首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tumor necrosis factor receptor-associated factor (TRAF) protein family members are critically involved in activation of NF-kappaB, JNK, and p38 activation triggered by tumor necrosis factor (TNF) receptor family members and toll/interleukin-1 receptor (TIR)-containing receptors. TRAF proteins (except for TRAF1) contain an N-terminal RING finger domain that is essential for their functions. In this report, we identified a protein designated as TRAF7, which contains a RING finger domain and a zinc finger domain that are mostly conserved with those of TRAFs. TRAF7 also contains seven WD40 repeats at its C terminus. TRAF7 specifically interacted with MEKK3 and potentiated MEKK3-mediated AP1 and CHOP activation. Depletion of TRAF7 by antisense RNA inhibited MEKK3-mediated AP1 and CHOP activation. Moreover, overexpression of TRAF7 induced caspase-dependent apoptosis. Domain mapping experiments indicated that TRAF7 potentiated MEKK3-mediated AP1 and CHOP activation and induced apoptosis through distinct domains. Our studies identified a novel TRAF family member that is involved in MEKK3 signaling and apoptosis.  相似文献   

2.
3.
4.
Receptor-interacting protein (RIP) is a serine/threonine protein kinase that is critically involved in tumor necrosis factor receptor-1 (TNF-R1)-induced NF-kappa B activation. In a yeast two-hybrid screening for potential RIP-interacting proteins, we identified ZIN (zinc finger protein inhibiting NF-kappa B), a novel protein that specifically interacts with RIP. ZIN contains four RING-like zinc finger domains at the middle and a proline-rich domain at the C terminus. Overexpression of ZIN inhibits RIP-, IKK beta-, TNF-, and IL1-induced NF-kappa B activation in a dose-dependent manner in 293 cells. Domain mapping experiments indicate that the RING-like zinc finger domains of ZIN are required for its interaction with RIP and inhibition of RIP-mediated NF-kappa B activation. Overexpression of ZIN also potentiates RIP- and TNF-induced apoptosis. Moreover, immunofluorescent staining indicates that ZIN is a cytoplasmic protein and that it colocalizes with RIP. Our findings suggest that ZIN is an inhibitor of TNF- and IL1-induced NF-kappa B activation pathways.  相似文献   

5.
The zinc finger protein A20 is a tumor necrosis factor (TNF)- and interleukin 1 (IL-1)-inducible protein that negatively regulates nuclear factor-kappa B (NF-kappaB)-dependent gene expression. However, the molecular mechanism by which A20 exerts this effect is still unclear. We show that A20 does not inhibit TNF- induced nuclear translocation and DNA binding of NF-kappaB, although it completely prevents the TNF- induced activation of an NF-kappaB-dependent reporter gene, as well as TNF-induced IL-6 and granulocyte macrophage-colony stimulating factor gene expression. Moreover, NF-kappaB activation induced by overexpression of the TNF receptor-associated proteins TNF receptor-associated death domain protein (TRADD), receptor interacting protein (RIP), and TNF recep- tor-associated factor 2 (TRAF2) was also inhibited by expression of A20, whereas NF-kappaB activation induced by overexpression of NF-kappaB-inducing kinase (NIK) or the human T cell leukemia virus type 1 (HTLV-1) Tax was unaffected. These results demonstrate that A20 inhibits NF-kappaB-dependent gene expression by interfering with a novel TNF-induced and RIP- or TRAF2-mediated pathway that is different from the NIK-IkappaB kinase pathway and that is specifically involved in the transactivation of NF-kappaB. Via yeast two-hybrid screening, we found that A20 binds to a novel protein, ABIN, which mimics the NF-kappaB inhibiting effects of A20 upon overexpression, suggesting that the effect of A20 is mediated by its interaction with this NF-kappaB inhibiting protein, ABIN.  相似文献   

6.
7.
Wang Y  Sun X  Wu J  Xu BE  Gu C  Wang H  Wang X  Tan F  Peng X  Qiang B  Yuan J  Luo Y 《Biochemistry》2008,47(1):441-448
Tumor necrosis factor alpha (TNFalpha) triggers a signaling pathway converging on the activation of NF-kappaB, which forms the basis for many physiological and pathological processes. In a kinase gene screen using a NF-kappaB reporter, we observed that overexpression of casein kinase 1alpha (CK1alpha) enhanced TNFalpha-induced NF-kappaB activation, and a CK1alpha kinase dead mutant, CK1alpha (K46A), reduced NF-kappaB activation induced by TNFalpha. We subsequently demonstrated that CK1alpha interacted with receptor interacting protein 1 (RIP1) but not with TRADD, TRAF2, MEKK3, IKKalpha, IKKbeta, or IKKgamma in mammalian cells. RIP1 is an indispensable molecule in TNFalpha/NF-kappaB signaling. We demonstrated that CK1alpha interacted with and phosphorylated RIP1 at the intermediate domain. Finally, we showed that CK1alpha enhanced RIP1-mediated NF-kappaB activation. Taken together, our studies suggest that CK1alpha is another kinase that regulates RIP1 function in NF-kappaB activation.  相似文献   

8.
A20 zinc finger protein is a negative regulator of tumor necrosis factor (TNF)-induced signaling pathways leading to apoptosis, stress response and inflammation. A20 has been shown to bind to TNF-receptor-associated factor 2 (TRAF2) and 14-3-3 chaperone proteins. Our data indicate that the zinc finger domain of A20 is sufficient and that neither TRAF2 nor 14-3-3 binding is necessary for the inhibitory effects of A20. Mutations in the 14-3-3 binding site of A20 did, however, result in a partial cleavage of A20 protein suggesting that 14-3-3 chaperone proteins may stabilize A20. Furthermore, we show that A20 acts early in TNF-induced signaling cascades blocking both TNF-induced rapid activation of c-Jun N-terminal kinase and processing of the receptor-associated caspase-8. Taken together our data indicate that the zinc finger domain of A20 contains all necessary functional domains required for the inhibition of TNF signaling and that A20 may function at the level of the receptor signaling complex.  相似文献   

9.
The tumor necrosis factor (TNF) inducible protein A20 is a potent inhibitor of nuclear factor-kappaB (IkappaB)-mediated gene expression in response to TNF and several other stimuli. The C-terminal domain of A20 is characterized by seven zinc finger structures. Here, we show that a minimum of four zinc fingers is required to inhibit TNF-induced nuclear factor-kappaB (NF-kappaB) activation to a level that is comparable to that obtained with the wild-type A20 protein. However, there was no strict requirement for a particular zinc finger structure, since a mutant A20 protein containing only the first four zinc fingers was as potent as a mutant protein containing only the last four zinc fingers. A similar functional redundancy of the A20 zinc fingers was also observed for binding of A20 to a number of other proteins, including two novel NF-kappaB inhibitory proteins (ABIN-1, ABIN-2), A20 itself, the anti-apoptotic protein TXBP151, and a regulatory component of the IkappaB kinase complex, IKKgamma. Moreover, we demonstrate that complete loss of binding of any of these proteins correlates with complete loss of A20's ability to inhibit TNF-induced NF-kappaB activation. However, binding of IKKgamma as such is not sufficient for inhibition of NF-kappaB dependent gene expression in response to TNF.  相似文献   

10.
11.
Previously, we have shown that ASK1-interacting protein 1 (AIP1, also known as DAB2IP), a novel member of the Ras-GAP (Ras-GTPase-activating protein) protein family, opens its conformation in response to tumor necrosis factor (TNF), allowing it to form a complex with TRAF2-ASK1 that leads to activation of ASK1-JNK/p38 signaling in endothelial cells (EC). In the present study, we show that a TNF-inducible 14-3-3-binding site on AIP1 is critical for the opening of its conformation and for the AIP1-mediated TNF signaling. Ser-604, located in the C-terminal domain of AIP1, was identified as a 14-3-3-binding site. TNF treatment of EC induces phosphorylation of AIP1 at Ser-604 as detected by a phospho-specific antibody, with a similar kinetics to ASK1-JNK/p38 activation. 14-3-3 associates with an open, active state of AIP1 assessed by an in vitro pulldown assay. Mutation of AIP1 at Ser-604 (AIP1-S604A) blocks TNF-induced complex formation of AIP1 with 14-3-3. TNF treatment normally induces association of AIP1 with TRAF2-ASK1. The interactions with TRAF2 and ASK1 do not occur with AIP1-S604A, suggesting that phosphorylation at this site not only creates a 14-3-3-binding site but also opens up AIP1, allowing binding to TRAF2 and ASK1. Overexpression of AIP1-S604A blocks TNF-induced ASK1-JNK activation. We further show that RIP1 (the Ser/Thr protein kinase receptor-interacting protein) associates with the GAP domain of AIP1 and mediates TNF-induced AIP1 phosphorylation at Ser-604 and JNK/p38 activation as demonstrated by both overexpression and small interfering RNA knockdown of RIP1 in EC. Furthermore, RIP1 synergizes with AIP1 (but not AIP1-S604A) in inducing both JNK/p38 activation and EC apoptosis. Our results demonstrate that RIP1-mediated AIP1 phosphorylation at the 14-3-3-binding site Ser-604 is essential for TNF-induced TRAF2-RIP1-AIP1-ASK1 complex formation and for the activation of ASK1-JNK/p38 apoptotic signaling.  相似文献   

12.
Focal adhesion kinase (FAK) is widely involved in important cellular functions such as proliferation, migration, and survival, although its roles in immune and inflammatory responses have yet to be explored. We demonstrate a critical role for FAK in the tumor necrosis factor (TNF)-induced activation of nuclear factor (NF)-kappaB, using FAK-deficient (FAK-/-) embryonic fibroblasts. Interestingly, TNF-induced interleukin (IL)-6 production was nearly abolished in FAK-/- fibroblasts, whereas a normal level of production was obtained in FAK+/- or FAK+/+ fibroblasts. FAK deficiency did not affect the three types of mitogen-activated protein kinases, ERK, JNK, and p38. Similarly, TNF-induced activation of activator protein 1 or NF-IL-6 was not impaired in FAK-/- cells. Of note, TNF-induced NF-kappaB DNA binding activity and activation of IkappaB kinases (IKKs) were markedly impaired in FAK-/- cells, whereas the expression of TNF receptor I or other signaling molecules such as receptor-interacting protein (RIP), tumor necrosis factor receptor-associated factor 2 (TRAF2), IKKalpha, IKKbeta, and IKKgamma was unchanged. Also, TNF-induced association of FAK with RIP and subsequent association of RIP with TRAF2 were not observed, resulting in a failure of RIP to recruit the IKK complex in FAK-/- cells. The reintroduction of wild type FAK into FAK-/- cells restored the interaction of RIP with TRAF2 and the IKK complex and allowed recovery of NF-kappaB activation and subsequent IL-6 production. Thus, we propose a novel role for FAK in the NF-kappaB activation pathway leading to the production of cytokines.  相似文献   

13.
A member of the tumor necrosis factor (TNF) receptor-associated factor (TRAF) family was identified in Drosophila. DTRAF1 contains 7 zinc finger domains followed by a TRAF domain, similar to mammalian TRAFs and other members of the family identified in data bases from Caenorhabditis elegans, Arabidopsis, and Dictyostelium. Analysis of DTRAF1 binding to different members of the human TNF receptor family showed that this protein can interact through its TRAF domain with the p75 neurotrophin receptor and weakly with the lymphotoxin-beta receptor. DTRAF1 can also self-associate and binds to human TRAF1, TRAF2, and TRAF4. Interestingly, DTRAF1 interacts with human cIAP-1 and cIAP-2 but not with Drosophila DIAP-1 and -2. By itself, DTRAF1 did not induce significant NFkappaB activation when overexpressed in mammalian cells, although it specifically increased NFkappaB induction by TRAF6. In contrast, TRAF2-mediated NFkappaB induction was partially inhibited by DTRAF1. Mutants of DTRAF1 lacking the N-terminal region inhibited NFkappaB induction by either TRAF2 or TRAF6. DTRAF1 specifically associated with the regulatory N-terminal domain of Pelle, a Drosophila homolog of the human kinase interleukin-1 receptor-associated kinase (IRAK). Interestingly, though Pelle and DTRAF1 individually were unable to induce NFkappaB in a human cell line, co-expression of Pelle and DTRAF1 resulted in significant NFkappaB activity. Interactions of DTRAF1 with human TRAF-, TNF receptor-, and IAP-family proteins imply strong evolutionary conservation of TRAF protein structure and function throughout Metazoan evolution.  相似文献   

14.
Nod1 is an Apaf-1-like molecule composed of a caspase-recruitment domain (CARD), nucleotide-binding domain, and leucine-rich repeats that associates with the CARD-containing kinase RICK and activates nuclear factor kappaB (NF-kappaB). We show that self-association of Nod1 mediates proximity of RICK and the interaction of RICK with the gamma subunit of the IkappaB kinase (IKKgamma). Similarly, the RICK-related kinase RIP associated via its intermediate region with IKKgamma. A mutant form of IKKgamma deficient in binding to IKKalpha and IKKbeta inhibited NF-kappaB activation induced by RICK or RIP. Enforced oligomerization of RICK or RIP as well as of IKKgamma, IKKalpha, or IKKbeta was sufficient for induction of NF-kappaB activation. Thus, the proximity of RICK, RIP, and IKK complexes may play an important role for NF-kappaB activation during Nod1 oligomerization or trimerization of the tumor necrosis factor alpha receptor.  相似文献   

15.
Death receptors are a subfamily of the tumor necrosis factor (TNF) receptor subfamily. They are characterized by a death domain (DD) motif within their intracellular domain, which is required for the induction of apoptosis. Fas-associated death domain protein (FADD) is reported to be the universal adaptor used by death receptors to recruit and activate the initiator caspase-8. CD95, TNF-related apoptosis-inducing ligand (TRAIL-R1), and TRAIL-R2 bind FADD directly, whereas recruitment to TNF-R1 is indirect through another adaptor TNF receptor-associated death domain protein (TRADD). TRADD also binds two other adaptors receptor-interacting protein (RIP) and TNF-receptor-associated factor 2 (TRAF2), which are required for TNF-induced NF-kappaB and c-Jun N-terminal kinase activation, respectively. Analysis of the native TNF signaling complex revealed the recruitment of RIP, TRADD, and TRAF2 but not FADD or caspase-8. TNF failed to induce apoptosis in FADD- and caspase-8-deficient Jurkat cells, indicating that these apoptotic mediators were required for TNF-induced apoptosis. In an in vitro binding assay, the intracellular domain of TNF-R1 bound TRADD, RIP, and TRAF2 but did not bind FADD or caspase-8. Under the same conditions, the intracellular domain of both CD95 and TRAIL-R2 bound both FADD and caspase-8. Taken together these results suggest that apoptosis signaling by TNF is distinct from that induced by CD95 and TRAIL. Although caspase-8 and FADD are obligatory for TNF-mediated apoptosis, they are not recruited to a TNF-induced membrane-bound receptor signaling complex as occurs during CD95 or TRAIL signaling, but instead must be activated elsewhere within the cell.  相似文献   

16.
Previously we have shown that ASK-interacting protein 1 (AIP1, also known as DAB2IP), a novel member of the Ras-GAP protein family, mediates TNF-induced activation of ASK1-JNK signaling pathway. However, the mechanism by which TNF signaling is coupled to AIP1 is not known. Here we show that AIP1 is localized on the plasma membrane in resting endothelial cells (EC) in a complex with TNFR1. TNF binding induces release of AIP1 from TNFR1, resulting in cytoplasmic translocation and concomitant formation of an intracellular signaling complex comprised of TRADD, RIP1, TRAF2, and AIPl. A proline-rich region (amino acids 796-807) is critical for maintaining AIP1 in a closed form, which associates with a region of TNFR1 distinct from the death domain, the site of TNFR1 association with TRADD. An AIP1 mutant with deletion of this proline-rich region constitutively binds to TRAF2 and ASK1. A PERIOD-like domain (amino acids 591-719) of AIP1 binds to the intact RING finger of TRAF2, and specifically enhances TRAF2-induced ASK1 activation. At the same time, the binding of AIP1 to TRAF2 inhibits TNF-induced IKK-NF-kappaB signaling. Taken together, our data suggest that AIP1 is a novel transducer in TNF-induced TRAF2-dependent activation of ASK1 that mediates a balance between JNK versus NF-kappaB signaling.  相似文献   

17.
Vaccinia virus (VV) has many mechanisms to suppress and modulate the host immune response. The VV protein A52R was previously shown to act as an intracellular inhibitor of nuclear factor kappaB (NFkappaB) signaling by Toll-like receptors (TLRs). Co-immunoprecipitation studies revealed that A52R interacted with both tumor necrosis factor receptor-associated factor 6 (TRAF6) and interleukin-1 receptor-associated kinase 2 (IRAK2). The effect of A52R on signals other than NFkappaB was not determined. Here, we show that A52R does not inhibit TLR-induced p38 or c-Jun amino N-terminal kinase (JNK) mitogen activating protein (MAP) kinase activation. Rather, A52R could drive activation of these kinases. Two lines of evidence suggested that the A52R/TRAF6 interaction was critical for these effects. First, A52R-induced p38 MAP kinase activation was inhibited by overexpression of the TRAF domain of TRAF6, which sequestered A52R and inhibited its interaction with endogenous TRAF6. Second, a truncated version of A52R, which interacted with IRAK2 and not TRAF6, was unable to activate p38. Because interleukin 10 (IL-10) production is strongly p38-dependent, we examined the effect of A52R on IL-10 gene induction. A52R was found to be capable of inducing the IL-10 promoter through a TRAF6-dependent mechanism. Furthermore, A52R enhanced lipopolysaccharide/TLR4-induced IL-10 production, while inhibiting the TLR-induced NFkappaB-dependent genes IL-8 and RANTES. These results show that although A52R inhibits NFkappaB activation by multiple TLRs it can simultaneously activate MAP kinases. A52R-mediated enhancement of TLR-induced IL-10 may be important to virulence, given the role of IL-10 in immunoregulation.  相似文献   

18.
Nuclear factor-kappaB (NF-kappaB) is constitutively activated in diverse human malignancies by mechanisms that are not understood. The MUC1 oncoprotein is aberrantly overexpressed by most human carcinomas and, similarly to NF-kappaB, blocks apoptosis and induces transformation. This study demonstrates that overexpression of MUC1 in human carcinoma cells is associated with constitutive activation of NF-kappaB p65. We show that MUC1 interacts with the high-molecular-weight IkappaB kinase (IKK) complex in vivo and that the MUC1 cytoplasmic domain binds directly to IKKbeta and IKKgamma. Interaction of MUC1 with both IKKbeta and IKKgamma is necessary for IKKbeta activation, resulting in phosphorylation and degradation of IkappaBalpha. Studies in non-malignant epithelial cells show that MUC1 is recruited to the TNF-R1 complex and interacts with IKKbeta-IKKgamma in response to TNFalpha stimulation. TNFalpha-induced recruitment of MUC1 is dependent on TRADD and TRAF2, but not the death-domain kinase RIP1. In addition, MUC1-mediated activation of IKKbeta is dependent on TAK1 and TAB2. These findings indicate that MUC1 is important for physiological activation of IKKbeta and that overexpression of MUC1, as found in human cancers, confers sustained induction of the IKKbeta-NF-kappaB p65 pathway.  相似文献   

19.
RIP3 is a novel gene product containing a N-terminal kinase domain that shares extensive homology with the corresponding domain in RIP (receptor-interacting protein) and RIP2. Unlike RIP, which has a C-terminal death domain, and RIP2, which has a C-terminal caspase activation and recruitment domain, RIP3 has a unique C terminus. RIP3 binds RIP through its unique C-terminal segment and by virtue of this interaction is recruited to the tumor necrosis factor (TNF) receptor-1 signaling complex. Previous studies have shown that RIP mediates TNF-induced activation of the anti-apoptotic NF-kappaB pathway. RIP3, however, attenuates both RIP and TNF receptor-1-induced NF-kappaB activation. Overexpression studies revealed RIP3 to be a potent inducer of apoptosis, capable of selectively binding to large prodomain initiator caspases.  相似文献   

20.
Tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2) is an intracellular protein involved in signal transduction from TNF receptor I and II and related receptors. TRAF2 is required for TNF-induced activation of c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK), and TRAF2 can also mediate activation of NF-kappaB. Here we have identified the actin-binding protein Filamin (actin-binding protein-280) as a TRAF2-interacting protein. Filamin binds to the Ring zinc finger domain of TRAF2. Overexpressed Filamin inhibits TRAF2-induced activation of JNK/SAPK and of NF-kappaB. Furthermore, ectopically expressed Filamin inhibits NF-kappaB activation induced via TNF, interleukin-1, Toll receptors, and TRAF6 but not activation induced via overexpression of NIK, a downstream effector in these pathways. Importantly, TNF fails to activate SAPK or NF-kappaB in a human melanoma cell line deficient in Filamin. Reintroduction of Filamin into these cells restores the TNF response. The data imply a role for Filamin in inflammatory signal transduction pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号