首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Caveolae/raft-dependent endocytosis   总被引:27,自引:0,他引:27  
Although caveolae are well-characterized subdomains of glycolipid rafts, their distinctive morphology and association with caveolins has led to their internalization being considered different from that of rafts. In this review, we propose that caveolae and rafts are internalized via a common pathway, caveolae/raft-dependent endocytosis, defined by its clathrin independence, dynamin dependence, and sensitivity to cholesterol depletion. The regulatory role of caveolin-1 and ligand sorting in this complex endocytic pathway are specifically addressed.  相似文献   

2.
The intestinotrophic and cytoprotective actions of glucagon-like peptide-2 (GLP-2) are mediated by the GLP-2 receptor (GLP-2R), a member of the class II glucagon-secretin G protein-coupled receptor superfamily. Although native GLP-2 exhibits a short circulating half-life, long-acting degradation-resistant GLP-2 analogues are being evaluated for therapeutic use in human subjects. Accordingly, we examined the mechanisms regulating signaling, internalization, and trafficking of the GLP-2R to identify determinants of receptor activation and desensitization. Heterologous cells expressing the transfected rat or human GLP-2R exhibited a rapid, dose-dependent, and prolonged desensitization of the GLP-2-stimulated cAMP response and a sustained GLP-2-induced decrease in levels of cell surface receptor. Surprisingly, inhibitors of clathrin-dependent endocytosis failed to significantly decrease GLP-2R internalization, whereas cholesterol sequestration inhibited ligand-induced receptor internalization and potentiated homologous desensitization. The hGLP-2R localized to both Triton X-100-soluble and -insoluble (lipid raft) cellular fractions and colocalized transiently with the lipid raft marker caveolin-1. Although GLP-2R endocytosis was dependent on lipid raft integrity, the receptor transiently associated with green fluorescent protein tagged-early endosome antigen 1-positive vesicles and inhibitors of endosomal acidification attenuated the reappearance of the GLP-2R on the cell surface. Our data demonstrate that GLP-2R desensitization and raft-dependent trafficking represent distinct and independent cellular mechanisms and provide new evidence implicating the importance of a clathrin- and dynamin-independent, lipid raft-dependent pathway for homologous G protein-coupled receptor internalization.  相似文献   

3.
Integrin-mediated adhesion regulates trafficking of cholesterol-enriched membrane microdomains (CEMM). Upon cell detachment from the extracellular matrix (ECM), CEMMs undergo rapid internalization and are cleared from the plasma membrane. This pathway regulates integrin-mediated Rac membrane targeting, allowing coupling of Rac to downstream effectors. Internalization of CEMMs is mediated by Dynamin-2, a regulator of caveolae dynamics, and caveolin-1, an essential caveolae coat protein. Translocation of tyrosine phosphorylated caveolin-1 from focal adhesions to caveolae upon cell detachment induces CEMM internalization. Notably, integrin-mediated regulation of Erk, phosphatidylinositol-3-OH kinase (PI3K) and Rac pathways is dependent on caveolin-1. These results describe a novel pathway in which integrins prevent downregulation of Erk, PI3K and Rac-dependent pathways by inhibiting caveolin-1-dependent endocytosis. This pathway define a novel molecular mechanism for regulated cell growth and tumor suppression by caveolin-1.  相似文献   

4.
Endocytosis and intracellular sorting of transforming growth factor-β (TGF-β) receptors play an important regulatory role in TGF-β signaling. Two major endocytic pathways, clathrin- and caveolae-mediated endocytosis, have been reported to independently mediate the internalization of TGF-β receptors. In this study, we demonstrate that the clathrin- and caveolae-mediated endocytic pathways can converge during TGF-β receptor endocytic trafficking. By tracking the intracellular dynamics of fluorescently-labeled TGF-β type I receptor (TβRI), we found that after mediating TβRI internalization, certain clathrin-coated vesicles and caveolar vesicles are fused underneath the plasma membrane, forming a novel type of caveolin-1 and clathrin double-positive vesicles. Under the regulation of Rab5, the fused vesicles are targeted to early endosomes and thus deliver the internalized TβRI to the caveolin-1 and EEA1 double-positive early endosomes (caveolin-1-positive early endosomes). We further showed that the caveolin-1-positive early endosomes are positive for Smad3/SARA, Rab11 and Smad7/Smurf2, and may act as a multifunctional device for TGF-β signaling and TGF-β receptor recycling and degradation. Therefore, these findings uncover a novel scenario of endocytosis, the direct fusion of clathrin-coated and caveolae vesicles during TGF-β receptor endocytic trafficking, which leads to the formation of the multifunctional sorting device, caveolin-1-positive early endosomes, for TGF-β receptors.  相似文献   

5.
The scavenger receptor CD36 binds a diverse array of ligands, including thrombospondin-1, oxidized low density lipoprotein (OxLDL), fatty acids, anionic phospholipids, and apoptotic cells. CD36 has been reported to be present in lipid rafts/caveolae, but little is known about the membrane trafficking of this protein at baseline or following ligand binding. Here, we determined that expression of CD36 in Chinese hamster ovary (CHO) cells and endogenous expression of CD36 in C32 cells led to a homogeneous distribution of the protein on the plasma membrane, as judged by confocal fluorescence microscopy. This homogeneous pattern was observed both by anti-CD36 antibody staining and by live cell imaging of CHO cells expressing a chimeric CD36-green fluorescent protein construct. In contrast, caveolin-1 displayed its usual punctate surface distribution. Correspondingly, dual labeling of CD36 and caveolin-1 showed essentially no overlap, neither by immunofluorescence light microscopy nor by immunogold electron microscopy. Furthermore, isolation of lipid rafts by sucrose gradient ultracentrifugation of cold Triton X-100 cell lysates yielded both CD36 and caveolin-1, but immunoprecipitates of caveolin-1 did not contain CD36. Binding of Ox-LDL led to internalization of CD36 and OxLDL into endosomal structures that did not contain caveolin-1 or transferrin but that co-internalized the glycosyl-phosphatidylinositol-anchored protein decay accelerating factor, a lipid raft protein. Furthermore, expression of CD36 in the caveolin-1-negative KB cell line is sufficient for OxLDL-induced internalization of CD36, indicating that caveolin-1 is not required for this endocytic process. Taken together, these data demonstrate that at steady state, CD36 is localized in lipid rafts but not in caveolae, and that binding of OxLDL to CD36 leads to endocytosis through a lipid raft pathway that is distinct from the clathrin-mediated or caveolin internalization pathways.  相似文献   

6.
Lipid rafts are plasma membrane microdomains that are highly enriched with cholesterol and sphingolipids and in which various receptors and other proteins involved in signal transduction reside. In the present work, we analyzed the effect of cholesterol biosynthesis inhibition on lipid raft/caveolae composition and functionality and assessed whether sterol precursors of cholesterol could substitute for cholesterol in lipid rafts/caveolae. 3T3-L1 preadipocytes were treated with distal inhibitors of cholesterol biosynthesis or vehicle (control) and then membrane rafts were isolated by sucrose density gradient centrifugation. Inhibition of cholesterol biosynthesis with either SKF 104976, AY 9944, 5,22-cholestadien-3β-ol or triparanol, which inhibit different enzymes on the pathway, led to a marked reduction in cholesterol content and accumulation of different sterol intermediates in both lipid rafts and non-raft domains. These changes in sterol composition were accompanied by disruption of lipid rafts, with redistribution of caveolin-1 and Fyn, impairment of insulin-Akt signaling and the inhibition of insulin-stimulated glucose transport. Cholesterol repletion abrogated the effects of cholesterol biosynthesis inhibitors, reflecting they were specific. Our results show that cholesterol is required for functional raft-dependent insulin signaling.  相似文献   

7.
BackgroundMembrane protrusions play important roles in biological processes such as cell adhesion, wound healing, migration, and sensing of the external environment. Cell protrusions are a subtype of membrane microdomains composed of cholesterol and sphingolipids, and can be disrupted by cholesterol depletion. Prominins are pentaspan membrane proteins that bind cholesterol and localize to plasma membrane (PM) protrusions. Prominin-1 is of great interest as a marker for stem and cancer cells, while Prominin-2 (Prom2) is reportedly restricted to epithelial cells.AimTo characterize the effects of Prom-2 expression on PM microdomain organization.MethodsProm2-fluorescent protein was transfected in human skin fibroblasts (HSF) and Chinese hamster ovary (CHO) cells for PM raft and endocytic studies. Caveolae at PM were visualized using transmission electron microscopy. Cdc42 activation was measured and caveolin-1 knockdown was performed using siRNAs.ResultsProm2 expression in HSF and CHO cells caused extensive Prom2-positive protrusions that co-localized with lipid raft markers. Prom2 expression significantly decreased caveolae at the PM, reduced caveolar endocytosis and increased caveolin-1 phosphorylation. Prom2 expression also inhibited Cdc42-dependent fluid phase endocytosis via decreased Cdc42 activation. Effects on endocytosis were reversed by addition of cholesterol. Knockdown of caveolin-1 by siRNA restored Cdc42 dependent fluid phase endocytosis in Prom2-expressing cells.ConclusionsProm2 protrusions primarily localize to lipid rafts and recruit cholesterol into protrusions and away from caveolae, leading to increased phosphorylation of caveolin-1, which inhibits Cdc42-dependent endocytosis. This study provides a new insight for the role for prominins in the regulation of PM lipid organization.  相似文献   

8.
Cells have a complex system for delivering and compartmentalizing proteins and lipids in order to achieve spatio-temporal coordination of signaling. Rafts/caveolae are plasma membrane microdomains that regulate signaling pathways and processes such as cell migration, polarization and proliferation. Regulation of raft/caveolae trafficking involves multiple steps regulated by different proteins to ensure coordination of signaling cascades. The best studied raft-mediated endocytic route is controlled by caveolins. Recent data suggest integrin-mediated cell adhesion is a key regulator of caveolar endocytosis. In this review we examine the regulation of caveolar trafficking and the interplay between integrins, cell adhesion and caveolae internalization.  相似文献   

9.
Rift Valley fever virus (RVFV) is a zoonotic pathogen capable of causing serious morbidity and mortality in both humans and livestock. The lack of efficient countermeasure strategies, the potential for dispersion into new regions, and the pathogenesis in humans and livestock make RVFV a serious public health concern. The receptors, cellular factors, and entry pathways used by RVFV and other members of the family Bunyaviridae remain largely uncharacterized. Here we provide evidence that RVFV strain MP-12 uses dynamin-dependent caveola-mediated endocytosis for cell entry. Caveolae are lipid raft domains composed of caveolin (the main structural component), cholesterol, and sphingolipids. Caveola-mediated endocytosis is responsible for the uptake of a wide variety of host ligands, as well as bacteria, bacterial toxins, and a number of viruses. To determine the cellular entry mechanism of RVFV, we used small-molecule inhibitors, RNA interference (RNAi), and dominant negative (DN) protein expression to inhibit the major mammalian cell endocytic pathways. Inhibitors and RNAi specific for macropinocytosis and clathrin-mediated endocytosis had no effect on RVFV infection. In contrast, inhibitors of caveola-mediated endocytosis, and RNAi targeted to caveolin-1 and dynamin, drastically reduced RVFV infection in multiple cell lines. Expression of DN caveolin-1 also reduced RVFV infection significantly, while expression of DN EPS15, a protein required for the assembly of clathrin-coated pits, and DN PAK-1, an obligate mediator of macropinocytosis, had no significant impact on RVFV infection. These results together suggest that the primary mechanism of RVFV MP-12 uptake is dynamin-dependent, caveolin-1-mediated endocytosis.  相似文献   

10.
Delivery of macromolecules mediated by protein transduction domains (PTDs) attracts a lot of interest due to its therapeutic and biotechnological potential. A major reevaluation of the mechanism of PTD-mediated internalization and the role of endocytosis in this mechanism has been recently initiated. Here, we demonstrate that the entry of TAT peptide (one of the most widely used PTDs) into different primary cells is ATPand temperature-dependent, indicating the involvement of endocytosis. Specific inhibitors of clathrin-dependent endocytosis partially inhibit TAT peptide uptake, implicating this pathway in TAT peptide entry. In contrast, the caveolin-dependent pathway is not essential for the uptake of unconjugated TAT peptide as evidenced by the efficient internalization of TAT in the presence of the known inhibitors of raft/caveolin-dependent pathway and for cells lacking or deficient in caveolin-1 expression. Whereas a significant part of TAT peptide uptake involves heparan sulfate receptors, efficient internalization of peptide is observed even in their absence, indicating the involvement of other receptors. Our results suggest that unconjugated peptide might follow endocytic pathways different from those utilized by TAT peptide conjugated to different proteins.  相似文献   

11.
Internalization of some plasma membrane constituents, bacterial toxins, and viruses occurs via caveolae; however, the factors that regulate caveolar internalization are still unclear. Here, we demonstrate that a brief treatment of cultured cells with natural or synthetic glycosphingolipids (GSLs) or elevation of cholesterol (either by acute treatment with mbeta-cyclodextrin/cholesterol or by alteration of growth conditions) dramatically stimulates caveolar endocytosis with little or no effect on other endocytic mechanisms. These treatments also stimulated the movement of GFP-labeled vesicles in cells transfected with caveolin-1-GFP and reduced the number of surface-connected caveolae seen by electron microscopy. In contrast, overexpression of caveolin-1 decreased caveolar uptake, but treatment with GSLs reversed this effect and stimulated caveolar endocytosis. Stimulation of caveolar endocytosis did not occur using ceramide or phosphatidylcholine and was not due to GSL degradation because similar results were obtained using a nonhydrolyzable GSL analog. Stimulated caveolar endocytosis required src kinase and PKC-alpha activity as shown by i) use of pharmacological inhibitors, ii) expression of kinase inactive src or dominant negative PKCalpha, and iii) stimulation of src kinase activity upon addition of GSLs or cholesterol. These results suggest that caveolar endocytosis is regulated by a balance of caveolin-1, cholesterol, and GSLs at the plasma membrane.  相似文献   

12.
Intestinal mucosal inflammation is associated with epithelial wounds that rapidly reseal by migration of intestinal epithelial cells (IECs). Cell migration involves cycles of cell-matrix adhesion/deadhesion that is mediated by dynamic turnover (assembly and disassembly) of integrin-based focal adhesions. Integrin endocytosis appears to be critical for deadhesion of motile cells. However, mechanisms of integrin internalization during remodeling of focal adhesions of migrating IECs are not understood. This study was designed to define the endocytic pathway that mediates internalization of beta(1)-integrin in migrating model IECs. We observed that, in SK-CO15 and T84 colonic epithelial cells, beta(1)-integrin is internalized in a dynamin-dependent manner. Pharmacological inhibition of clathrin-mediated endocytosis or macropinocytosis and small-interfering RNA (siRNA)-mediated knock down of clathrin did not prevent beta(1)-integrin internalization. However, beta(1)-integrin internalization was inhibited following cholesterol extraction and after overexpression of lipid raft protein, caveolin-1. Furthermore, internalized beta(1)-integrin colocalized with the lipid rafts marker cholera toxin, and siRNA-mediated knockdown of caveolin-1 and flotillin-1/2 increased beta(1)-integrin endocytosis. Our data suggest that, in migrating IEC, beta(1)-integrin is internalized via a dynamin-dependent lipid raft-mediated pathway. Such endocytosis is likely to be important for disassembly of integrin-based cell-matrix adhesions and therefore in regulating IEC migration and wound closure.  相似文献   

13.
Clathrin-independent trafficking pathways for internalizing G protein-coupled receptors (GPCRs) remain undefined. Clathrin-mediated endocytosis of receptors including ligand-engaged GPCRs can be very rapid and comprehensive (<10 min). Caveolae-mediated endocytosis of ligands and antibodies has been reported to be much slower in cell culture (≫10 min). Little is known about the role of physiological ligands and specific GPCRs in regulating caveolae trafficking. Here, we find that one receptor for endothelin, ET-B but not ET-A, resides on endothelial cell surfaces in both tissue and cell culture primarily concentrated within caveolae. Reconstituted cell-free budding assays show that endothelins (ETs) induce the fission of caveolae from endothelial plasma membranes purified from rat lungs. Electron microcopy of lung tissue sections and tissue subcellular fractionation both show that endothelin administered intravascularly in rats also induces a significant loss of caveolae at the luminal surface of lung vascular endothelium. Endothelial cells in culture show that ET stimulates very rapid internalization of caveolae and cargo including caveolin, caveolae-targeting antibody, and itself. The ET-B inhibitor BQ788, but not the ET-A inhibitor BQ123, blocks the ET-induced budding of caveolae. Both the pharmacological inhibitor Dynasore and the genetic dominant negative K44A mutant of dynamin prevent this induced budding and internalization of caveolae. Also shRNA lentivirus knockdown of caveolin-1 expression prevents rapid internalization of ET and ET-B. It appears that endothelin can engage ET-B already highly concentrated in caveolae of endothelial cells to induce very rapid caveolae fission and endocytosis. This transport requires active dynamin function. Caveolae trafficking may occur more rapidly than previously documented when it is stimulated by a specific ligand to signaling receptors already located in caveolae before ligand engagement.  相似文献   

14.
Signaling by bone morphogenetic protein (BMP) receptors is regulated at multiple levels in order to ensure proper interpretation of BMP stimuli in different cellular settings. As with other signaling receptors, regulation of the amount of exposed and signaling-competent BMP receptors at the plasma-membrane is predicted to be a key mechanism in governing their signaling output. Currently, the endocytosis of BMP receptors is thought to resemble that of the structurally related transforming growth factor-β (TGF-β) receptors, as BMP receptors are constitutively internalized (independently of ligand binding), with moderate kinetics, and mostly via clathrin-mediated endocytosis. Also similar to TGF-β receptors, BMP receptors are able to signal from the plasma membrane, while internalization to endosomes may have a signal modulating effect. When at the plasma membrane, BMP receptors localize to different membrane domains including cholesterol rich domains and caveolae, suggesting a complex interplay between membrane distribution and internalization. An additional layer of complexity stems from the putative regulatory influence on the signaling and trafficking of BMP receptors exerted by ligand traps and/or co-receptors. Furthermore, the trafficking and signaling of BMP receptors are subject to alterations in cellular context. For example, genetic diseases involving changes in the expression of auxiliary factors of endocytic pathways hamper retrograde BMP signals in neurons, and perturb the regulation of synapse formation. This review summarizes current understanding of the trafficking of BMP receptors and discusses the role of trafficking in regulation of BMP signals.  相似文献   

15.
Caveolae are flask-shaped invaginations at the plasma membrane that constitute a subclass of detergent-resistant membrane domains enriched in cholesterol and sphingolipids and that express caveolin, a caveolar coat protein. Autocrine motility factor receptor (AMF-R) is stably localized to caveolae, and the cholesterol extracting reagent, methyl-beta-cyclodextrin, inhibits its internalization to the endoplasmic reticulum implicating caveolae in this distinct receptor-mediated endocytic pathway. Curiously, the rate of methyl-beta-cyclodextrin-sensitive endocytosis of AMF-R to the endoplasmic reticulum is increased in ras- and abl-transformed NIH-3T3 cells that express significantly reduced levels of caveolin and few caveolae. Overexpression of the dynamin K44A dominant negative mutant via an adenovirus expression system induces caveolar invaginations sensitive to methyl-beta-cyclodextrin extraction in the transformed cells without increasing caveolin expression. Dynamin K44A expression further inhibits AMF-R-mediated endocytosis to the endoplasmic reticulum in untransformed and transformed NIH-3T3 cells. Adenoviral expression of caveolin-1 also induces caveolae in the transformed NIH-3T3 cells and reduces AMF-R-mediated endocytosis to the endoplasmic reticulum to levels observed in untransformed NIH-3T3 cells. Cholesterol-rich detergent-resistant membrane domains or glycolipid rafts therefore invaginate independently of caveolin-1 expression to form endocytosis-competent caveolar vesicles via rapid dynamin-dependent detachment from the plasma membrane. Caveolin-1 stabilizes the plasma membrane association of caveolae and thereby acts as a negative regulator of the caveolae-mediated endocytosis of AMF-R to the endoplasmic reticulum.  相似文献   

16.
Clathrin-coated pits and caveolae are two of the most recognizable features of the plasma membrane of mammalian cells. While our understanding of the machinery regulating and driving clathrin-coated pit-mediated endocytosis has progressed dramatically, including the elucidation of the structure of individual components and partial in vitro reconstitution, the role of caveolae as alternative endocytic carriers still remains elusive 50 years after their discovery. However, recent work has started to provide new insights into endocytosis by caveolae and into apparently related pathways involving lipid raft domains. These pathways, distinguished by their exquisite sensitivity to cholesterol-sequestering agents, can involve caveolae but also exist in cells devoid of caveolins and caveolae. This review examines the current evidence for the involvement of rafts and caveolae in endocytosis and the molecular players involved in their regulation.  相似文献   

17.
Integrin regulation of caveolin function   总被引:2,自引:0,他引:2  
Caveolae are unique organelles that are found in the plasma membrane of many cell types. They participate in various processes such as lipid recycling, cellular signalling and endocytosis. A variety of signalling molecules localize to caveolae in response to various stimuli, providing a potential mechanism for the spatial regulation of signal transduction pathways. Caveolin-1, a constitutive protein of caveolae, has been implicated in the regulation of cell growth, lipid trafficking, endocytosis and cell migration. Phosphorylation of caveolin-1 on Tyr 14 is involved in integrin-regulated caveolae trafficking and also in signalling at focal adhesions in migrating cells. In this review, we focus on recent studies that describe the role of caveolin-1 in integrin signal transduction, and how this interplay links extracellular matrix anchorage to cell proliferation, polarity and directional migration.  相似文献   

18.
The apolipoprotein E receptor 2 (apoER2) is a member of the low-density lipoprotein receptor family which binds ligands such as reelin, apolipoprotein E and apolipoprotein J/clusterin and has been shown to play roles in neuronal migration during development and in male fertility. The function of apoER2 mainly depends on cellular signaling triggered by ligand binding. Although the receptor is internalized, the mechanism and functional significance of its endocytic trafficking remain unclear. Apolipoprotein E receptor 2 partitions into lipid rafts and interacts with caveolin-1, a feature that could modulate its endocytic behavior. Recent evidence also suggested that apoER2 might be endocytosed by a pathway independent of clathrin. Here, we show that despite a raft association, apoER2 internalization depends on its cytoplasmic FxNPXY motif that is similar to canonical motifs for clathrin-mediated endocytosis. This motif mediates receptor binding to the adaptor protein Dab2, which can interact directly with clathrin. Several inhibitory conditions of clathrin-mediated endocytosis, including expression of the dominant negative forms of eps15 and Dab2, decreased apoER2 internalization. In contrast, treatment with the drug nystatin, which blocks the caveolar/raft internalization pathway, has no effect on the receptor's endocytosis. Neither the transmembrane nor the proline-rich insert of the cytoplasmic domain, which has been previously reported to exclude the receptor from the clathrin-mediated pathway, altered apoER2 endocytic activity. These studies indicate that apoER2 internalizes through a clathrin-mediated pathway and that its association with caveolar and noncaveolar rafts does not determine its endocytosis.  相似文献   

19.
Transforming growth factor (TGF)-beta1 is a key cytokine involved in the pathogenesis of fibrosis in many organs, whereas interleukin (IL)-6 plays an important role in the regulation of inflammation. Recent reports demonstrate interaction between the two cytokines in disease states. We have assessed the effect of IL-6 on TGF-beta1 signaling and defined the mechanism by which this occurred. Stimulation of Smad-responsive promoter (SBE)4-Lux activity by TGF-beta1 was significantly greater in the presence of IL-6 than that induced by TGF-beta1 alone. Augmented TGF-beta1 signaling following the addition of IL-6 appeared to be mediated through binding to the cognate IL-6 receptor, the presence of which was confirmed by fluorescence-activated cell sorting and Stat-specific signaling. TGF-beta1 receptors internalize by both caveolin-1 (Cav-1) lipid raft and early endosome antigen 1 (EEA-1) non-lipid raft pathways, with non-lipid raft-associated internalization increasing TGF-beta1 signaling. Affinity labeling of TGF-beta1 receptors demonstrated that IL-6 stimulation resulted in increased partitioning of TGF-beta receptors to the non-lipid raft fraction. There was no change in expression of Cav-1; however, following IL-6 stimulation, co-immunoprecipitation demonstrated decreased association of IL-6 receptor with Cav-1. Increased TGF-beta1-dependent Smad signaling by IL-6 was significantly attenuated by inhibition of clathrin-mediated endocytosis and augmented by depletion of membrane cholesterol. These results indicate that IL-6 increased trafficking of TGF-beta1 receptors to non-lipid raft-associated pools results in augmented TGF-beta1 Smad signaling.  相似文献   

20.
小窝(caveolae)是一类特殊的膜脂筏,富含鞘磷脂和胆固醇。小窝蛋白-1(caveolin-1)是小窝的标志蛋白质,分子量约22 kD。后者不但直接参与小窝结构的形成、膜泡运输、胆固醇稳态维持,还通过其脚手架结构域(caveolin scaffolding domain,CSD)与众多信号分子相互作用调控细胞的生长、发育和分化,最终影响机体的生理和病理过程。近年发现,小窝蛋白-1和胞膜窖不但存在于内皮细胞、脂肪细胞、血管平滑肌细胞和纤维细胞中,还广泛表达于免疫细胞中,参与调节免疫细胞活化引起的炎症应答反应。本文结合最新的研究进展和前期结果,简要综述小窝蛋白-1在巨噬细胞、T细胞、B细胞以及中性粒细胞等免疫细胞内的调节作用,以及在细菌感染如绿脓杆菌、沙门氏菌和克雷伯杆菌的炎症中的信号转导研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号