首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rate of volatilization of Hg2+ as metallic Hg is accelerated by illumination of Chlorella cells. In the presence of the uncoupler methylamine the rate of volatilization in the light is greatly but transiently increased. DCMU (3-(3,4-dichlorophenyl)-1,1-dimethyl urea) prevented the light response. In the presence of Hg2+, O2 evolution by the cells was not completely inhibited by DCMU. Hg2+ appears to prevent DCMU reaching its binding site. Light seems to increase the amount of or leakage from the cells of a metabolite capable of reducing Hg2+ to Hg°.  相似文献   

2.
The development cycle of the cyanophage AS-1 was studied in the host blue-green alga, Anacystis nidulans, under conditions that impair photosynthesis and under various light/dark regimes. Under standard conditions of incubation the 16-h development cycle consisted of a 5-h eclipse period and an 8-h latent period. Burst size was decreased by dark incubation to 2% of that observed in the light. An inhibitor of photosystem II, 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU), reduced the burst size to 27% of that of the uninhibited control, whereas cyanophage production was completely abolished by carbonyl-cyanide m-chlorophenyl hydrazone (CCCP), an inhibitor of photosynthetic electron transport. Dark incubation of infected cells decreased the latent period by 1–2 h and the eclipse period by 1 h, once the cultures were illuminated. This suggests that adsorption took place in the dark. Intracellular growth curves indicated that light is necessary for viral development. Infected cells must be illuminated at least 13 h to produce a complete burst at the same rate as the continuously illuminated control. Low light intensities retarded the development cycle, and at lowest light intensities no phage yield was obtained. AS-1 is highly dependent on host cell photophosphorylation for its development.List of Abbreviations CCCP Carbonyl-cyanide m-chlorophenyl hydrazone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - m.o.i. multiplicity of infection - O.D. optical density - PFU plaque-forming unit Dedicated to Prof. Roger Y. Stanier on the occasion of his 60th birthday  相似文献   

3.
Light-stimulated transmembrane potential changes have been measured continuously after implantation of microelectrodes into subepidermal cells of the short-day plant Lemna paucicostata 6746. Irradiation for 5 min with white or red light caused a transient hyperpolarization. These potential changes could be suppressed with 10-6 M DCMU. Irradiation of DCMU-inhibited plants with far-red light for 5 min hyperpolarized the membrane potential, which thereafter was not changed by further far-red application. Consecutive red light irradiation for 5 min depolarized the membrane potential. The red/far-red reversibility of the potential changes (which could be repeated several times with a single plant) suggests the participation of phytochrome.Abbreviations EDTA ethylenediaminetetraacetate - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - Pr, (Pfr) red- (far-red-) absorbing form of phytochrome  相似文献   

4.
Work demonstrating the operation of a photorespiratory N cycle in Chlamydomonas is described. NH3 release by this process is light dependent, sensitive to changes in pO2 and pCO2, and abolished by a photosystem II inhibitor. Evidence is presented which shows that this NH3 derives its N from protein rather than from freshly synthesised glutamate. Protein turnover is shown to provide amino-N at a rate sufficient to account for the highest photorespiratory N excretion observed suggesting that changes in excretion can be accounted for by increased catabolism of normally recirculating amino acids. It is equally possible however that a direct link between photorespiration and protein turnover exists, increased NH3 excretion resulting from enhanced protein turnover. The data suggest that if similar mechanisms operate in higher plants, previous estimates of the amount of N recycled in photorespiration may have been too high.Abbreviations GS glutamine synthetase - PMSF phenyl methyl sulfonyl fluoride - MSO L-methionine-DL-sulfoximine - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea  相似文献   

5.
Two strains of unicellular cyanobacteria which reproduce exclusively by budding are described and assigned to genus Chamaesiphon.Non-Standard Abbreviations PG peptidoglycan layer of the gramnegative cell wall - OM outer membrane layer of the gram-negative cell wall - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - DNA deoxyribonucleic acid - GC guanine + cytosine  相似文献   

6.
Some previous studies of photorespiration and glycolate oxidation were re-examined and correlated by infra-red CO2 analysis. Data about rate of photosynthesis and oxygen sensitivity indicated that complete inhibition of photosynthesis with 3-(3,4-dichlorophenyl)-1,1 dimethyl urea (DCMU) allowed dark respiration to continue in the light. Photorespiration was also inhibited. The oxygen sensitivity of glycolate-stimulated CO2 production was found to be compatible with the proposal that glycolate is a substrate of photorespiration. Both `in vivo' and `in vitro' studies of the alga Nitella flexilis have revealed a pathway of glycolate oxidation similar to that of higher plants. DCMU inhibition of photosynthesis by Nitella gave results similar to those for the monocotyledons tested. Under very low light intensity, carbon dioxide compensation in corn was measurable but was not sensitive to high oxygen concentration. It appears that the lack of photorespiration in this plant is not the end result of efficient internal recycling of CO2 to photosynthesis.  相似文献   

7.
Cyanobacterin is a secondary metabolite produced by the cyanobacterium, Scytonema hofmanni. Highly purified cyanobacterin was found to inhibit the growth of many cyanobacteria at a minimum effective dose of 2 g/ml (4.6 M). The antibiotic had no effect on eubacteria including the photosynthetic Rhodospirillum rubrum. The site of action of cyanobacterin was further investigated in the unicellular cyanobacterium, Synechococcus sp. Electron micrographs of antibiotic-treated Synechococcus cells indicated that cyanobacterin affects thylakoid membrane structure. The antibiotic also inhibited light-dependent oxygen evolution in Synechococcus cells and in spheroplasts. These data support our conclusion that cyanobacterin specifically inhibits photosynthetic electron transport. This activity is similar to herbicides such as 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU). The anhydro analog of cyanobacterin had no biological activity.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - DCPIP dichlorophenolindophenol  相似文献   

8.
Effects of root treatment with 5-aminolevulinic acid (ALA) on leaf photosynthesis in strawberry (Fragaria ananassa Duch.) plants were investigated by rapid chlorophyll fluorescence and modulated 820 nm reflection using 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) and methyl viologen (MV). Our results showed that ALA treatments increased the net photosynthetic rate and decreased the intercelluar CO2 concentration in strawberry leaves. Under DCMU treatment, trapping energy for QA reduction per PSII reaction center increased greatly, indicating DCMU inhibited electron transfer from QA ?. The maximum photochemical efficiency of PSII (Fv/Fm) decreased under the DCMU treatment, while a higher Fv/Fm remained in the ALA-pretreated plants. Not only the parameters related to a photochemical phase, but also that one related to a heat phase remained lower after the ALA pretreatment, compared to the sole DCMU treatment. The MV treatment decreased PSI photochemical capacity. The results of modulated 820 nm reflection analysis showed that DCMU and MV treatments had low re-reduction of P700 and plastocyanin (PSI). However, the strawberry leaf discs pretreated with ALA exhibited high re-reduction of PSI under DCMU and MV treatments. The results of this study suggest that the improvement of photosynthesis by ALA in strawberry was not only related to PSII, but also to PSI and electron transfer chain.  相似文献   

9.
Two facultative anoxygenic photoautotrophic cyanobacteria, Oscillatoria limnetica and Aphanothece halophytica were found capable of CO2 photoassimilation using molecular hydrogen as electron donor in a photosystem I driven reaction. A. halophytica was also capable of evolving hydrogen from Na-dithionite reduced methylviologen in a light independent reaction.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DSPD Disallcylidenepropanediamine - FCCP Carbonylcyanide p-trifluoromethoxyphenyl hydrazone - Tricine N-tris(hydroxy methyl)-methylglycine  相似文献   

10.
Chloroplast from greening potato tuber showed good photosynthetic capacity. The evolution of O2 was dependent upon the intensity of light. A light intensity of 30 lux gave maximum O2 evolution. At higher intensities inhibition was observed. The presence of bicarbonate in the reaction mixture was essential for O2 evolution. NADP was found to be a potent inhibitor of O2 evolution in this system. NADP and 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) inhibited the O2 evolution completely at a 3 μm concentration level, which was reversed by oxidized 2,6-dichlorophenol-indophenol (DCIP). Cyanide (CN)-treated chloroplasts showed full O2 evolution capacity, when a lipophilic electron acceptor like N-tetramethyl-p-phenylenediamine (TMPD) or DCIP was used along with ferricyanide. Ferricyanide alone showed only 20% reduction. NADP or DCMU could inhibit O2 evolution only when TMPD was the acceptor but not with DCIP. Photosystem II (PS II) isolated from these chloroplasts also showed inhibition by NADP or DCMU and its reversal by DCIP. Here also the evolution of O2 with only TMPD as acceptor was sensitive to NADP or DCMU. In the presence of added silicotungstate in PS II NADP or DCMU did not affect ferricyanide reduction or oxygen evolution. The chloroplasts were able to bind exogenously added NADP to the extent of 120 nmol/mg chlorophyll. It is concluded that the site of inhibition of NADP is the same as in DCMU, and it is between the DCIP and TMPD acceptor site in the electron transport from the quencher (Q) to plastoquinone (PQ).  相似文献   

11.
Under anaerobic conditions and in the absence of CO2, the thermophilic blue-green alga Synechococcus lividus Y52-s, evolved hydrogen sulfide in both darkness and light. The mechanism of this process was investigated and compared with photo- and dark reductions in organisms representing several phyla. The photoproduction of H2S from either sulfate or thiosulfate was inhibited by 3-(3,4-dichlorophenyl)-1, 1-dimethyl urea (DCMU) and carbonyl m-chlorophenyl-hydrazone (m-Cl-CCP). The inhibitory effect of DCMU showed the requirement for photosystem II as electron donor. Inhibition by m-Cl-CCP also implicated ATP as an energy source. Monofluoroacetate partially inhibited photoproduction of H2S. This indicated that oxidative metabolism may act us a source of electrons to reduce the photooxidant under certain conditions. Thiosulfate acts only as electron acceptor and is reductively cleaved to S= and SO3=. Thiosulfate and sulfate appeared to replace CO2 in the light and O2 in darkness as electron acceptors. The phosphorylation uncouplers dinitrophenol and m-Cl-CCP stimulated dark H2S production.  相似文献   

12.
Summary Isolated higher plant chloroplasts with intact envelope membranes and bovine serum albumin were co-immobilized by treating the mixture with glutaraldehyde and then subjecting it to a freeze-thaw cycle. The immobilized chloroplasts are capable of photoinduced electron transport to lipophilic oxidants, but become compatible also with ionic oxidants after a transient hyposmotic shock.Abbreviations ASC ascorbate - Chl chlorophyll - DCIP 2,6-dichlorophenol indophenol - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - FeCN K3 Fe(CN)6 - MV methyl viologen - PDox FeCN-oxidized p-phenylene diamine  相似文献   

13.
Evidence is presented here that axenic cultures of Nostoc spp., Aphanocapsa (PCC 6308), and Aphanocapsa (PCC 6714) but not Anacystis nidulans R-2 (PCC 7942) produce N2O and ammonia when grown on nitrite. The data suggest that the cyanobacteria produce N2O by nitrite reduction to ammonia.Nonstandard abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - NIR nitrite reductase  相似文献   

14.
Light-enhanced nitrate reductase (NR) activity was 8 times greaterthan the dark control. Exogenous application of sucrose, glucoseand fructose increased the induction of NR in the light as wellas in the dark, whereas glycolate had no effect. DCMU [3-(3,4-dichlorophenyl)-1, 1-dimethyl urea] completely inhibited thedevelopment of NR in light. Sucrose, when added with DCMU, reversedthis inhibitory effect NR in vivo was more stable in light thanin darkness, the half-lives being 9.6 h and 6.4 h, respectively.The addition of sucrose did not change the half-life of NR ineither light or darkness. Ammonium, the end product of the inorganicnitrogen assimilatory pathway, stimulated the NR activity whereasamino acids decreased it. Key words: Spirodela oligorrhiza, nitrate reductase, ammonium, light  相似文献   

15.
The catabolic products of arginine metabolism were observed in Aphanocapsa 6308, a unicellular cyanobacterium, by thin layer chromatography of growth media, by limiting growth conditions, and by enzymatic analysis. Of the organic, nitrogenous compounds examined, only arginine supported growth in CO2-free media. The excretion of ornithine at a concentration level greater than citrulline suggested the existence in Aphanocapsa 6308 of the arginine dihydrolase pathway which produced ornithine, CO2, NH4, + adenosine 5-triphosphate. Its existence was confirmed by enzymatic analysis. Although cells could not grow on urea as a sole carbon source a very active urease and subsequently an arginase were also demonstrated, indicating that Aphanocapsa can metabolize arginine via the arginase pathway. The level of enzymes for both pathways indicates a lack of genetic control. It is suggested that the arginase pathway provides only nitrogen for the cells whereas the arginine dihydrolase pathway provides not only nitrogen, but also CO2 and adenosine 5-triphosphate.Nonstandard Abbreviations CCCP carbonylcyanide mchlorophenyl hydrazone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - CGP cyanophycin granule protein - PS II photosystem II - PSI photosystem I - TLC thin layer chromatography - TCA trichloroacetic acid - DPM disintegrations per min  相似文献   

16.
Anton Hofmann 《Planta》1971,102(1):72-84
Summary Inhibitors and uncouplers of phosphorylation, i.e., arsenate, 2.4-dinitrophenol (DNP), pentachlorophenol (PCP), and carbonyl cyanide m-chlorophenylhydrazone (CCCP), inhibit the assimilation of nitrite by the green alga Ankistrodesmus braunii in the dark and in the light. In a medium containing nitrate, these inhibitors interrupt nitrate reduction at the level of nitrite. In phosphatedeficient algae, the assimilation of nitrite can be decreased by a concomitant, energy-dependent uptake of chloride and phosphate ions. These results support the assumption that high-energy phosphate is required for the assimilation of nitrite.CO2 and glucose (after pre-illumination) increase nitrite assimilation in the light. Photosynthetic nitrite reduction is inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU), an inhibitor of oxygen evolution, and by disalicylidene-propanediamine-(1,3) (DSPD), an inhibitor of the photosynthetic reduction of ferredoxin.
Abkürzungen CCCP Carbonylcyanid-m-chlorphenylhydrazon - DCMU 3-(3,4-Dichlorphenyl)-1,1-dimethylharnstoff - DNP 2,4-Dinitrophenol - DSPD Disalicylidenpropandiamin-(1,3) - PCP Pentachlorphenol - JAA Jodacetamid  相似文献   

17.
The release (=the measured loss) of amino acids was studied in Commelina benghalensis leaf disks. The release is assumed to be the result of influx and efflux, therefore, both movements were investigated.The uptake of 14C-labeled valine exhibited a biphasic isotherm. The uptake was pH-dependent, especially at low substrate concentrations (pH optimum 4.8). Signals for amino acid/proton co-transport were observed: stimulation of the uptake by fusicoccin (FC), inhibition by diethylstilbestrol (DES) or by high K+ concentrations. In the light, the ATP level of the disks was maintained during the uptake period (2 h), in darkness the ATP content decreased from 87 to 24 nmol g–1 fr. wt. However, light-promoted uptake, which is explained in the proton pump concept by an intensified proton extrusion as the result of high ATP production, was lacking.The release of amino acids was increased by washing with p-chloromercuriphenyl sulphonic acid (PCMBS), nystatin, 3(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), or KCN. The release (Q10 about 1.5) was independent of the external pH and was linearly related to the intracellular amino acid concentration. Light enhanced the rate of release to the same extent at all intracellular concentrations. The present results suggest that the release is balanced by a, at least partially, proton-driven influx and a diffusional ligh-promoted efflux. A provisional model shows how the diffusional effulx can be indirectly controlled by a counter-flow fueled by the metabolism.Abbreviations PCMBS p-chloromercuriphenylsulphonic acid - CCCP carbonyl cyanide m-chlorophenyl hydrazone - DES diethylstibestrol - DCMU 3 (3,4-dichlorophenyl)-1, 1-dimethyl urea - TRIS 2-amino-2-(hydromethyl)propane-1,3 diol - MES 2-(N1-morpholino) ethane sulphonic acid monohydrate - FC fusicoccin  相似文献   

18.
Photosynthesis was measured by the 14C method on natural as well as low light adapted populations of Chloroflexus (a photosynthetic bacterium) and Synechococcus (a blue-green alga) from hot springs in Yellowstone National Park (Wyoming U.S.A.), to test the ability of these phototrophs to photosynthesize at a variety of light intensities. The herbicide 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) was used to distinguish uptake of the blue-green alga from that of the photosynthetic bacterium, while measurements of chlorophyll a and bacterio-chlorophyll c served to quantitate the standing crops of these organisms.Natural populations of Synechococcus were found to be slightly inhibited by full sunlight intensities (summer values can surpass 90000 Lux), whereas the Chloroflexus populations were not. Populations of both phototrophs subjected to reduced light intensities through the use of neutral density filters were found to adapt to low light, and then become severely inhibited by high light intensities. Adaptation to various light regimes may be an important ecological phenomenon to the survival of these hot spring phototrophs.  相似文献   

19.
The cyanobacterium Anacystis nidulans contained levels of inorganic pyrophosphate (PP) which were about 50% of those of ATP in dark and light. Steady-state levels of PP were not decreased by the inhibitor of non-cyclic electron transport DCMU [3-(3,4-dichlorophenyl)-1,1-dimethyl urea]. During transition from dark to light levels of PP increased rapidly. The rate of increase corresponded to a rate of synthesis of about 150 mol x mg chl-1 x h-1. PP formation was affected by DCMU in a similar manner to ATP synthesis.The question whether the light-dependent formation of PP is a photosynthetic process or is linked to reactions releasing PP has been studied using a newly developed cell-free system from Anacystis. Rates of ATP synthesis by phenazine metosulfate-catalyzed cyclic photophosphorylation in this system were about 170 mol x mg chl-1 x h-1. Formation of PP could only be observed in presence of a trapping system which converted PP to ATP, otherwise PP was split by a particle-bound inorganic pyrophosphatase. In absence of ADP neither ATP nor PP was formed.It is concluded that the light-dependent formation of PP in Anacystis is not a photosynthetic process and that the PP is derived from ATP.Abbreviations AMS adenosine 5-monosulfate - APS adenosine 5-phosphosulfate - APSase adenosine 5-triphosphate sulfurylase - chl chlorophyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - Hepes N-2-hydroxyethyl-piperazine-N-2-ethanesulfonic acid - Mes 2-(N-morpholino)ethanesulfonic acid - PCA perchloric acid - PMS phenazine metosulfate - PPase inorganic pyrophosphatase  相似文献   

20.
Loss of sulfide adaptation ability in a thermophilic Oscillatoria   总被引:1,自引:0,他引:1  
A spontaneous variant incapable of anoxygenic photosynthesis was derived from a fully competent strain of Oscillatoria amphigramulata which was originally isolated from a high sulfide-containing hot spring of New Zealand. Although the variant (Oa-2) acquired a slight ability to photosynthesize in the presence of 0.3–0.4 mM sulfide, this was only after a 24 h exposure to sulfide and represented oxygenic photosynthesis only. Unlike the parent strain, the incompetent variant never grew in the presence of sulfide >0.05 mM, nor was there any relief of the inhibition by DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea] of CO2 photoincorporation when sulfide was present. The variant strain has retained all of these characteristics over a 4 year period with monthyl transfers in non-sulfide medium. The wild type, under identical conditions, has retained all of its competence with respect to sulfide.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号