首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Initiation of intestinal Na+-glucose cotransport results intransient cell swelling and sustained increases in tight junction permeability. Since Na+/H+ exchange has beenimplicated in volume regulation after physiological cell swelling, wehypothesized that Na+/H+ exchange might also berequired for Na+-glucose cotransport-dependent tightjunction regulation. In Caco-2 monolayers with activeNa+-glucose cotransport, inhibition ofNa+/H+ exchange with 200 µM5-(N,N-dimethyl)- amiloride induced 36 ± 2% increases in transepithelial resistance (TER). Evaluation using multiple Na+/H+ exchange inhibitors showed thatinhibition of the Na+/H+ exchanger 3 (NHE3)isoform was most closely related to TER increases. TER increases due toNHE3 inhibition were related to cytoplasmic acidification becausecytoplasmic alkalinization with 5 mM NH4Cl prevented bothcytoplasmic acidification and TER increases. However, NHE3 inhibitiondid not affect TER when Na+-glucose cotransport wasinhibited. Myosin II regulatory light chain (MLC) phosphorylationdecreased up to 43 ± 5% after inhibition ofNa+/H+ exchange, similar to previous studiesthat associate decreased MLC phosphorylation with increased TER afterinhibition of Na+-glucose cotransport. However, NHE3inhibitors did not diminish Na+-glucose cotransport. Thesedata demonstrate that inhibition of NHE3 results in decreased MLCphosphorylation and increased TER and suggest that NHE3 may participatein the signaling pathway of Na+-glucosecotransport-dependent tight junction regulation.

  相似文献   

2.
The plasma membrane Na+/H+ exchanger NHE1 has an established function in intracellular pH and cell volume homeostasis by catalyzing electroneutral influx of extracellular Na+ and efflux of intracellular H+. A second function of NHE1 as a structural anchor for actin filaments through its direct binding of the ezrin, radixin, and moesin (ERM) family of actin-binding proteins was recently identified. ERM protein binding and actin anchoring by NHE1 are necessary to retain the localization of NHE1 in specialized plasma membrane domains and to promote cytoskeleton-dependent processes, including actin filament bundling and cell-substrate adhesions. This review explores a third function of NHE1, as a plasma membrane scaffold in the assembly of signaling complexes. Through its coordinate functions in H+ efflux, actin anchoring, and scaffolding, we propose that NHE1 promotes protein interactions and activities, assembles signaling complexes in specialized plasma membrane domains, and coordinates divergent signaling pathways. hydrogen ion efflux; intracellular pH; molecular scaffold  相似文献   

3.
Squalamine, anendogenous molecule found in the liver and other tissues ofSqualus acanthias, hasantibiotic properties and causes changes in endothelial cell shape. Thelatter suggested that its potential targets might include transportproteins that control cell volume or cell shape. The effect of purifiedsqualamine was examined on clonedNa+/H+exchanger isoforms NHE1, NHE2, and NHE3 stably transfected in PS120fibroblasts. Squalamine (1-h pretreatment) decreased the maximalvelocity of rabbit NHE3 in a concentration-dependent manner (13, 47, and 57% inhibition with 3, 5, and 7 µg/ml, respectively) and alsoincreasedK'[H+]i.Squalamine did not affect rabbit NHE1 or NHE2 function. The inhibitoryeffect of squalamine was 1) timedependent, with no effect of immediate addition and maximum effect with1 h of exposure, and 2) fullyreversible. Squalamine pretreatment of the ileum for 60 min inhibitedbrush-border membrane vesicleNa+/H+activity by 51%. Further investigation into the mechanism of squalamine's effects showed that squalamine required the COOH-terminal 76 amino acids of NHE3. Squalamine had no cytotoxic effect at theconcentrations studied, as indicated by monitoring lactate dehydrogenase release. These results indicate that squalamine 1) is a specific inhibitor of thebrush-border NHE isoform NHE3 and not NHE1 or NHE2,2) acts in a nontoxic and fullyreversible manner, and 3) has adelayed effect, indicating that it may influence brush-borderNa+/H+exchanger function indirectly, through an intracellular signaling pathway or by acting as an intracellular modulator.

  相似文献   

4.
High concentrations of cytosolic Na+ ions induce the time-dependent formation of an inactive state of the Na+/Ca2+ exchanger (NCX), a process known as Na+-dependent inactivation. NCX activity was measured as Ca2+ uptake in fura 2-loaded Chinese hamster ovary (CHO) cells expressing the wild-type (WT) NCX or mutants that are hypersensitive (F223E) or resistant (K229Q) to Na+-dependent inactivation. As expected, 1) Na+-dependent inactivation was promoted by high cytosolic Na+ concentration, 2) the F223E mutant was more susceptible than the WT exchanger to inactivation, whereas the K229Q mutant was resistant, and 3) inactivation was enhanced by cytosolic acidification. However, in contrast to expectations from excised patch studies, 1) the WT exchanger was resistant to Na+-dependent inactivation unless cytosolic pH was reduced, 2) reducing cellular phosphatidylinositol-4,5-bisphosphate levels did not induce Na+-dependent inactivation in the WT exchanger, 3) Na+-dependent inactivation did not increase the half-maximal cytosolic Ca2+ concentration for allosteric Ca2+ activation, 4) Na+-dependent inactivation was not reversed by high cytosolic Ca2+ concentrations, and 5) Na+-dependent inactivation was partially, but transiently, reversed by an increase in extracellular Ca2+ concentration. Thus Na+-dependent inactivation of NCX expressed in CHO cells differs in several respects from the inactivation process measured in excised patches. The refractoriness of the WT exchanger to Na+-dependent inactivation suggests that this type of inactivation is unlikely to be a strong regulator of exchange activity under physiological conditions but would probably act to inhibit NCX-mediated Ca2+ influx during ischemia. ischemia; cytosolic calcium concentration; cytosolic sodium concentration; cellular phosphatidylinositol-4,5-bisphosphate  相似文献   

5.
We examined the regulation of theNa+/H+exchangers (NHEs) NHE2 and NHE3 by expressing them in human intestinalC2/bbe cells, which spontaneously differentiate and have little basalapical NHE activity. Unidirectional apical membrane22Na+influxes were measured in NHE2-transfected (C2N2) and NHE3-transfected (C2N3) cells under basal and stimulated conditions, and their activities were distinguished as the HOE-642-sensitive and -insensitive components of5-(N,N-dimethyl)amiloride-inhibitableflux. Both C2N2 and C2N3 cells exhibited increased apical membrane NHEactivity under non-acid-loaded conditions compared with nontransfected control cells. NHE2 was inhibited by 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate and thapsigargin, was stimulatedby serum, and was unaffected by cGMP- and protein kinase C-dependent pathways. In contrast, NHE3 was inhibited by all regulatory pathways examined. Under acid-loaded conditions (which increase apical Na+ influx), NHE2 and NHE3exhibited similar patterns of regulation, suggesting that the secondmessenger effects observed were not secondary to effects on cell pH.Thus, in contrast to their expression in nonepithelial cells, NHE2 andNHE3 expressed in an epithelial cell line behave similarly toendogenously expressed intestinal apical membrane NHEs. We concludethat physiological regulation and function of epithelium-specific NHEsare dependent on tissue-specific factors and/or conditionalrequirements.

  相似文献   

6.
The relevance of nongenomic pathways to regulation of epithelial function by aldosterone is poorly understood. Recently, we demonstrated that aldosterone inhibits transepithelial HCO3 absorption in the renal medullary thick ascending limb (MTAL) through a nongenomic pathway. Here, we examined the transport mechanism(s) responsible for this regulation, focusing on Na+/H+ exchangers (NHE). In the MTAL, apical NHE3 mediates H+ secretion necessary for HCO3 absorption; basolateral NHE1 influences HCO3 absorption by regulating apical NHE3 activity. In microperfused rat MTALs, the addition of 1 nM aldosterone rapidly decreased HCO3 absorption by 30%. This inhibition was unaffected by three maneuvers that inhibit basolateral Na+/H+ exchange and was preserved in MTALs from NHE1 knockout mice, ruling out the involvement of NHE1. In contrast, exposure to aldosterone for 15 min caused a 30% decrease in apical Na+/H+ exchange activity over the intracellular pH range from 6.5 to 7.7, due to a decrease in Vmax. Inhibition of HCO3 absorption by aldosterone was not affected by 0.1 mM lumen Zn2+ or 1 mM lumen DIDS, arguing against the involvement of an apical H+ conductance or apical K+-HCO3 cotransport. These results demonstrate that aldosterone inhibits HCO3 absorption in the MTAL through inhibition of apical NHE3, and identify NHE3 as a target for nongenomic regulation by aldosterone. Aldosterone may influence a broad range of epithelial transport functions important for extracellular fluid volume and acid-base homeostasis through direct regulation of this exchanger. thick ascending limb; acid-base transport; epithelial Na+ transport; kidney  相似文献   

7.
The cDNAencoding theNa+/H+exchanger (NHE) from Amphiumaerythrocytes was cloned, sequenced, and found to be highly homologous to the human NHE1 isoform (hNHE1), with 79% identity and 89%similarity at the amino acid level. Sequence comparisons with otherNHEs indicate that the Amphiumatridactylum NHE isoform 1 (atNHE1) islikely to be a phylogenetic progenitor of mammalian NHE1. The atNHE1protein, when stably transfected into the NHE-deficient AP-1 cell line(37), demonstrates robustNa+-dependent proton transportthat is sensitive to amiloride but not to the potent NHE1 inhibitorHOE-694. Interestingly, chimeric NHE proteins constructed by exchangingthe amino and carboxy termini between atNHE1 and hNHE1 exhibited drugsensitivities similar to atNHE1. Based on kinetic, sequence, andfunctional similarities between atNHE1 and mammalian NHE1, we proposethat the Amphiuma exchanger shouldprove to be a valuable model for studying the control of pH and volumeregulation of mammalian NHE1. However, low sensitivity of atNHE1 to theNHE inhibitor HOE-694 in both nativeAmphiuma red blood cells (RBCs) and intransfected mammalian cells distinguishes this transporter from itsmammalian homologue.  相似文献   

8.
In isolated sweat glands, bumetanide inhibits sweat secretion. The mRNA encoding bumetanide-sensitive Na+-K+-Cl cotransporter (NKCC) isoform 1 (NKCC1) has been detected in sweat glands; however, the cellular and subcellular protein localization is unknown. Na+/H+ exchanger (NHE) isoform 1 (NHE1) protein has been localized to both the duct and secretory coil of human sweat duct; however, the NHE1 abundance in the duct was not compared with that in the secretory coil. The aim of this study was to test whether mRNA encoding NKCC1, NKCC2, and Na+-coupled acid-base transporters and the corresponding proteins are expressed in rodent sweat glands and, if expressed, to determine the cellular and subcellular localization in rat, mouse, and human eccrine sweat glands. NKCC1 mRNA was demonstrated in rat palmar tissue, including sweat glands, using RT-PCR, whereas NKCC2 mRNA was absent. Also, NHE1 mRNA was demonstrated in rat palmar tissue, whereas NHE2, NHE3, NHE4, electrogenic Na+-HCO3 cotransporter 1 NBCe1, NBCe2, electroneutral Na+-HCO3 cotransporter NBCn1, and Na+-dependent Cl/HCO3 exchanger NCBE mRNA were not detected. The expression of NKCC1 and NHE1 proteins was confirmed in rat palmar skin by immunoblotting, whereas NKCC2, NHE2, and NHE3 proteins were not detected. Immunohistochemistry was performed using sections from rat, mouse, and human palmar tissue. Immunoperoxidase labeling revealed abundant expression of NKCC1 and NHE1 in the basolateral domain of secretory coils of rat, mouse, and human sweat glands and low expression was found in the coiled part of the ducts. In contrast, NKCC1 and NHE1 labeling was absent from rat, mouse, and human epidermis. Immunoelectron microscopy demonstrated abundant NKCC1 and NHE1 labeling of the basolateral plasma membrane of mouse sweat glands, with no labeling of the apical plasma membranes or intracellular structures. The basolateral NKCC1 of the secretory coils of sweat glands would most likely account for the observed bumetanide-sensitive NaCl secretion in the secretory coils, and the basolateral NHE1 is likely to be involved in Na+-coupled acid-base transport. bumetanide; eccrine glands; immunohistochemistry; immunoblotting  相似文献   

9.
To examine theeffect of hyperosmolality on Na+/H+ exchanger(NHE) activity in mesangial cells (MCs), we used apH-sensitive dye,2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein-AM, to measure intracellular pH (pHi) in a single MC from ratglomeruli. All the experiments were performed inCO2/HCO3-free HEPESsolutions. Exposure of MCs to hyperosmotic HEPES solutions (500 mosmol/kgH2O) treated with mannitol caused cellalkalinization. The hyperosmolality-induced cell alkalinization wasinhibited by 100 µM ethylisopropylamiloride, a specific NHEinhibitor, and was dependent on extracellular Na+. Thehyperosmolality shifted the Na+-dependent acid extrusionrate vs. pHi by 0.15-0.3 pH units in thealkaline direction. Removal of extracellular Cl byreplacement with gluconate completely abolished the rate of cellalkalinization induced by hyperosmolality and inhibited the Na+-dependent acid extrusion rate, whereas, under isosmoticconditions, it caused no effect on Na+-dependentpHi recovery rate or Na+-dependent acidextrusion rate. The Cl-dependent cell alkalinizationrate under hyperosmotic conditions was partially inhibited bypretreatment with 5-nitro-2-(3-phenylpropylamino)benzoic acid, DIDS,and colchicine. We conclude: 1) in MCs, hyperosmolality activates NHE to cause cell alkalinization, 2) the acidextrusion rate via NHE is greater under hyperosmotic conditions thanunder isosmotic conditions at a wide range of pHi,3) the NHE activation under hyperosmotic conditions, but notunder isosmotic conditions, requires extracellularCl, and 4) theCl-dependent NHE activation under hyperosmoticconditions partly occurs via Cl channel andmicrotubule-dependent processes.

  相似文献   

10.
Little is known of the functional properties of the mammalian,brain-specific Na+/H+ exchanger isoform 5 (NHE5). Rat NHE5 was stably expressed in NHE-deficient PS120 cells, andits activity was characterized using the fluorescent pH-sensitive dye2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. NHE5was insensitive to ethylisopropyl amiloride. The transport kinetics displayed a simple Michaelis-Menten relationship for extracellular Na+ (apparent KNa = 27 ± 5 mM) and a Hill coefficient near 3 for the intracellularproton concentration with a half-maximal activity at an intracellularpH of 6.93 ± 0.03. NHE5 activity was inhibited by acute exposureto 8-bromo-cAMP or forskolin (which increases intracellular cAMP byactivating adenylate cyclase). The kinase inhibitor H-89 reversed thisinhibition, suggesting that regulation by cAMP involves a proteinkinase A (PKA)-dependent process. In contrast, 8-bromo-cGMP did nothave a significant effect on activity. The protein kinase C (PKC)activator phorbol 12-myristrate 13-acetate inhibited NHE5, and the PKCantagonist chelerythrine chloride blunted this effect. Activity wasalso inhibited by hyperosmotic-induced cell shrinkage but wasunaffected by a hyposmotic challenge. These results demonstrate thatrat brain NHE5 is downregulated by activation of PKA and PKC and bycell shrinkage, important regulators of neuronal cell function.

  相似文献   

11.
We present evidence that tissue distribution of two highlyconservedNa+/H+exchanger isoforms, NHE2 and NHE4, differs significantly from previously published reports. Riboprobes unique to each of these antiporters, from 5' (noncoding and coding) and 3' codingregions, were used to analyze mRNA from adult rat kidney and intestine by ribonuclease protection assay and in situ hybridization. In contrastto earlier work that concluded that both NHE2 and NHE4 were expressedthroughout the intestine and in the kidney, our data show that there isno NHE2 message in the kidney and NHE4 is not expressed in small orlarge intestine. Analyses of intestinal epithelial and kidney membraneproteins by an NHE2-specific antibody identified a doublet at <90 kDain intestine but not in kidney. NHE2 is highly expressed in theNa+-absorptive epithelium ofjejunum, ileum, and ascending and descending colon. NHE4 mRNA messageis found in the inner medulla of the kidney as previously reported (C. Bookstein, M. W. Musch, A. DePaoli, Y. Xie, M. Villereal, M. C. Rao,and E. B. Chang. J. Biol. Chem. 269:29704-29709, 1994) and not in the intestine. From these data, wespeculate that neither NHE2 nor NHE4 has a role in renalNa+ absorption. NHE2 is likelyinvolved in gut Na+ absorption,whereas NHE4 may have a specialized role in cell volume rectificationof inner medullary collecting duct cells. Knowledge of the correcttissue and cell-specific distribution of these two antiporters shouldhelp significantly in understanding their physiological roles.

  相似文献   

12.
Cytoplasmic pH (pHi) was evaluated duringNa+-glucose cotransport in Caco-2 intestinal epithelialcell monolayers. The pHi increased by 0.069 ± 0.002 within 150 s after initiation of Na+-glucosecotransport. This increase occurred in parallel with glucose uptake andrequired expression of the intestinal Na+-glucosecotransporter SGLT1. S-3226, a preferential inhibitor ofNa+/H+ exchanger (NHE) isoform 3 (NHE3),prevented cytoplasmic alkalinization after initiation ofNa+-glucose cotransport with an ED50 of 0.35 µM, consistent with inhibition of NHE3, but not NHE1 or NHE2. Incontrast, HOE-694, a poor NHE3 inhibitor, failed to significantlyinhibit pHi increases at <500 µM.Na+-glucose cotransport was also associated with activationof p38 mitogen-activated protein (MAP) kinase, and the p38 MAP kinase inhibitors PD-169316 and SB-202190 prevented pHi increasesby 100 ± 0.1 and 86 ± 0.1%, respectively. Conversely,activation of p38 MAP kinase with anisomycin induced NHE3-dependentcytoplasmic alkalinization in the absence of Na+-glucosecotransport. These data show that NHE3-dependent cytoplasmic alkalinization occurs after initiation of SGLT1-mediatedNa+-glucose cotransport and that the mechanism of this NHE3activation requires p38 MAP kinase activity. This coordinatedregulation of glucose (SGLT1) and Na+ (NHE3) absorptiveprocesses may represent a functional activation of absorptiveenterocytes by luminal nutrients.

  相似文献   

13.
Glucocorticoids stimulate the intestinal absorption of Na+ and water partly by regulation of the Na+/H+ exchanger 3 (NHE3). Previous studies have shown both genomic and nongenomic regulation of NHE3 by glucocorticoids. Serum and glucocorticoid-inducible kinase 1 (SGK1) has been shown to be part of this cascade, where phosphorylation of NHE3 by SGK1 initiates the translocation of NHE3 to the cell surface. In the present work, we examined a series of changes in SGK1 and NHE3 induced by glucocorticoids using human colonic Caco-2 and opossum kidney cells. We found that dexamethasone rapidly stimulated SGK1 mRNAs, but a significant change in protein abundance was not detected. Instead, there was an increase in SGK1 kinase activity as early as at 2 h. An increase in NHE3 protein abundance was not detected until 12 h of dexamethasone exposure, although the transport activity was significantly stimulated at 4 h. These data demonstrate that the changes of SGK1 precede those of NHE3. Chronic regulation (24 h) of NHE3 was blocked completely by prevention of protein synthesis with cycloheximide or actinomycin D and by the glucocorticoid receptor blocker RU486. The acute effect of dexamethasone was similarly abrogated by RU486, but was insensitive to cycloheximide and actinomycin D. Similarly, the stimulation of SGK1 activity by dexamethasone was blocked by RU486 but not by actinomycin D. Together, these data show that the acute effect of glucocorticoids on NHE3 is mediated by a glucocorticoid receptor dependent mechanism that activates SGK1 in a nongenomic manner. Na+/H+ exchanger 3; serum and glucocorticoid-inducible kinase 1  相似文献   

14.
H+-ATPase-rich (HR) cells in zebrafish gills/skin were found to carry out Na+ uptake and acid-base regulation through a mechanism similar to that which occurs in mammalian proximal tubular cells. However, the roles of carbonic anhydrases (CAs) in this mechanism in zebrafish HR cells are still unclear. The present study used a functional genomic approach to identify 20 CA isoforms in zebrafish. By screening with whole mount in situ hybridization, only zca2-like a and zca15a were found to be expressed in specific groups of cells in zebrafish gills/skin, and further analyses by triple in situ hybridization and immunocytochemistry demonstrated specific colocalizations of the two zca isoforms in HR cells. Knockdown of zca2-like a caused no change in and knockdown of zca15a caused an increase in H+ activity at the apical surface of HR cells at 24 h postfertilization (hpf). Later, at 96 hpf, both the zca2-like a and zca15a morphants showed decreased H+ activity and increased Na+ uptake, with concomitant upregulation of znhe3b and downregulation of zatp6v1a (H+-ATPase A-subunit) expressions. Acclimation to both acidic and low-Na+ fresh water caused upregulation of zca15a expression but did not change the zca2-like a mRNA level in zebrafish gills. These results provide molecular physiological evidence to support the roles of these two zCA isoforms in Na+ uptake and acid-base regulation mechanisms in zebrafish HR cells. ionocytes; Na+/H+ exchanger; skin; gill; embryo  相似文献   

15.
NHE1/SLC9A1 is a ubiquitous isoform of vertebrate Na+/H+ exchangers (NHEs) functioning in maintaining intracellular concentrations of Na+ and H+ ions. Calcineurin homologous protein-1 (CHP1) binds to the hydrophilic region of NHE1 and regulates NHE1 activity but reportedly does not play a role in translocating NHE1 from the endoplasmic reticulum to the plasma membrane. However, an antiport function of NHE1 requiring CHP1 remains to be clarified. Here we established CHP1-deficient chicken B lymphoma DT40 cells by gene targeting to address CHP1 function. CHP1-deficient cells showed extensive decreases in Na+/H+ activities in intact cells. Although NHE1 mRNA levels were not affected, NHE1 protein levels were significantly reduced not only in the plasma membrane but in whole cells. The expression of a CHP1 transgene in CHP1-deficient cells rescued NHE1 protein expression. Expression of mutant forms of CHP1 defective in Ca2+ binding or myristoylation also partially decreased NHE1 protein levels. Knockdown of CHP1 also caused a moderate decrease in NHE1 protein in HeLa cells. These data indicate that CHP1 primarily plays an essential role in stabilization of NHE1 for reaching of NHE1 to the plasma membrane and its exchange activity. membrane protein; transporter; antiporter; quality control; degradation  相似文献   

16.
Protein kinase D inhibits plasma membrane Na+/H+ exchanger activity   总被引:3,自引:0,他引:3  
The regulation of plasma membraneNa+/H+exchanger (NHE) activity by protein kinase D (PKD), a novel proteinkinase C- and phorbol ester-regulated kinase, was investigated. Todetermine the effect of PKD on NHE activity in vivo, intracellular pH(pHi) measurements were made inCOS-7 cells by microepifluorescence using the pH indicator cSNARF-1.Cells were transfected with empty vector (control), wild-type PKD, orits kinase-deficient mutant PKD-K618M, together with green fluorescentprotein (GFP). NHE activity, as reflected by the rate of acid efflux(JH), wasdetermined in single GFP-positive cells following intracellularacidification. Overexpression of wild-type PKD had no significanteffect on JH(3.48 ± 0.25 vs. 3.78 ± 0.24 mM/min in control atpHi 7.0). In contrast,overexpression of PKD-K618M increasedJH (5.31 ± 0.57 mM/min at pHi 7.0;P < 0.05 vs. control). Transfectionwith these constructs produced similar effects also in A-10 cells,indicating that native PKD may have an inhibitory effect on NHE in bothcell types, which is relieved by a dominant-negative action ofPKD-K618M. Exposure of COS-7 cells to phorbol ester significantlyincreased JH in control cells but failed to do so in cells overexpressing either wild-type PKD (due to inhibition by the overexpressed PKD) or PKD-K618M(because basal JHwas already near maximal). A fusion protein containing the cytosolicregulatory domain (amino acids 637-815) of NHE1 (the ubiquitousNHE isoform) was phosphorylated in vitro by wild-type PKD, but with lowstoichiometry. These data suggest that PKD inhibits NHE activity,probably through an indirect mechanism, and represents a novel pathwayin the regulation of the exchanger.

  相似文献   

17.
We tested whether NHE3 and NHE2 Na+/H+ exchanger isoforms were recruited to the plasma membrane (PM) in response to changes in ion homeostasis. NHE2-CFP or NHE3-CFP fusion proteins were functional Na+/H+ exchangers when transiently expressed in NHE-deficient PS120 fibroblasts. Confocal morphometry of cells whose PM was labeled with FM4-64 measured the fractional amount of fusion protein at the cell surface. In resting cells, 10-20% of CFP fluorescence was at PM and stable over time. A protocol commonly used to activate the Na+/H+ exchange function (NH4-prepulse acid load sustained in Na+-free medium), increased PM percentages of PM NHE3-CFP and NHE2-CFP. Separation of cellular acidification from Na+ removal revealed that only NHE3-CFP translocated when medium Na+ was removed, and only NHE2-CFP translocated when the cell was acidified. NHE2/NHE3 chimeric proteins demonstrate that the Na+-removal response element resides predominantly in the NHE3 cytoplasmic tail and is distinct from the acidification response sequence of NHE2.  相似文献   

18.
Na+ fluxes in Chara under salt stress   总被引:2,自引:0,他引:2  
The influx and efflux of Na+ across the plasma membrane of Characorallina and Chara longifolia were examined under mild saltstress conditions. Na+ influx was found to be rapid in bothspecies with the freely exchangeable cytoplasmic Na+ cominginto isotopic equilibrium with external 22Na+ within 1 h ofexposure to isotope. Cytoplasmlc Na+ concentration and Na+ influxwere greater in C. corallina than in C. longifolla under thesame conditions. Na+ influx across the tonoplast was much lowerthan the flux across the plasma membrane. Na+ efflux was stimulatedat pH 5 relative to pH 7 by 218% in C. coralllna and 320% inC. longifolia. In both species externally applied Li+ inhibitedNa+ efflux at pH 5 but not at pH 7. Na+ etflux was not significantlyinhibited by amiloride. Key words: Na+ influx, Na+ efflux, Na+/H+ antiport, Chara  相似文献   

19.
Na+/H+exchange is a passive process not requiring expenditure of metabolicenergy. Nevertheless, depletion of cellular ATP produces a markedinhibition of the antiport. No evidence has been found for directbinding of nucleotide to exchangers or alteration in their state ofphosphorylation, suggesting ancillary factors may be involved. Thispossibility was tested by comparing the activity of dog red blood cells(RBC) and their resealed ghosts. Immunoblotting experiments usingisoform-specific polyclonal and monoclonal antibodies indicated RBCmembranes expressNa+/H+exchanger isoform 1 (NHE1). In intact RBC, uptake ofNa+ was greatly stimulated whenthe cytosol was acidified. The stimulated uptake was largely eliminatedby amiloride and by submicromolar concentrations of the benzoylguanidinium compound HOE-694, consistent with mediation by NHE1.Although exchange activity could also be elicited by acidification inresealed ghosts containing ATP, the absolute rate of transport wasmarkedly diminished at comparable pH. Dissipation of the pH gradientwas ruled out as the cause of diminished transport rate in ghosts. Thiswas accomplished by a "pH clamping" procedure based on continuedexport of base equivalents by the endogenous anion exchanger. Theseobservations suggest a critical factor required to maintain optimalNa+/H+exchange activity is lost or inactivated during preparation of ghosts.Depletion of ATP, achieved by incubation with2-deoxy-D-glucose, inhibitedNa+/H+exchange in intact RBC, as reported for nucleated cells. In contrast, the rate of exchange was similar in control and ATP-depleted resealed ghosts. Interestingly, the residual rate ofNa+/H+exchange in ATP-depleted but otherwise intact cells was similar to thetransport rate of ghosts. Therefore, we tentatively conclude that fullactivation of NHE1 requires both ATP and an additional regulatoryfactor, which may mediate the action of the nucleotide. Ancillaryphosphoproteins or phospholipids or the kinases that mediate theirphosphorylation are likely candidates for the regulatory factor(s) thatis inactivated or missing in ghosts.

  相似文献   

20.
Transgenic Arabidopsis plants overexpressing the wheat vacuolarNa+/H+ antiporter TNHX1 and H+-PPase TVP1 are much more resistantto high concentrations of NaCl and to water deprivation thanthe wild-type strains. These transgenic plants grow well inthe presence of 200 mM NaCl and also under a water-deprivationregime, while wild-type plants exhibit chlorosis and growthinhibition. Leaf area decreased much more in wild-type thanin transgenic plants subjected to salt or drought stress. Theleaf water potential was less negative for wild-type than fortransgenic plants. This could be due to an enhanced osmoticadjustment in the transgenic plants. Moreover, these transgenicplants accumulate more Na+ and K+ in their leaf tissue thanthe wild-type plants. The toxic effect of Na+ accumulation inthe cytosol is reduced by its sequestration into the vacuole.The rate of water loss under drought or salt stress was higherin wild-type than transgenic plants. Increased vacuolar soluteaccumulation and water retention could confer the phenotypeof salt and drought tolerance of the transgenic plants. Overexpressionof the isolated genes from wheat in Arabidopsis thaliana plantsis worthwhile to elucidate the contribution of these proteinsto the tolerance mechanism to salt and drought. Adopting a similarstrategy could be one way of developing transgenic staple cropswith improved tolerance to these important abiotic stresses. Key words: H+-pyrophosphatase, Na+/H+ antiporter, salt and drought tolerance, sodium sequestration, transgenic Arabidopsis plants  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号