首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The high fidelity of DNA replication in Escherichia coli is ensured by the alpha (DnaE) and epsilon (DnaQ) subunits of DNA polymerase providing insertion fidelity, 3'-->5' exonuclease proofreading activity, and by the dam-directed mismatch repair system. dnaQ49 is a recessive allele that confers a temperature-sensitive proofreading phenotype resulting in a high rate of spontaneous mutations and chronic induction of the SOS response. The aim of this study was to analyse the mutational specificity of dnaQ49 in umuDC and DeltaumuDC backgrounds at 28 and 37 degrees C in a system developed by J.H. Miller. We confirmed that the mutator activity of dnaQ49 was negligible at 28 degrees C and fully expressed at 37 degrees C. Of the six possible base pair substitutions, only GC-->AT transitions and GC-->TA and AT-->TA transversions were appreciably increased. However, the most numerous mutations were frameshifts, -1G deletions and +1A insertions. All mutations which increased in response to dnaQ49 damage were to a various extent umuDC-dependent, especially -1G deletions. This type of mutations decreased in CC108dnaQ49DeltaumuDC to 10% of the value found in CC108dnaQ49umuDC+ and increased in the presence of plasmids producing UmuD'C or UmuDC proteins. In the recovery of dnaQ49 mutator activity the plasmid harbouring umuD'C genes was more effective than the one harbouring umuDC. Analysis of mutational specificity of pol III with defective epsilon subunit indicates that continuation of DNA replication is allowed past G:T, C:T, T:T (or C:A, G:A, A:A) mismatches but does not allow for acceptance of T:C, C:C, A:C (or A:G, G:G, T:G) (the underlined base is in the template strand).  相似文献   

2.
The deleterious effect of defective alkB allele encoding 1meA/3meC dioxygenase on reactivation of MMS-treated phage DNA has been frequently studied. Here, it is shown that: (i) AlkB protects the cells not only against the genotoxic but also against the potent mutagenic activity of MMS; (ii) mutations arising in alkB-defected strains are umuDC-dependent, and deletion of umuDC dramatically reduce MMS-induced mutations resulting from the presence of 1meA/3meC in DNA; (iii) specificity of MMS-induced argE3-->Arg+ reversions in AB1157 alkB-defective cells are predominantly AT-->TA transversions and GC-->AT transitions; (iv) overproduction of AlkA and the resultant decrease in 3meA residues in DNA dramatically reduce MMS-induced mutations. This reduction is most probably a secondary effect of AlkA due to a decrease in 3meA residues in DNA and, in consequence, suppression of SOS induction and Pol V expression. Overproduction of UmuD'C proteins reverses this effect.  相似文献   

3.
We have analyzed the DNA sequence changes in a total of 409 ultraviolet light-induced mutations in the lacI gene of Escherichia coli: 227 in a Uvr+ and 182 in a UvrB- strain. Both differences and similarities were observed. In both strains the mutations were predominantly (60 to 75%) base substitutions, followed by smaller contributions of single-base frameshifts, deletions and frameshift hotspot mutations. The base substitutions proved largely similar in the two strains but differences were observed among the single-base frameshifts, the deletions and the hotspot mutations. Among the base substitutions, both transitions (72.5%) and transversions (27.5%) were observed. The largest single group was G.C----A.T (60% of all base substitutions). The sites where G.C----A.T changes occurred were strongly correlated (97.5%) with sequences of adjacent pyrimidines, indicating mutation targeted ultraviolet photoproducts. Comparable amounts of mutation occurred at cytosine/cytosine and (mixed) cytosine/thymine sites. From an analysis of the prevalence of mutation at either the 5' or 3' side of a dipyrimidine, we conclude that both cyclobutane dimers and (6-4) lesions may contribute to mutation. Despite the general similarity of the base-substitution spectra between the wild-type and excision-defective strains, a number of sites were uniquely mutable in the UvrB- strain. Analysis of their surrounding DNA sequences suggested that, in addition to damage directly at the site of mutation, the potential for nearby opposite-strand damage may be important in determining the mutability of a site. The ultraviolet light-induced frameshift mutations were largely single-base losses. Inspection of the DNA sequences at which the frameshifts occurred suggested that they resulted from targeted mutagenesis, probably at cyclobutane pyrimidine dimers. The prevalence of frameshift mutations at homodimers (TT or CC) suggests that their formation involves local misalignment (slippage) and that base-pairing properties are partially retained in cyclobutane dimers. While the frameshift mutations in the Uvr+ strain were distributed over many different sites, more than half in the UvrB- strain were concentrated at a single site. Ultraviolet light-induced deletions as well as frameshift hotspot mutations (+/- TGGC at positions 620 to 632) are considered to be examples of untargeted or semitargeted mutagenesis. Hotspot mutations in the Uvr+ strain showed an increased contribution by (-)TGGC relative to (+)TGGC, indicating that ultraviolet light may specifically promote the loss of the four bases.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
We have used an oriP-tk shuttle vector t determine the types of mutations induced in human cells by ethyl methanesulfonate (EMS), 1'-acetoxysafrole (AcOS), and N-benzoyloxy-N-methyl-4-aminoazobenzene (BzOMAB). Plasmid DNA was treated in vitro with mutagen and electroporated into human lymphoblastoid cells. After replication of the vector in human cells, plasmids were analyzed for mutations in the herpes simplex virus type 1 thymidine kinase gene. Ethyl methanesulfonate induced predominantly GC → AT transition mutations. Treatment of the shuttle vector with AcOS induced 5 of the 6 possible base substitution mutations, including GC → AT (32%) and AT → GC (14%) transition mutations, GC → TA (%), GC → CG (18%), and AT → TA (14%) transversion mutations, as well as a low frequency (9%) of −1 frameshift mutations at GC base pairs. Replication in human cells of DNA modified with BzOMAB yielded a significant increase (17-fold) in the frequency of deletion mutations relative to solvent-treated DNA. A majority (94%) of the point mutations induced by BzOMAB occurred at GC base pairs and were predomianntly GC → AT transitions (33%) and −1 frameshift (22%) mutations, with the remainder consisting mainly of transversions at GC base pairs (28%). The broad spectrum of base substitution mutations observed for AcOS and BzOMAB may indicate the frequent insertion of a variety of bases during replicative bypass of aralkylated bases in human cells.  相似文献   

5.
We have obtained via DNA sequence analysis a spectrum of 174 spontaneous mutations occurring in the lac I gene of Escherichia coli. The spectrum comprised base substitution, frameshift, deletion, duplication and insertion mutations, of which the relative contributions to spontaneous mutation could be estimated. Two thirds of all lacI mutations occurred in the frameshift hotspot site. An analysis of the local DNA sequence suggested that the intensity of this hotspot may depend on structural features of the DNA that extend beyond those permitted by the repeated tetramer at this site. Deletions comprised the largest non-hotspot class (37%). They could be divided into two subclasses, depending on whether they included the lac operator sequence; the latter was found to be a preferred site for deletion endpoints. Most of the deletions internal to the lacI gene were associated with the presence of directly or invertedly repeated sequences capable of accounting for their endpoints. Base substitutions comprised 34% of the non-hotspot events. Unlike the base substitution spectrum obtained via nonsense mutations, G . C----A . T transitions do not predominate. A new base substitution hotspot was discovered at position +6 in the lac operator; its intensity may reflect specific features of the operator DNA. IS1 insertion mutations contributed 12% of the non-hotspot mutations and occurred dispersed throughout the gene in both orientations. Since the lacI gene is not A + T-rich, the contribution of IS1 insertion to spontaneous mutation in general might be underestimated. Single-base frameshift mutations were found only infrequently. In general, they did not occur in runs of a common base. Instead, their occurrence seemed based on the "perfection" of direct or inverted repeats in the local DNA sequence. Three (tandem) duplication events were recovered. No repeated sequences were found that might have determined their endpoints.  相似文献   

6.
以60Co-γ射线辐照为参照体系,研究了低能氮离子诱发大肠杆菌利福平抗性突变。结果表明,低能氮离子注入具有损伤轻而突变率较高的特点。碱基置换型突变与其检出频率分析表明,CG→TA、GC→AT、AT→GC转换与AT→TA颠换为低能氮离子诱发大肠杆菌活体细胞内的高频突变,占检出总突变数的875% (77/88)。并鉴定出大肠杆菌rpoB基因中两个新的利福平抗性决定位点。位点一位于1551位鸟嘌呤脱氧核苷酸(dG)被胞嘧啶脱氧核苷酸(dC)取代,导致Gln517 (谷氨酰胺残基) 被His (组氨酸) 替代;位点二位于1692的胞嘧啶脱氧核苷酸(dC)被胸腺嘧啶脱氧核苷酸(dT)替代,导致Pro564 (脯氨酸残基) 被Leu (亮氨酸) 取代,使突变子产生抗性。其中位点一还未见报道,位点二的同义突变已有报道,但1692位点C到T的核苷酸突变并没有得到鉴定。  相似文献   

7.
Previous studies have identified two potent aromatic amine mutagens in the Nishitakase River, a tributary of the Yodo River, which serves as the main drinking water supply for the Osaka area in Japan. The two potent mutagens are 2-[2-(acetylamino)-4-[bis(2-methoxyethyl)amino]-5-methoxyphenyl]-5-am ino-7-bromo-4-chloro-2H-benzotriazole (PBTA-1) and 2-[2-(acetylamino)-4-[N-(2-cyanoethyl)ethylamino]-5-methoxyphenyl]-5- amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-2). PBTA-1 and PBTA-2 are presumed to be formed from azo dyes discharged in a reduced form from dye factories to sewage treatment plants where they become chlorinated and are then discharged into the river. PBTA-1 and PBTA-2 account for 21% and 17% of the mutagenic activity of the Nishitakase River, respectively. Here we determined the mutation spectra induced by these two mutagens in TA98, TA100, and TA104 at 30-35, 8-10, and 2x, respectively, above the background. In TA98, the PBTA compounds produced identical mutation spectra, with 100% of the revertants containing the hotspot 2-base deletion of CG within the (CG)(4) sequence. In TA100, 73% of the revertants were GC-->TA transversions, with most of the remaining being GC-->AT transitions; the spectra produced by the two compounds in TA100 were not significantly different (p=0.8). In TA104, as in TA100, the majority (83%-87%) of the revertants were GC-->TA transversions, with most of the remaining revertants (11%-13%) being AT-->TA transversions. Thus, 83%-87% of the mutations induced by the PBTA compounds in TA104 were at G/C sites. The mutation spectra produced by the two compounds in TA104 were not significantly different (p0.08). PBTA-1 and PBTA-2 are structurally similar and have similar mutagenic potencies and mutation spectra in the respective strains. The mutation spectra produced by the PBTA compounds (100% hotspot deletion in TA98 and primarily GC-->TA transversions in TA100 and TA104) are similar to those produced by other potent aromatic amines, which is the class of compounds from which the PBTA mutagens derive.  相似文献   

8.
Two missense mutations, trpA58 and trpA78, and one nonsense mutation-trp-ochre, were used to determine the types of base-pair substitution caused by ultra, violet irradiation and methyl methanesulfonate (MMS) in Escherichia coli. UV irradiation of the wild-type bacteria led to the formation of revertants mainly arising as a result of GC yields AT transitions (suppressor revertants of the trpA58 mutant). True revertants of the trp- mutant (arising via transitions of AT pairs) and 5-methyl tryptophan-sensitive (MT-s) Trp+ of the trpA78 mutant (arising via unidentified transversions) occurred at a lower frequency. The polAI mutation did not change the frequency of the UV-induced transitions GC yields AT or that of the substitutions of the AT pairs. The uvrE502 mutation significantly increased the frequency of the UV-induced revertants arising via the transition GC yields AT. Treatment of the wild-type bacteria with MMS resulted in the formation of revertants mainly due to the GC yields AT substitution, and with a lower frequency to the AT yields GC transitions. MMS also induced, with a low frequency, some transversions. The frequency of the MMS-induced GC yields AT transitions was enhanced in the uvrE502 mutant. On the other hand, the uvrE502 mutation eliminated or significantly lowered MMS-induced revertants arising as a result of AT yields GC transitions or transversions.  相似文献   

9.
Plasmid DNA carrying the adenosine 3',5'-cyclic monophosphate receptor protein (crp) gene of Escherichia coli was irradiated, in solution, with X-rays, and the mutations produced in the crp gene were assayed by transforming the recipient E. coli cells. Ninety-six mutant clones were isolated, and mutational changes were determined by DNA sequencing. Of the 92 mutations thus detected, 74 represented base substitution mutations and the remaining 18 were frameshifts. The base substitutions included 56 G:C to A:T transitions, 10 G:C to T:A transversions and 7 G:C to C:G transversions. An A:T to G:C transition was found only once, and neither an A:T to T:A nor an A:T to C:G transversion was detected. The frameshift mutations consisted of 11 one-base deletions and 7 one-base insertions. Accordingly, G:C to A:T transition was the predominant type of mutation, which constituted 76% (56/74) of the total base substitutions and 60% (56/92) of all detected mutations. Furthermore, of the 56 transitions, about three-quarters (41 clones) clustered at an identical site, a cytosine residue at the 706 position, demonstrating that this site is a distinct hot spot for X-ray mutagenesis. These results raise the possibility that radiation-induced mutations may not necessarily occur randomly, at least in certain cases.  相似文献   

10.
Four nitrated aromatic amines (2-nitro-p-phenylenediamine [2NPD], 3-nitro-o-phenylenediamine [3NPD], 4-nitro-o-phenylenediamine [4NPD] and 4,4'-dinitro-2-biphenylamine [DNBA]) are direct-acting mutagens in Salmonella typhimurium strain TA100. These compounds were tested further using the Xenometrix strains of S. typhimurium: TA7001, TA7002, TA7003, TA7004, TA7005, and TA7006, with and without S9 mix in the plate incorporation assay. The direct-acting mutagenicity of 2NPD, 4NPD, and DNBA was detected with TA7002, TA7004 and TA7005. 2NPD and DNBA showed some activity in TA7006; DNBA also showed some activity in TA7003. Mutagenicity was generally decreased in these strains when S9 was added. 3NPD was mutagenic in TA7004 without S9 and in TA7005 with and without S9. These data suggest that 2NPD, 4NPD and DNBA induced TA-->AT and CG-->AT transversions as well as GC-->AT transitions in the his gene. 3NPD induced CG-->AT transversions and GC-->AT transitions. 2NPD and DNBA also induced a small portion of CG-->GC transversions.  相似文献   

11.
Escherichia coli DNA polymerase IV (pol IV), a member of the error-prone Y family, predominantly generates -1 frameshifts when copying DNA in vitro. T-->G transversions and T-->C transitions are the most frequent base substitutions observed. The in vitro data agree with mutational spectra obtained when pol IV is overexpressed in vivo. Single base deletion and base substitution rates measured in the lacZalpha gene in vitro are, on average, 2 x 10(-4) and 5 x 10(-5), respectively. The range of misincorporation and mismatch extension efficiencies determined kinetically are 10(-3) to 10(-5). The presence of beta sliding clamp and gamma-complex clamp loading proteins strongly enhance pol IV processivity but have no discernible influence on fidelity. By analyzing changes in fluorescence of a 2-aminopurine template base undergoing replication in real time, we show that a "dNTP-stabilized" misalignment mechanism is responsible for making -1 frameshift mutations on undamaged DNA. In this mechanism, a dNTP substrate is paired "correctly" opposite a downstream template base, on a "looped out" template strand instead of mispairing opposite a next available template base. By using the same mechanism, pol IV "skips" past an abasic template lesion to generate a -1 frameshift. A crystal structure depicting dNTP-stabilized misalignment was reported recently for Sulfolubus solfataricus Dpo4, a Y family homolog of Escherichia coli pol IV.  相似文献   

12.
This paper reviews the influence of DNA repair on spontaneous and mutagen-induced mutation spectra at the base-substitution (hisG46) and -1 frameshift (hisD3052) alleles present in strains of the Salmonella (Ames) mutagenicity assay. At the frameshift allele (mostly a CGCGCGCG target), ΔuvrB influences the frequency of spontaneous hotspot mutations (−CG), duplications, and deletions, and it also shifts the sites of deletions and duplications. Cells with pKM101+ΔuvrB spontaneously produce complex frameshifts (frameshifts with an adjacent base substitution). The spontaneous frequency of 1-base insertions or concerted (templated) mutations is unaffected by DNA repair, and neither mutation is inducible by mutagens. Glu-P-1, 1-nitropyrene (1NP), and 2-acetylaminofluorene (2AAF) induce only hotspot mutations and are unaffected by pKM101, whereas benzo(a)pyrene and 4-aminobiphenyl induce only hotspot in pKM101, and hotspot plus complex in pKM101+. At the base-substitution allele (mostly a CC/GG target), the ΔuvrB allele increases spontaneous transitions in the absence of pKM101 and increases transversions in its presence. The frequency of suppressor mutations is decreased 4× by ΔuvrB, but increased 7.5× by pKM101. Both repair factors cause a shift in the proportion of mutations to the second position of the CC/GG target. With UV light and γ-rays, the ΔuvrB allele increases the proportion of transitions relative to transversions. pKM101 is required for mutagenesis by Glu-P-1 and 4-AB, and the types and positions of the substitutions are not altered by the addition of the ΔuvrB allele. Changes in DNA repair appear to cause more changes in spontaneous than in mutagen-induced mutation spectra at both alleles. There is a high correlation (r2=0.8) between a mutagen's ability to induce complex frameshifts and its relative base-substitution/frameshift mutagenic potency. A mutagen induces the same primary class of base substitution in TA100 (ΔuvrB, pKM101) as it does in Escherichia coli, mammalian cells, or rodents as well as in the p53 gene of human tumors associated with exposure to that mutagen. Thus, a mutagen induces the same primary class of base substitution in most organisms, reflecting the conserved nature of DNA replication and repair processes.  相似文献   

13.
Methyl Methanesulfonate Mutagenesis in Bacteriophage T4   总被引:1,自引:1,他引:0       下载免费PDF全文
John W. Drake 《Genetics》1982,102(4):639-651
MMS induces diverse rII mutations from a wild-type background in bacteriophage T4. About 56% are base pair substitutions, about 30% are frameshift mutations, and the remainder is a miscellaneous set of rapidly reverting or leaky mutants of unknown composition; but deletions were not detected. MMS-induced forward mutation is sharply reduced by the mutations px and y, which also reduce ultraviolet, photodynamic and γ-ray mutagenesis and increase killing by all of these agents. Thus, many of the mutations arise via the T4 WXY system. The induction of G:C → A:T transitions was detected even in a px or y background using sensitive reversion tests, and the few forward rII mutations that were induced from this background also behaved like transition mutations. Thus, some MMS-induced mutations arise independently of the WXY system, perhaps as a result of the (rather weak) ability of MMS to alkylate the O6 position of guanine.  相似文献   

14.
274 N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced forward mutations in the lacI gene of an Escherichia coli RecA- strain were cloned and sequenced. Base substitutions accounted for 264 mutations and consisted of 261 G:C----A:T transitions (including one double mutant with two G:C----A:T transitions separated by 25 base pairs), two A:T----G:C transitions and one A:T----T:A transversion. Therefore, 263 of the 274 mutations (all the transitions) can be explained as a result of the direct mispairing of O6-methylguanine, and O4-methylthymine residues during DNA synthesis. The source of the transversion is not known. The remaining mutations, one 16-base pair deletion, two -1 frameshifts and 7 frameshifts at the lacI frameshift hotspot, are located in runs of identical bases or flanked by directly repeated DNA sequences and can therefore be explained by template slippage events during DNA synthesis. The observed distribution of mutations recovered is identical to that found in a RecA+ background indicating little involvement of RecA function in MNNG-induced mutation. Analysis of neighbouring base sequence revealed that the G:C----A:T transition was 6 times more likely to be recovered if the mutated guanine residue was preceded by a purine rather than a pyrimidine. A most striking aspect of this distribution concerns particular residues in the core domain of the lac repressor protein. Within this domain the great majority of mutations generate nonsense codons or alter Gly codons.  相似文献   

15.
16.
17.
S R Sahasrabudhe  X Luo  M Z Humayun 《Biochemistry》1990,29(49):10899-10905
As the most nucleophilic atom in DNA, the guanine N7 atom is a major site of attack for a large number of chemical mutagens as well as chemotherapeutic agents. Paradoxically, while methylation of guanine N7 is believed to be largely nonmutagenic, aflatoxin B1, among the most potent mutagens, appears to exert its mutagenic activity through adduction at this site. On the basis of an analysis of the specificity of mutations induced by various adduct forms of aflatoxin B1, we have previously proposed mechanisms that can both resolve the paradox and account for the specificity of mutagenesis by aflatoxin B1. The hypothesized mechanisms specify how a bulky guanine N7 lesion can promote G.C to A.T transitions as well as frame-shift mutations. Since the proposed mechanisms are in principle lesion-independent, a simple test of the proposed mechanisms would be to examine the specificity of mutations induced by a structurally different bulky guanine N7 adduct. Toward this goal, M13 replicative form DNA was subjected to in vitro adduction with the acridine mutagen ICR-191 and transfected into Escherichia coli. Mutations in the LacZ(alpha) gene segments were scored and defined at the sequence level. The results show that ICR-191 adduction induces both base substitutions and frame shifts with near-equal efficiency. A clear majority of base substitutions were G.C to A.T transitions. On the other hand, unlike aflatoxin B1 which could induce both -1 and +1 frameshifts, ICR-191 appears to predominantly induce +1 frame shifts. This preference appears to arise by lesion-dependent mechanisms.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Previously, we have demonstrated that cadmium acetate significantly induces hprt mutation frequency in Chinese hamster ovary (CHO)-K1 and that 3-amino-1,2,4-triazole (3AT), a catalase inhibitor, potentiates the mutagenicity of cadmium [Chem. Res. Toxicol. 9 (1996) 1360-1367]. In this study, we investigate the role of intracellular peroxide in the molecular nature of mutations induced by cadmium. Using 2',7'-dichlorofluorescin diacetate and fluorescence spectrophotometry, we have shown that cadmium dose-dependently increased the amounts of intracellular peroxide and the levels were significantly enhanced by 3AT. Furthermore, we have characterized and compared the hprt mutation spectra in 6-thioguanine-resistant mutants derived from CHO-K1 cells exposed to 4 microM of cadmium acetate for 4h in the absence and presence of 3AT. The mutation frequency induced by cadmium and cadmium plus 3AT was 11- and 16-fold higher than that observed in untreated populations (2.2 x 10(-6)), respectively. A total of 40 and 51 independent hprt mutants were isolated from cadmium and cadmium plus 3AT treatments for mRNA-polymerase chain reaction (PCR), genomic DNA-PCR and DNA sequencing analyses. 3AT co-administration significantly enhanced the frequency of deletions induced by cadmium. Cadmium induced more transversions than transitions. In contrast, 3AT co-administration increased the frequency of GC-->AT transitions and decreased the frequencies of TA-->AT and TA-->GC transversions. Together, the results suggest that intracellular catalase is important to prevent the formation of oxidative DNA damage as well as deletions and GC-->AT transitions upon cadmium exposure.  相似文献   

19.
The mutagenic potency of the simple reversible intercalators isopropyl-OPC (iPr-OPC) and 9-aminoacridine (9-AA) is assessed in E. coli using reversion assays based on plasmids derived from pBR322 carrying various frameshift mutations within the tetracycline resistance gene in repetitive sequences: +/- 2 frameshift mutations within alternating GC sequences; +/- 1 frameshift mutation at runs of guanines. The results obtained show that iPr-OPC and 9-AA have a sequence specificity for mutagenesis: they revert +1 and -1 frameshift mutations within runs of monotonous G:C base pairs. The precise determination of the size of a small restriction fragment which contains the mutation allowed us to demonstrate that reversion occurred by -1 deletions for the +1 frameshift mutations and by +1 additions for the -1 frameshift mutations. The possible relations of this specific reversion with the base sequence specificity of the mutagenesis are briefly discussed.  相似文献   

20.
The sequences of more than 600 frameshift mutations produced as a consequence of in vitro DNA replication on an oligonucleotide-primed, single-stranded DNA template by the Escherichia coli polymerase I enzyme (PolI) or its large fragment derivative (PolLF) were compared. Four categories of mutants were found: (1) single-base deletions, (2) base substitutions, (3) multiple-base deletions and (4) complex frameshift mutations that change both the base sequence and the number of bases in a concerted mutational process. The template sequence 5'-Py-T-G-3', previously identified as a PolLF hotspot for single-base deletions opposite G, is also a hotspot for PolI. A PolI-specific warm spot for single-base deletions was identified. Among base substitutions, transitions were more frequent than transversions. Transversions were mediated by (template)G.G, (template)G.A, and (template)C.T mispairs. Multiple-base deletions were found only after PolI replication. Although each of these deletions can be explained by a misalignment mediated by directly repeated DNA sequences, deletion frequencies were often different for repeats of the same length. Both PolI and PolLF produced many complex frameshift mutants. The new sequences at the mutant sites are exactly complementary to nearby DNA sequences in the newly synthesized DNA strand. In each case, palindromic complementarity could mediate the misalignment needed to initiate the mutational process. The misaligned DNA synthesis accounts for the nucleotide changes at the mutant site and for homology that could direct realignment of the DNA onto the template. Most of the complex mutant sequences could be initiated by either intramolecular misalignments involving fold-back structures in newly synthesized DNA or by strand-switching during strand-displacement synthesis. The striking differences between the specificities of complex frameshift mutations and multiple-base deletions by PolI and PolLF identify the existence of polymerase-specific determinants that influence the frequency and specificity of misalignment-mediated frameshifts and deletions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号