two groups: low-intensity exercise training (n = 10) and high-intensity exercise training (n = 10). After 12 weeks of exercise training, rats were killed and serum samples were used to determine cardiac troponin-I (cTn-I). Myocardial tissues were sampled for morphological analysis to detect myocardial cell apoptosis, and to analyze protein expression of glucose-regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), and caspase-12. Different intensities (low and high) significantly reduced serum cTn-I levels compared with the DCM group (p < 0.01), and significantly reduced the percentage of apoptotic myocardial cells and improved the parameters of cardiac function. Hematoxylin and eosin and Masson staining indicated that exercise training could attenuate myocardial apoptosis. Additionally, exercise training significantly reduced GRP78, CHOP, and cleaved caspase-12 protein expression in an intensity-dependent manner. These findings suggest that exercise appeared to ameliorate diabetic cardiomyopathy by inhibiting endoplasmic reticulum stress-induced apoptosis in diabetic rats.  相似文献   

10.
11.
12.
Oxidative-nitrosative stress and inflammatory responses are associated with endoplasmic reticulum (ER) stress in diabetic retinopathy, raising the possibility that disturbances in ER protein processing may contribute to CNS dysfunction in diabetics. Upregulation of the unfolded protein response (UPR) is a homeostatic response to accumulation of abnormal proteins in the ER, and the present study tested the hypothesis that the UPR is upregulated in two models for diabetes, cultured astrocytes grown in 25 mmol/L glucose for up to 4 weeks and brain of streptozotocin (STZ)-treated rats with diabetes for 1–7 months. Markers associated with translational blockade (phospho-eIF2α and apoptosis (CHOP), inflammatory response (inducible nitric oxide synthase, iNOS), and nitrosative stress (nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase, GAPDH) were not detected in either model. Nrf2 was present in nuclei of low- and high-glucose cultures, consistent with oxidative stress. Astrocytic ATF4 expression was not altered by culture glucose concentration, whereas phospho-IRE and ATF6 levels were higher in low- compared with high-glucose cultures. The glucose-regulated chaperones, GRP78 and GRP94, were also expressed at higher levels in low- than high-glucose cultures, probably due to recurrent glucose depletion between feeding cycles. In STZ-rat cerebral cortex, ATF4 level was transiently reduced at 4 months, and p-IRE levels were transiently elevated at 3 months. However, GRP78 and GRP94 expression was not upregulated, and iNOS, amyloid-β, and nuclear accumulation of GAPDH were not evident in STZ-diabetic brain. High-glucose cultured astrocytes and STZ-diabetic brain are relatively resistant to diabetes-induced ER stress, in sharp contrast with cultured retinal Müller cells and diabetic rodent retina.  相似文献   

13.
Celecoxib is a selective cyclooxygenase-2 (COX-2) inhibitor that has been reported to elicit anti-proliferative response in various tumors. In this study, we aim to investigate the antitumor effect of celecoxib on urothelial carcinoma (UC) cells and the role endoplasmic reticulum (ER) stress plays in celecoxib-induced cytotoxicity. The cytotoxic effects were measured by MTT assay and flow cytometry. The cell cycle progression and ER stress-associated molecules were examined by Western blot and flow cytometry. Moreover, the cytotoxic effects of celecoxib combined with glucose-regulated protein (GRP) 78 knockdown (siRNA), (-)-epigallocatechin gallate (EGCG) or MG132 were assessed. We demonstrated that celecoxib markedly reduces the cell viability and causes apoptosis in human UC cells through cell cycle G1 arrest. Celecoxib possessed the ability to activate ER stress-related chaperones (IRE-1α and GRP78), caspase-4, and CCAAT/enhancer binding protein homologous protein (CHOP), which were involved in UC cell apoptosis. Down-regulation of GRP78 by siRNA, co-treatment with EGCG (a GRP78 inhibitor) or with MG132 (a proteasome inhibitor) could enhance celecoxib-induced apoptosis. We concluded that celecoxib induces cell cycle G1 arrest, ER stress, and eventually apoptosis in human UC cells. The down-regulation of ER chaperone GRP78 by siRNA, EGCG, or proteosome inhibitor potentiated the cytotoxicity of celecoxib in UC cells. These findings provide a new treatment strategy against UC.  相似文献   

14.
Chronic exposure to elevated saturated free fatty acid (FFA) levels has been shown to induce endoplasmic reticulum (ER) stress that may contribute to promoting pancreatic beta-cell apoptosis. Here, we compared the effects of FFAs on apoptosis and ER stress in human islets and two pancreatic beta-cell lines, rat INS-1 and mouse MIN6 cells. Isolated human islets cultured in vitro underwent apoptosis, and markers of ER stress pathways were elevated by chronic palmitate exposure. Palmitate also induced apoptosis in MIN6 and INS-1 cells, although the former were more resistant to both apoptosis and ER stress. MIN6 cells were found to express significantly higher levels of ER chaperone proteins than INS-1 cells, which likely accounts for the ER stress resistance. We attempted to determine the relative contribution that ER stress plays in palmitate-induced beta-cell apoptosis. Although overexpressing GRP78 in INS-1 cells partially reduced susceptibility to thapsigargin, this failed to reduce palmitate-induced ER stress or apoptosis. In INS-1 cells, palmitate induced apoptosis at concentrations that did not result in significant ER stress. Finally, MIN6 cells depleted of GRP78 were more susceptible to tunicamycin-induced apoptosis but not to palmitate-induced apoptosis compared with control cells. These results suggest that ER stress is likely not the main mechanism involved in palmitate-induced apoptosis in beta-cell lines. Human islets and MIN6 cells were found to express high levels of stearoyl-CoA desaturase-1 compared with INS-1 cells, which may account for the decreased susceptibility of these cells to the cytotoxic effects of palmitate.  相似文献   

15.
目的 探讨炎性因子IL-6是否通过Sirt1/p53/caspase-3通路介导胰岛β细胞凋亡.方法 Western 印迹检测Sirt1在小鼠各组织器官和胰岛β细胞系NIT-1细胞中的表达,免疫荧光法检测Sirt1在细胞中的定位.IL-6(10 ng/ml)处理NIT-1细胞48 h,Hoechst3334染色及流式细胞仪检测细胞凋亡,Western印迹检测细胞内Sirt1、P53、乙酰化P53(acety-P53)、caspase-3和cleaved caspase-3的水平变化.结果 Sirt1在小鼠各组织器官和胰岛β细胞中均有表达,主要定位于细胞核.IL-6处理NIT-1细胞后,伴随Sirt1表达的显著减少,acety-P53明显上调,p53/caspase-3通路活化,NIT-1细胞凋亡增加.结论 IL-6通过下调Sirt1进而激活p53/caspase-3信号通路引起胰岛β细胞凋亡.  相似文献   

16.
17.
In this report, we investigated a role of endoplasmic reticulum (ER) stress in cigarette smoke (CS)-induced apoptosis of human bronchial epithelial cells (hBEC). Exposure of hBEC to CS or CS extract (CSE) caused expression of endogenous ER stress markers GRP78 and CHOP and induction of apoptosis evidenced by nuclear condensation, membrane blebbing, and activation of caspase-3 and caspase-4. In vivo exposure of mice to CS also caused induction of GRP78 and CHOP in the lung. Attenuation of ER stress by overexpression of ER chaperone GRP78 or ORP150 significantly attenuated CSE-triggered apoptosis. Exposure of hBEC to CSE caused generation of reactive oxygen species, and treatment with antioxidants inhibited CSE-induced apoptosis. Interestingly, antioxidants including a scavenger of O(2)(*-) blunted induction of CHOP by CSE without affecting the level of GRP78, and dominant-negative inhibition of CHOP abolished CSE-induced apoptosis. Furthermore, a generator of O(2)(*-) selectively induced CHOP and apoptosis in hBEC. Our results revealed that: (1) CS induces ER stress in vitro and in vivo, (2) ER stress mediates CS-triggered apoptosis downstream of oxidative stress, (3) CS-initiated apoptosis is caused through oxidative stress-dependent induction of CHOP, (4) O(2)(*-) may play a dominant role in this process, and (5) oxidative stress-independent induction of GRP78 counterbalances the proapoptotic action of CHOP.  相似文献   

18.
Ginsenoside Rg1 has been demonstrated to have cardiovascular protective effects. However, whether the cardioprotective effects of ginsenoside Rg1 are mediated by endoplasmic reticulum (ER) stress‐induced apoptosis remain unclear. In this study, among 80 male Wistar rats, 15 rats were randomly selected as controls; the remaining 65 rats received a diet rich in fat and sugar content for 4 weeks, followed by intraperitoneal injection of streptozotocin (STZ, 40 mg/kg) to establish a diabetes model. Seven days after STZ injection, 10 rats were randomly selected as diabetic model (DM) controls, 45 eligible diabetic rats were randomized to three treatment groups and administered ginsenoside Rg1 in a dosage of 10, 15 or 20 mg/kg/day, respectively. After 12 weeks of treatment, rats were killed and serum samples obtained to determine cardiac troponin (cTn)‐I. Myocardial tissues were harvested for morphological analysis to detect myocardial cell apoptosis, and to analyse protein expression of glucose‐regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), and Caspase‐12. Treatment with ginsenoside Rg1 (10–20 mg/kg) significantly reduced serum cTnI levels compared with DM control group (all P < 0.01). Ginsenoside Rg1 (15 and 20 mg/kg) significantly reduced the percentage of apoptotic myocardial cells and improved the parameters of cardiac function. Haematoxylin and eosin and Masson staining indicated that ginsenoside Rg1 could attenuate myocardial lesions and myocardial collagen volume fraction. Additionally, ginsenoside Rg1 significantly reduced GRP78, CHOP, and cleaved Caspase‐12 protein expression in a dose‐dependent manner. These findings suggest that ginsenoside Rg1 appeared to ameliorate diabetic cardiomyopathy by inhibiting ER stress‐induced apoptosis in diabetic rats.  相似文献   

19.
Srinivasan K  Sharma SS 《Life sciences》2012,90(3-4):154-160
AimsThe role of nitric oxide (NO) and endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of cerebral ischemic/reperfusion (I/R) injury and diabetes. The aim of the study was to investigate the neuroprotective potential of 3-bromo-7-nitroindazole (3-BNI), a potent and selective neuronal nitric oxide synthase (nNOS) inhibitor against ER stress and focal cerebral I/R injury associated with comorbid type 2 diabetes in-vivo.Main methodsType 2 diabetes was induced by feeding high-fat diet and streptozotocin (35 mg/kg) treatment in rats. Focal cerebral ischemia was induced by 2 h middle cerebral artery occlusion (MCAO) followed by 22 h of reperfusion. Immunohistochemistry and western blotting methods were employed for the detection and expression of ER stress/apoptosis markers [78 kDa glucose regulated protein (GRP78) and CCAAT/enhancer binding protein homologous protein (CHOP)]. TUNEL assay for DNA fragmentation was also performed.Key findingsThe diabetic rats subjected to cerebral I/R had prominent neurological damage and functional deficits compared with sham-operated rats. Massive DNA fragmentation was observed in ischemic penumbral region of diabetic brains. Concomitantly, the enhanced immunoreactivity and expression of ER stress/apoptosis markers were noticed. 3-BNI (30 mg/kg, i.p.) treatment significantly inhibited the cerebral infarct, edema volume and improved functional recovery of neurological deficits. The neuroprotection was further evident by lesser DNA fragmentation with a concomitant reduction of GRP78 and CHOP.SignificanceThe study demonstrates the neuroprotective potential of 3-BNI in diabetic stroke model which may be partly due to inhibition of ER stress pathway involving CHOP.  相似文献   

20.
This study is the first to investigate the anticancer effects of the new phloroglucinol derivative (3,6-bis(3-chlorophenylacetyl)phloroglucinol; MCPP) in human colon cancer cells. MCPP induced cell death and antiproliferation in three human colon cancer, HCT-116, SW480, and Caco-2 cells, but not in primary human dermal fibroblast cells. MCPP-induced concentration-dependent apoptotic cell death in colon cancer cells was measured by fluorescence-activated cell sorter (FACS) analysis. Treatment of HCT-116 human colon cancer cells with MCPP was found to induce a number of signature endoplasmic reticulum (ER) stress markers; and up-regulation of CCAAT/enhancer-binding protein homologous protein (CHOP) and glucose-regulated protein (GRP)-78, phosphorylation of eukaryotic initiation factor-2α (eIF-2α), suggesting the induction of ER stress. MCPP also increased GSK3α/β(Tyr270/216) phosphorylation and reduced GSK3α/β(Ser21/9) phosphorylation time-dependently. Transfection of cells with GRP78 or CHOP siRNA, or treatment of GSK3 inhibitor SB216163 reduced MCPP-mediated cell apoptosis. Treatment of MCPP also increased caspase-7, caspase-9, and caspase-3 activity. The inhibition of caspase activity by z-DEVE-FMK or z-VAD-FMK significantly reduced MCPP-induced apoptosis. Furthermore, treatment of GSK3 inhibitor SB216763 also dramatically reversed MCPP-induced GRP and CHOP up-regulation, and pro-caspase-3 and pro-caspase-9 degradation. Taken together, the present study provides evidences to support that GRP78 and CHOP expression, and GSK3α/β activation in mediating the MCPP-induced human colon cancer cell apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号