首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of 4',6-diamidino-2-phenylindole (DAPI) with Carcinus maenas hemocyanin has been investigated by steady state fluorescence, dynamic fluorescence and circular dichroism measurements. The dye binds to apohemocyanin (without copper) as well as to oxygenated hemocyanin and to deoxygenated hemocyanin with very similar affinities (kd approximately equal to 1 microM ) and number of binding sites (one per subunit). In contrast, the fluorescence quantum yield enhancement of DAPI bound to oxygenated hemocyanin is nearly 60% lower than that observed for deoxygenated and apo forms. The decrease of fluorescence of the dye bound to deoxygenated hemocyanin is a sigmoidal function of the oxygen partial pressure, specular to that observed by following the absorbance of the copper-oxygen charge transfer band at 340 nm. This result provides preliminary evidence that DAPI may be used as a functional probe to monitor the cooperative binding of oxygen to the protein. The higher fluorescence quantum yield of DAPI bound to either apohemocyanin or deoxygenated protein is characterized by a single fluorescence decay with lifetime of about 3 ns, while with the oxygenated protein two components of about 1 ns and 3.0 ns are observed. This result is interpreted assuming the existence of two rotamers of DAPI in solution (Szabo et al. Photochem. Photobiol. 44 (1986) 143-150) both able to interact with oxygenated hemocyanin but only one to deoxygenated and apo forms. We conclude that the different fluorescence behaviour of the dye induced by the presence of oxygen bound to the protein is probably due to a structural change of hemocyanin in cooperative interaction with oxygen. Furthermore, the interaction is confirmed by the induced negative ellipticity of DAPI bound to apohemocyanin and deoxy-hemocyanin and by the increase of fluorescence anisotropy of DAPI bound to all forms of protein investigated.  相似文献   

2.
The tryptophyl fluorescence of ribonuclease T1 decays monoexponentially at pH 5.5, tau = 4.04 ns but on increasing pH, a second short-lived component of 1.5 ns appears with a midpoint between pH 6.5 and 7.0. Both components have the same fluorescence spectrum. Acrylamide quenches both fluorescence components, and the short-lived component is quenched fivefold faster than the predominant long component. Binding of the substrate analogue 2'-guanylic acid at pH 5.5 quenches the fluorescence by 20% and introduces a second decay component, tau = 1.16 ns. Acrylamide quenches both tryptophyl decay components, with similar quenching rates. The fluorescence anisotropy decay of ribonuclease T1 was consistent with a molecule the size of ribonuclease T1 surrounded by a single layer of water at pH 7.4, even though the anisotropy decay at pH 5.5 deviated from Stokes-Einstein behavior. The fluorescence data were interpreted with a model where the tryptophyl residue exists in two conformations, remaining in a hydrophobic pocket. The acrylamide quenching is interpreted with electron transfer theory and suggests that one conformer has the nearest atom approximately 3 A from the protein surface, and the other, approximately 2 A.  相似文献   

3.
Self-association of bovine serum albumin (BSA) was explored using fluorescence resonance energy transfer (FRET) between two populations of the protein labeled separately with either fluorescein-5'-isothiocyanate (FITC) or eosin-5'-isothiocyanate (EITC). The energy transfer reached the steady state after 5 s at 25 degrees C, indicating a fast exchange between oligomer subunits. The dependence of the energy transfer efficiency on the protein concentration and its reversion by unlabeled BSA demonstrate that association between BSA monomers occurs through a reversible path that involves specific interactions between the protein molecules. Because energy transfer took place even after blocking Cys 34 with iodoacetamide, this residue might not be involved in the reversible self-association process. The number of subunits forming the oligomer and its dissociation constant were determined from measurements of energy transfer as a function of the donor-acceptor ratio and of the total protein concentration. Analysis of these data indicated that BSA is in a monomer-dimer equilibrium with a dissociation constant of 10 +/- 2 microM at 25 degrees C in 10 mM MOPS-K (pH 5.8).  相似文献   

4.
J Lee  D J O'Kane  A J Visser 《Biochemistry》1985,24(6):1476-1483
The spectral properties are compared for two 6,7-dimethyl-8-ribityllumazine proteins from marine bioluminescent bacteria, one from a psychrophile, Photobacterium phosphoreum, and the other from a thermophile, Photobacterium leiognathi. The visible spectral properties, which are the ones by which the protein performs its biological function of bioluminescence emission, are almost the same for the two proteins: at 2 degrees C and 50 mM Pi, pH 7, fluorescence quantum yield phi F = 0.59 and 0.54, respectively; fluorescence lifetime tau = 14.4 and 14.8 ns, respectively; fluorescence maxima, both 475 nm; absorption maximum, 417 and 420 nm, respectively; circular dichroism minima at around 420 nm, both -41 X 10(3) deg cm2 dmol-1. The ligand binding sites therefore must provide very similar environments, and arguments are presented that the bound ligand is relatively exposed to solvent. The dissociation equilibrium was studied by steady-state fluorescence polarization. The thermophilic protein binds the ligand with Kd (20 degrees C) = 0.016 microM, 10 times more tightly than the other protein [Kd (20 degrees C) = 0.16 microM]. The origin of the binding difference probably resides in differences in secondary structure. The tryptophan fluorescence spectra of the two proteins are different, but more significant is an observation of the decay of the tryptophan emission anisotropy. For the psychrophilic lumazine protein this anisotropy decays to zero in 1 ns, implying that its single tryptophan residue lies in a very "floppy" region of the protein. For the other protein, the anisotropy exhibits both a fast component and a slow one corresponding to rotation of the protein as a whole.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The experimental and analytical protocols required for obtaining rotational correlation times of biological macromolecules from fluorescence anisotropy decay measurements are described. As an example, the lumazine protein from Photobacterium leiognathi was used. This stable protein (Mr 21 200) contains the noncovalently bound, natural fluorescent marker 6,7-dimethyl-8-ribityllumazine, which has in the bound state a long fluorescence lifetime (tau = 14 ns). Shortening of the fluorescence lifetime to 2.6 ns at room temperature was achieved by addition of the collisional fluorescence quencher potassium iodide. The shortening of tau had virtually no effect on the rotational correlation time of the lumazine protein (phi = 9.4 ns, 19 degrees C). The ability to measure biexponential anisotropy decay was tested by the addition of Photobacterium luciferase (Mr 80 000), which forms an equilibrium complex with lumazine protein. Under the experimental conditions used (2 degrees C) the biexponential anisotropy decay can best be described with correlation times of 20 and 60 ns, representing the uncomplexed and luciferase-associated lumazine proteins, respectively. The unbound 6,7-dimethyl-8-ribityllumazine itself (tau = 9 ns) was used as a model compound for determining correlation times in the picosecond time range. In the latter case rigorous deconvolution from the excitation profile was required to recover the correlation time, which was shorter (100-200 ps) than the measured laser excitation pulse width (500 ps).  相似文献   

6.
6,7-Dimethyllumazine derivatives, substituted at the 8-position with aldityls or monohydroxyalkyl groups, have been examined for their binding ability to lumazine apo-protein from two strains of Photobacterium phosphoreum using fluorescence dynamics techniques. On the protein the lumazine has a nearly monoexponential decay of fluorescence with lifetime 13.8 ns (20 degrees C). In free solution the lifetime is 9.6 ns. The concentration of free and bound lumazine in an equilibrium mixture can be recovered readily by analysis of the fluorescence decay. Only the aldityl derivatives D-xylityl and 3'-deoxy-D-ribityl, having stereoconfigurations at the 2' and 4' positions identical to the natural ligand, 8-(1'-D-ribityl), show comparable dissociation constants (0.3 microM, 20 degrees C, pH 7.0). D-Erythrityl and L-arabityl have dissociation constants of 1-2 microM. All other ligands show no interaction at all or have dissociation constants in the range 6-80 microM, which can still be determined semi-quantitatively using the fluorescence decay technique. In the case of these very weakly bound ligands, unambiguous detection of bound ligand can be shown by a long correlation time (23 ns, 2 degrees C) for the fluorescence anisotropy decay. Examination of the bound D-xylityl compound's fluorescence anisotropy decay at high time resolution (< 100 ps) shows rigid association, i.e. no mobility independent of the macromolecule. All bound ligands appear to be similarly positioned in the binding site. The influence of the stereoconfiguration at the 8-position found for lumazine protein parallels that previously observed for the enzyme riboflavin synthase, where the lumazines are substrates or inhibitors. This is consistent with the finding of significant sequence similarity between these proteins. The binding rigidity may have implications for the mechanism of the enzyme.  相似文献   

7.
The inhibition kinetic patterns obtained when ATP and pyridoxal analogues are used as inhibitors of the reaction catalyzed by pyridoxal kinase are consistent with a rapid equilibrium random Bi Bi, in which binary complexes, i.e. enzyme . ATP and enzyme . pyridoxal, are formed in kinetically significant amounts. Protein fluorescence quenching was used to determine the dissociation constant (Kd = 25 microM) of ATP . Zn bound to the nucleotide site of the kinase. The binding of ATP to the kinase induces a conformational change which is transmitted to other areas of the macromolecule. Pyridoxaloxime, a competitive inhibitor of pyridoxal, was used as a probe of the pyridoxal-binding site. It binds to the kinase with Ki = 2 microM and displays a fluorescent decay time of 7.8 ns. Time emission anisotropy measurements yield a rotational correlation time for bound pyridoxaloxime of approximately 2 ns, which is considerably shorter than the rotational correlation time of the protein (phi = 38 ns). The fast rotation of pyridoxaloxime remains unaffected by the binding of ATP.  相似文献   

8.
A new fluorophor for tubulin which has permitted the monitoring of microtubule assembly in vitro is reported. DAPI (4',6-diamidino-2-phenylindole), a fluorophor already known as a DNA intercalator, was shown to bind specifically to a unique tubulin site as a dimer (KD(app) = 43 +/- 5 microM at 37 degrees C) or to tubulin associated in microtubules (KD(app) = 6 +/- 2 microM at 37 degrees C) with the same maximum enhancement in fluorescence. When tubulin polymerization was induced with GTP, the change in DAPI affinity for tubulin resulted in an enhancement of DAPI binding and, consequently, of fluorescence intensity. DAPI, whose binding site is different from that of colchicine, vinblastine, or taxol, did not interfere greatly with microtubule polymerization. It induced a slight diminution of the critical concentration for tubulin assembly due to a decrease in the depolymerizing rate constant. Moreover, DAPI did not interfere with GTP hydrolysis correlated with tubulin polymerization, but it decreased the GTPase activity at the steady state of tubulin assembly. Even at substoichiometric levels DAPI can be used to follow the kinetics of microtubule assembly.  相似文献   

9.
The goal of this work was to determine the binding properties and location of 4',6-diamidino-2-phenylindole (DAPI) complexed with tubulin. Using fluorescence anisotropy, a dissociation constant of 5.2+/-0.4 microM for the DAPI-tubulin complex was determined, slightly lower than that for the tubulin S complex. The influence of the C-terminal region on the binding of DAPI to tubulin was also characterized. Using FRET experiments, and assuming a kappa2 value of 2/3, distances between Co2+ bound to its high-affinity binding site and the DAPI-binding site and 2',3'-O-(trinitrophenyl)guanosine 5'-triphosphate bound to the exchangeable nucleotide and the DAPI-binding site were found to be 20+/-2 A and 43+/-2 A, respectively. To locate potential DAPI-binding sites on tubulin, a molecular modeling study was carried out using the tubulin crystal structure and energy minimization calculations. The results from the FRET measurements were used to limit the possible location of DAPI in the tubulin structure. Several candidate binding sites were found and these are discussed in the context of the various properties of bound DAPI.  相似文献   

10.
Studies were carried out at pH 7.0 and gamma/2 0.15 before addition of CaCl2 or EDTA. Clotting time, tau, at 3.03 microM fibrinogen and 0.91 u/ml thrombin was determined for equilibrium systems. With added Ca2+, tau decreases, from tau 0 at 0 added Ca2+ (mean, 29.7 +/- 3 s), by approximately 3 s at 5 mM added Ca2+. With added EDTA, tau increases sigmoidally from tau 0 at 0 EDTA to a maximum (mean tau m = 142 +/- 23 s) at approximately 200 microM EDTA. tau then decreases slightly to a minimum at approximately 1.3 mM and finally increases to infinity at approximately 10 mM EDTA. Between 0 and 1.3 mM EDTA, effects on clotting time are completely reversed by adding Ca2+ and, after equilibration at 400 microM EDTA, tau is independent of EDTA concentration. Thus, up to 400 microM EDTA, effects on clotting time are attributed to decreasing fibrinogen bound Ca2+. Between 5 mM Ca2+ and 200 microM EDTA it is assumed that an equilibrium distribution of fibrinogen species having 3, 2, 1, or 0 bound calcium ions is established and that a clotting time is determined by the sum of products of species fractional abundance and pure species clotting time. Analysis indicates that pure species clotting times increase proportionately with decreasing Ca2+ binding, binding sites are nearly independent, and the microscopic association constant for the first bound Ca2+ is approximately 4.9 X 10(6) M-1. Effects of adding Ca2+ at times t1 after thrombin addition to systems initially equilibrated at 200 microM EDTA were determined. Analysis of the relation between tau and t1 indicates that as Ca2+ binding decreases, rate constants for release of B peptides decrease less than those for release of A peptides. As EDTA concentration is increased above 1.3 mM, inhibitory effects of EDTA and CaEDTA progressively increase.  相似文献   

11.
Fluorescence decay studies, obtained by multifrequency phase-modulation fluorometry, have been performed on DAPI in solution and complexed with natural and synthetic polydeoxynucleotides. DAPI decay at pH 7 was decomposed using two exponential components of 2.8 and 0.2 ns of lifetime values, respectively. The double exponential character of the decay was maintained over a large pH range. Phase- and modulation-resolved spectra, collected between 420 and 550 nm, have indicated at least two spectral components associated with the two lifetime values. This, plus the observation of the dependence of the emission spectrum on the excitation wavelength, suggests a lifetime heterogeneity originating from ground-state molecular conformers, partially affected by pH changes. DAPI complexed with natural polydeoxynucleotides retained most of the features of DAPI decay in solution, except for the value of the long lifetime component that was longer (approximately 4 ns) and the relative fractional fluorescence intensities of the two components that were inverted. AT polymers/DAPI complexes show single exponential decay. Solvent shielding when DAPI is bound to DNA changes the indole ring solvation and stabilizes the longer lifetime decay component. For poly(GC)/DAPI complex, the decay was similar to that of free DAPI in solution, proving the dependence on the polydeoxynucleotides sequence the different types of binding and the reliability of the fluorescence method to solve them.  相似文献   

12.
We have used time-resolved fluorescence to study proposed conformational transitions in the Ca-ATPase in skeletal sarcoplasmic reticulum (SR). Resonance energy transfer was used to measure distances between the binding sites of 5-[[2-[(iodoacetyl)amino]ethyl]amino]naphthalene-1-sulfonic acid (IAEDANS) and fluorescein 5-isothiocyanate (FITC) as a function of conditions proposed to affect the enzyme's conformation. When 1.0 +/- 0.15 IAEDANS is bound per Ca-ATPase, most (76 +/- 4%) of the probes have an excited-state lifetime (tau) of 18.6 +/- 0.5 ns, and the remainder have a lifetime of 2.5 +/- 0.9 ns. When FITC is bound to a specific site on each IAEDANS-labeled enzyme, most of the long-lifetime component is quenched into two short-lifetime components, indicating energy transfer that corresponds to two donor-acceptor distances. About one-third of the quenched population has a lifetime tau = 11.1 +/- 2.5 ns, corresponding to a transfer efficiency E = 0.40 +/- 0.07 and a donor-acceptor distance R1 = 52 +/- 3 A. The remaining two-thirds exhibit lifetimes in the range of 1.2-4.2 ns, corresponding to a second distance 31 A less than or equal to R2 less than or equal to 40 A. Addition of Ca2+ (in the micromolar to millimolar range), or vanadate (to produce a phosphoenzyme analogue), had no effect on the donor-acceptor distances. Addition of decavanadate results in the quenching of IAEDANS fluorescence but has no effect on the energy-transfer distance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The study on the interaction of artemisinin with bovine serum albumin (BSA) has been undertaken at three temperatures, 289, 296 and 303 K and investigated the effect of common ions and UV C (253.7 nm) irradiation on the binding of artemisinin with BSA. The binding mode, the binding constant and the protein structure changes in the presence of artemisinin in aqueous solution at pH 7.40 have been evaluated using fluorescence, UV–vis and Fourier transform infrared (FT-IR) spectroscopy. The quenching constant Kq, Ksv and the association constant K were calculated according to Stern–Volmer equation based on the quenching of the fluorescence of BSA. The thermodynamic parameters, the enthalpy (ΔH) and the entropy change (ΔS) were estimated to be −3.625 kJ mol−1 and 107.419 J mol−1 K−1 using the van’t Hoff equation. The displacement experiment shows that artemisinin can bind to the subdomain IIA. The distance between the tryptophan residues in BSA and artemisinin bound to site I was estimated to be 2.22 nm using Föster's equation on the basis of fluorescence energy transfer. The decreased binding constant in the presence of enough common ions and UV C exposure, indicates that common ions and UV C irradiation have effect on artemisinin binding to BSA.  相似文献   

14.
The fluorescent sterol analogue delta 5,7,9(11),22-ergostatetraen-3 beta-ol (dehydroergosterol) was synthesized and purified by reverse-phase high-performance liquid chromatography. Dehydroergosterol in aqueous solution had a critical micelle concentration of 25 nM and a maximum solubility of 1.3 microM as ascertained from fluorescence polarization and light scattering properties, respectively. Several lines of evidence indicated a close molecular interaction of dehydroergosterol with purified rat liver squalene and sterol carrier protein (SCP). SCP increased the maximal solubility of dehydroergosterol in aqueous buffer. The fluorescence emission spectrum of dehydroergosterol was blue shifted upon addition of SCP. The fluorescence lifetime of dehydroergosterol in aqueous buffer was 2.3 ns; addition of SCP resulted in the appearance of a second lifetime component near 12.4 ns. The SCP increased the fluorescence polarization of monomeric dehydroergosterol in aqueous buffer from 0.033 to 0.086. Scatchard analysis of the binding data indicated that dehydroergosterol interacted with purified rat liver SCP with an apparent KD = 0.88 microM and Bmax = 4.8 microM. At maximal binding, 1.0 mol of dehydroergosterol was specifically bound per mole of SCP. The close molecular interaction of dehydroergosterol with SCP was also demonstrated by energy-transfer experiments. The intermolecular distance between SCP and bound dehydroergosterol was evaluated by fluorescence energy transfer from tyrosine residues of SCP to the conjugated triene series of double bonds in dehydroergosterol. The transfer efficiency was 36%, and R, the apparent distance between the tyrosine energy donor and the dehydroergosterol energy acceptor, was 19 A. The significance of these data obtained in vitro for dehydroergosterol interaction with SCP was also tested in vivo.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Selective binding of cholesterol by recombinant fatty acid binding proteins   总被引:3,自引:0,他引:3  
The sterol binding specificity of rat recombinant liver fatty acid binding protein (L-FABP) and intestinal fatty acid binding protein (I-FABP) was characterized with [3H]cholesterol and a fluorescent sterol analog dehydroergosterol. Ligand binding analysis, fluorescence spectroscopy, and activation of microsomal acyl-CoA:cholesterol acyltransferase activity showed that L-FABP-bound sterols. 1) Lipidex-1000 assay showed a dissociation constant Kd = 0.78 +/- 0.18 microM and stoichiometry of 0.47 +/- 0.16 mol/mol for [3H]cholesterol binding to L-PABP. 2) With [3H]cholesterol/phosphatidylcholine liposomes, the cholesterol binding parameters for L-FABP were Kd = 1.53 +/- 0.28 microM and stoichiometry 0.83 +/- 0.07 mol/mol. 3) L-FABP interaction with dehydroergosterol altered the fluorescence intensity and polarization of dehydroergosterol. Dehydroergosterol bound to L-FABP with Kd = 0.37 microM and a stoichiometry of 0.83 mol/mol. 4) Cholesterol and dehydroergosterol decreased L-FABP tyrosine lifetime. Dehydroergosterol binding produced sensitized emission of bound dehydroergosterol with longer lifetime.5) L-FABP bound two cis-parinaric acid molecules/molecule of protein. Cholesterol displaced one of these bound cis-parinaric acids. 6) L-FABP enhanced acyl-CoA:cholesterol acyltransferase in a concentration-dependent manner. In contrast, these assays indicated that I-FABP did not bind sterols. Thus, L-FABP appears able to bind 1 mol of cholesterol/mol of L-FABP, the L-FABP sterol binding site is equivalent to one of the two fatty acid binding sites, and L-FABP stimulates acyl-CoA:cholesterol acyltransferase by transfer of cholesterol.  相似文献   

16.
The binding of NADH and NAD+ to the human liver cytoplasmic, E1, and mitochondrial, E2, isozymes at pH 7.0 and 25 degrees C was studied by the NADH fluorescence enhancement technique, the sedimentation technique, and steady-state kinetics. The binding of radiolabeled [14C]NADH and [14C]NAD+ to the E1 isozyme when measured by the sedimentation technique yielded linear Scatchard plots with a dissociation constant of 17.6 microM for NADH and 21.4 microM for NAD+ and a stoichiometry of ca. two coenzyme molecules bound per enzyme tetramer. The dissociation constant, 19.2 microM, for NADH as competitive inhibitor was found from steady-state kinetics. With the mitochondrial E2 isozyme, the NADH fluorescence enhancement technique showed only one, high-affinity binding site (KD = 0.5 microM). When the sedimentation technique and radiolabeled coenzymes were used, the binding studies showed nonlinear Scatchard plots. A minimum of two binding sites with lower affinity was indicated for NADH (KD = 3-6 microM and KD = 25-30 microM) and also for NAD+ (KD = 5-7 microM and KD = 15-30 microM). A fourth binding site with the lowest affinity (KD = 184 microM for NADH and KD = 102 microM for NAD+) was observed from the steady-state kinetics. The dissociation constant for NAD+, determined by the competition with NADH via fluorescence titration, was found to be 116 microM. The number of binding sites found by the fluorescence titration (n = 1 for NADH) differs from that found by the sedimentation technique (n = 1.8-2.2 for NADH and n = 1.2-1.6 for NAD+).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Nonradiative dissipation of excitation energy is the major photoprotective mechanism in plants. The formation of zeaxanthin in the antenna of photosystem II has been shown to correlate with the onset of nonphotochemical quenching in vivo. We have used recombinant CP29 protein, over-expressed in Escherichia coli and refolded in vitro with purified pigments, to obtain a protein indistinguishable from the native complex extracted from thylakoids, binding either violaxanthin or zeaxanthin together with lutein. These recombinant proteins and the native CP29 were used to measure steady-state chlorophyll fluorescence emission and fluorescence decay kinetics. We found that the presence of zeaxanthin bound to CP29 induces a approximately 35% decrease in fluorescence yield with respect to the control proteins (the native and zeaxanthin-free reconstituted proteins). Fluorescence decay kinetics showed that four components are always present but lifetimes (tau) as well as relative fluorescence quantum yields (rfqy) of the two long-lived components (tau3 and tau4) are modified by the presence of zeaxanthin. The most relevant changes are observed in the rfqy of tau3 and in the average lifetime ( approximately 2.4 ns with zeaxanthin and 3.2-3.4 ns in the control proteins). When studied in vitro, no significant effect of acidic pH (5.2-5.3) is observed on chlorophyll A fluorescence yield or kinetics. The data presented show that recombinant CP29 is able to bind zeaxanthin and this protein-bound zeaxanthin induces a significant quenching effect.  相似文献   

18.
Spectroscopic techniques have been applied to investigate the conformation, local structure, and dynamic properties of the apoprotein of the lumazine protein from Photobacterium leiognathi and the holoprotein reconstituted with either the natural ligand 6,7-dimethyl-8-ribityllumazine or the closely related analogues riboflavin and 6-methyl-7-oxo-8-ribityllumazine (7-oxolumazine). The analogues are bound similarly to the natural prosthetic group. They exhibit similar shifts on binding in their absorption and fluorescence spectra, single-exponential fluorescence decays, and no independent motion from the protein as evident from a long-lived anisotropy decay (single-exponential phi = 10 ns, 20 degrees C) and high initial anisotropy. Steady-state anisotropy measurements result in similar KD's (40 nM, 20 degrees C, 50 mM inorganic phosphate) for all ligands. Circular dichroism in the far-UV region (190-250 nm) indicates no change in secondary structure on binding to the apoprotein. In the spectral region of 250-310 nm relatively large changes occur, indicating changes in the environment of the tyrosine and tryptophan residues. The single tryptophan residue shows a three-exponential decay of its fluorescence in both the apoprotein and the holoprotein. Radiationless energy transfer also occurs from the tryptophan to the bound ligand, especially evident with 7-oxolumazine. We have designed a new method for evaluation of the rate constant of energy transfer by measuring the (picosecond) rise time of the acceptor fluorescence. The anisotropy decay of the tryptophan residue shows two correlation times, a short one (phi approximately equal to 0.4 ns) representing rapid but restriced oscillation of this residue and a longer one (phi 2 = 5-7 ns, 20 degrees C) representing the motion of a larger segment of the protein.  相似文献   

19.
Fluorescence anisotropy studies of molecularly imprinted polymers.   总被引:1,自引:0,他引:1  
A molecularly imprinted polymer (MIP) is a biomimetic material that can be used as a biochemical sensing element. We studied the steady-state and time-resolved fluorescence and fluorescence anisotropy of anthracene-imprinted polyurethane. We compared MIPs with imprinted analytes present, MIPs with the imprinted analytes extracted, MIPs with rebound analytes, non-imprinted control polymers (non-MIPs) and non-MIPs bound with analytes to understand MIP's binding behaviour. MIPs and non-MIPs had similar steady-state fluorescence anisotropy in the range 0.11-0.24. Anthracene rebound in MIPs and non-MIPs had a fluorescence lifetime of tau = 0.64 ns and a rotational correlation time of phi(F) = 1.2-1.5 ns, both of which were shorter than that of MIPs with imprinted analytes present (tau = 2.03 ns and phi(F) = 2.7 ns). The steady-state anisotropy of polymer solutions increased exponentially with polymerization time and might be used to characterize the polymerization extent in situ.  相似文献   

20.
Absorption and fluorescence measurements of DNA-Hoechst 33258 complexes at high molar ratio of DNA phosphate to dye are consistent with the existence of two types of bound species. One type (Type I) predominates at high ionic strength, whereas the other (Type II) occurs at low ionic strength. The fluorescence peak (lambda fmax) depends on the excitation wavelength (lambda ex); lambda fmax shifts toward longer wavelength with increasing lambda ex. Optical properties obtained are summarized in the following: for Type I, lambda amax (absorption) = 352 nm, lambda fmax at lambda ex of 335 nm = 460 nm, tau (fluorescence lifetime) = 2.0-2.5 ns; for Type II, lambda amax = 360 nm, lambda fmax at lambda ex of 335 nm = 470 nm, tau = 4.0-5.0 ns. This behavior is interpreted in terms of solvent-solute relaxation. Type I corresponds to less hydrated bound species, while Type II to more hydrated bound species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号