首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In contrast to water-soluble proteins, membrane proteins reside in a heterogeneous environment, and their surfaces must interact with both polar and apolar membrane regions. As a consequence, the composition of membrane proteins' residues varies substantially between the membrane core and the interfacial regions. The amino acid compositions of helical membrane proteins are also known to be different on the cytoplasmic and extracellular sides of the membrane. Here we report that in the 16 transmembrane beta-barrel structures, the amino acid compositions of lipid-facing residues are different near the N and C termini of the individual strands. Polar amino acids are more prevalent near the C termini than near the N termini, and hydrophobic amino acids show the opposite trend. We suggest that this difference arises because it is easier for polar atoms to escape from the apolar regions of the bilayer at the C terminus of a beta-strand. This new characteristic of beta-barrel membrane proteins enhances our understanding of how a sequence encodes a membrane protein structure and should prove useful in identifying and predicting the structures of trans-membrane beta-barrels.  相似文献   

2.
With the increasing number of available α-helical transmembrane (TM) protein structures, the traditional picture of membrane proteins has been challenged. For example, reentrant regions, which enter and exit the membrane at the same side, and interface helices, which lie parallel with the membrane in the membrane-water interface, are common. Furthermore, TM helices are frequently kinked, and their length and tilt angle vary. Here, we systematically analyze 7% of all residues within the deep membrane core that are in coil state. These coils can be found in TM-helix kinks as major breaks in TM helices and as parts of reentrant regions.Coil residues are significantly more conserved than other residues. Due to the polar character of the coil backbone, they are either buried or located near aqueous channels. Coil residues are frequently found within channels and transporters, where they introduce the flexibility and polarity required for transport across the membrane. Therefore, we believe that coil residues in the membrane core, while constituting a structural anomaly, are essential for the function of proteins.  相似文献   

3.
Salt bridges between negatively (D, E) and positively charged (K, R, H) amino acids play an important role in protein stabilization. This has a more prevalent effect in membrane proteins where polar amino acids are exposed to a hydrophobic environment. In transmembrane (TM) helices the presence of charged residues can hinder the insertion of the helices into the membrane. It is possible that the formation of salt bridges could decrease the cost of membrane integration. However, the presence of intra-helical salt bridges in TM domains and their effect on insertion has not been properly studied yet. In this work, we show that potentially salt-bridge forming pairs are statistically over-represented in TM-helices. We then selected some candidates to experimentally determine the contribution of these electrostatic interactions to the translocon-assisted membrane insertion process. Using both in vitro and whole cell systems, we confirm the presence of intra-helical salt bridges in TM segments during biogenesis and determined that they contribute ~0.5 kcal/mol to the apparent free energy of membrane insertion (ΔGapp). Our observations suggest that salt bridge interactions can be stabilized during translocon-mediated insertion and thus could be relevant to consider for the future development of membrane protein prediction software.  相似文献   

4.
Subunit a of the vacuolar H(+)-ATPases plays an important role in proton transport. This membrane-integral 100-kDa subunit is thought to form or contribute to proton-conducting hemichannels that allow protons to gain access to and leave buried carboxyl groups on the proteolipid subunits (c, c', and c″) during proton translocation. We previously demonstrated that subunit a contains a large N-terminal cytoplasmic domain followed by a C-terminal domain containing eight transmembrane (TM) helices. TM7 contains a buried arginine residue (Arg-735) that is essential for proton transport and is located on a helical face that interacts with the proteolipid ring. To further define the topology of the C-terminal domain, the accessibility of 30 unique cysteine residues to the membrane-permeant reagent N-ethylmaleimide and the membrane-impermeant reagent polyethyleneglycol maleimide was determined. The results further define the borders of transmembrane segments in subunit a. To identify additional buried polar and charged residues important in proton transport, 25 sites were individually mutated to hydrophobic amino acids, and the effect on proton transport was determined. These and previous results identify a set of residues important for proton transport located on the cytoplasmic half of TM7 and TM8 and the lumenal half of TM3, TM4, and TM7. Based upon these data, we propose a tentative model in which the cytoplasmic hemichannel is located at the interface of TM7 and TM8 of subunit a and the proteolipid ring, whereas the lumenal hemichannel is located within subunit a at the interface of TM3, TM4, and TM7.  相似文献   

5.
Hormones and sensory stimuli activate serpentine receptors, transmembrane switches that relay signals to heterotrimeric guanine nucleotide-binding proteins (G proteins). To understand the switch mechanism, we subjected 93 amino acids in transmembrane helices III, V, VI, and VII of the human chemoattractant C5a receptor to random saturation mutagenesis. A yeast selection identified 121 functioning mutant receptors, containing a total of 523 amino acid substitutions. Conserved hydrophobic residues are located on helix surfaces that face other helices in a modeled seven-helix bundle (Baldwin, J. M., Schertler, G. F., and Unger, V. M. (1997) J. Mol. Biol. 272, 144-164), whereas surfaces predicted to contact the surrounding lipid tolerate many substitutions. Our analysis identified 25 amino acid positions resistant to nonconservative substitutions. These appear to comprise two distinct components of the receptor switch, a surface at or near the extracellular membrane interface and a core cluster in the cytoplasmic half of the bundle. Twenty-one of the 121 mutant receptors exhibit constitutive activity. Amino acids substitutions in these activated receptors predominate in helices III and VI; other activating mutations truncate the receptor near the extracellular end of helix VI. These results identify key elements of a general mechanism for the serpentine receptor switch.  相似文献   

6.
By analyzing transmembrane (TM) helices in known structures, we find that some polar amino acids are more frequent at the N terminus than at the C terminus. We propose the asymmetry occurs because most polar amino acids are better able to snorkel their polar atoms away from the membrane core at the N terminus than at the C terminus. Two findings lead us to this proposition: (1) side-chain conformations are influenced strongly by the N or C-terminal position of the amino acid in the bilayer, and (2) the favored snorkeling direction of an amino acid correlates well with its N to C-terminal composition bias. Our results suggest that TM helix predictions should incorporate an N to C-terminal composition bias, that rotamer preferences of TM side-chains are position-dependent, and that the ability to snorkel influences the evolutionary selection of amino acids for the helix N and C termini.  相似文献   

7.
In spite of the overwhelming numbers and critical biological functions of membrane proteins, only a few have been characterized by high-resolution structural techniques. From the structures that are known, it is seen that their transmembrane (TM) segments tend to fold most often into alpha-helices. To evaluate systematically the features of these TM segments, we have taken two approaches: (1) using the experimentally-measured residence behavior of specifically designed hydrophobic peptides in RP-HPLC, a scale was derived based directly on the properties of individual amino acids incorporated into membrane-interactive helices: and (2) the relative alpha-helical propensity of each of the 20 amino acids was measured in the organic non-polar environment of n-butanol. By combining the resulting hydrophobicity and helical propensity data, in conjunction with consideration of the 'threshold hydrophobicity' required for spontaneous membrane integration of protein segments, an approach was developed for prediction of TM segments wherein each must fulfill the dual requirements of hydrophobicity and helicity. Evaluated against the available high-resolution structural data on membrane proteins, the present combining method is shown to provide accurate predictions for the locations of TM helices. In contrast, no segment in soluble proteins was predicted as a 'TM helix'.  相似文献   

8.
Adamian L  Nanda V  DeGrado WF  Liang J 《Proteins》2005,59(3):496-509
Characterizing the interactions between amino acid residues and lipid molecules is important for understanding the assembly of transmembrane helices and for studying membrane protein folding. In this study we develop TMLIP (TransMembrane helix-LIPid), an empirically derived propensity of individual residue types to face lipid membrane based on statistical analysis of high-resolution structures of membrane proteins. Lipid accessibilities of amino acid residues within the transmembrane (TM) region of 29 structures of helical membrane proteins are studied with a spherical probe of radius of 1.9 A. Our results show that there are characteristic preferences for residues to face the headgroup region and the hydrocarbon core region of lipid membrane. Amino acid residues Lys, Arg, Trp, Phe, and Leu are often found exposed at the headgroup regions of the membrane, where they have high propensity to face phospholipid headgroups and glycerol backbones. In the hydrocarbon core region, the strongest preference for interacting with lipids is observed for Ile, Leu, Phe and Val. Small and polar amino acid residues are usually buried inside helical bundles and are strongly lipophobic. There is a strong correlation between various hydrophobicity scales and the propensity of a given residue to face the lipids in the hydrocarbon region of the bilayer. Our data suggest a possibly significant contribution of the lipophobic effect to the folding of membrane proteins. This study shows that membrane proteins have exceedingly apolar exteriors rather than highly polar interiors. Prediction of lipid-facing surfaces of boundary helices using TMLIP1 results in a 54% accuracy, which is significantly better than random (25% accuracy). We also compare performance of TMLIP with another lipid propensity scale, kPROT, and with several hydrophobicity scales using hydrophobic moment analysis.  相似文献   

9.
Understanding the solvation of amino acids in biomembranes is an important step to better explain membrane protein folding. Several experimental studies have shown that polar residues are both common and important in transmembrane segments, which means they have to be solvated in the hydrophobic membrane, at least until helices have aggregated to form integral proteins. In this work, we have used computer simulations to unravel these interactions on the atomic level, and classify intramembrane solvation properties of amino acids. Simulations have been performed for systematic mutations in poly-Leu helices, including not only each amino acid type, but also every z-position in a model helix. Interestingly, many polar or charged residues do not desolvate completely, but rather retain hydration by snorkeling or pulling in water/headgroups--even to the extent where many of them exist in a microscopic polar environment, with hydration levels corresponding well to experimental hydrophobicity scales. This suggests that even for polar/charged residues a large part of solvation cost is due to entropy, not enthalpy loss. Both hydration level and hydrogen bonding exhibit clear position-dependence. Basic side chains cause much less membrane distortion than acidic, since they are able to form hydrogen bonds with carbonyl groups instead of water or headgroups. This preference is supported by sequence statistics, where basic residues have increased relative occurrence at carbonyl z-coordinates. Snorkeling effects and N-/C-terminal orientation bias are directly observed, which significantly reduces the effective thickness of the hydrophobic core. Aromatic side chains intercalate efficiently with lipid chains (improving Trp/Tyr anchoring to the interface) and Ser/Thr residues are stabilized by hydroxyl groups sharing hydrogen bonds to backbone oxygens.  相似文献   

10.
The most conspicuous structural characteristic of the alpha-helical membrane proteins is their long transmembrane alpha-helices. However, other structural elements, as yet largely ignored in statistical studies of membrane protein structure, are found in those parts of the protein that are located in the membrane-water interface region. Here, we show that this region is enriched in irregular structure and in interfacial helices running roughly parallel with the membrane surface, while beta-strands are extremely rare. The average amino acid composition is different between the interfacial helices, the parts of the transmembrane helices located in the interface region, and the irregular structures. In this region, hydrophobic and aromatic residues tend to point toward the membrane and charged/polar residues tend to point away from the membrane. The interface region thus imposes different constraints on protein structure than do the central hydrocarbon core of the membrane and the surrounding aqueous phase.  相似文献   

11.
The vast majority of membrane proteins are anchored to biological membranes through hydrophobic α-helices. Sequence analysis of high-resolution membrane protein structures show that ionizable amino acid residues are present in transmembrane (TM) helices, often with a functional and/or structural role. Here, using as scaffold the hydrophobic TM domain of the model membrane protein glycophorin A (GpA), we address the consequences of replacing specific residues by ionizable amino acids on TM helix insertion and packing, both in detergent micelles and in biological membranes. Our findings demonstrate that ionizable residues are stably inserted in hydrophobic environments, and tolerated in the dimerization process when oriented toward the lipid face, emphasizing the complexity of protein-lipid interactions in biological membranes.  相似文献   

12.
Critical mutations in the membrane-spanning domains of proteins cause many human diseases. We report the expression in Escherichia coli of helix-loop-helix segments of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel domain in milligram quantities. Analysis of gel migration patterns of these constructs, in conjunction with circular dichroism spectroscopy, demonstrate that a neutral-to-charged, CF-phenotypic point mutation of a hydrophobic residue (V232D) in the CFTR transmembrane (TM) helix 4 induces a hydrogen bond with neighboring wild type Gln 207 in TM helix 3. As an electrostatic crosslink within a hydrocarbon phase, such a hydrogen bond could alter the normal assembly and alignment of CFTR TM helices and/or impede their movement in response to substrate transport. Our results imply that membrane proteins may be vulnerable to loss of function through formation of membrane-buried interhelical hydrogen bonds by partnering of proximal polar side chains.  相似文献   

13.
Experiments with the transmembrane (TM) domains of the glycoprotein (GP) Ib-IX complex have indicated that the associations between the TM domains of these subunits play an important role in the proper assembly of the complex. As a first step toward understanding these associations, we previously found that the Ibβ TM domain dimerized strongly in Escherichia coli cell membranes and led to Ibβ TM-CYTO (cytoplasmic domain) dimerization in the SDS-PAGE assay, while neither Ibα nor IX TM-CYTO was able to dimerize. In this study, we used the TOXCAT assay to probe the Ibβ TM domain dimerization interface by Ala- and Leu-scanning mutagenesis. Our results show that this interface is based on a leucine zipper-like heptad repeat pattern of amino acids. Mutating either one of polar residues Gln129 or His139 to Leu or Ala disrupted Ibβ TM dimerization dramatically, indicating that polar residues might form part of the leucine zipper-based dimerization interface. Furthermore, these specific mutational effects in the TOXCAT assay were confirmed in the thiol-disulfide exchange and SDS-PAGE assays. The computational modeling studies further revealed that the most likely leucine zipper interface involves hydrogen bonding of Gln129 and electrostatic interaction of the His139 side chain. Correlation of computer modeling results with experimental mutagenesis studies on the Ibβ TM domain may provide insights for understanding the role of the association of TM domains on the assembly of GP Ib-IX complex.  相似文献   

14.
Helical membrane proteins are more tightly packed and the packing interactions are more diverse than those found in helical soluble proteins. Based on a linear correlation between amino acid packing values and interhelical propensity, we propose the concept of a helix packing moment to predict the orientation of helices in helical membrane proteins and membrane protein complexes. We show that the helix packing moment correlates with the helix interfaces of helix dimers of single pass membrane proteins of known structure. Helix packing moments are also shown to help identify the packing interfaces in membrane proteins with multiple transmembrane helices, where a single helix can have multiple contact surfaces. Analyses are described on class A G protein-coupled receptors (GPCRs) with seven transmembrane helices. We show that the helix packing moments are conserved across the class A family of GPCRs and correspond to key structural contacts in rhodopsin. These contacts are distinct from the highly conserved signature motifs of GPCRs and have not previously been recognized. The specific amino acid types involved in these contacts, however, are not necessarily conserved between subfamilies of GPCRs, indicating that the same protein architecture can be supported by a diverse set of interactions. In GPCRs, as well as membrane channels and transporters, amino acid residues with small side-chains (Gly, Ala, Ser, Cys) allow tight helix packing by mediating strong van der Waals interactions between helices. Closely packed helices, in turn, facilitate interhelical hydrogen bonding of both weakly polar (Ser, Thr, Cys) and strongly polar (Asn, Gln, Glu, Asp, His, Arg, Lys) amino acid residues. We propose the use of the helix packing moment as a complementary tool to the helical hydrophobic moment in the analysis of transmembrane sequences.  相似文献   

15.
Buried water molecules (having no contact with bulk solvent) in 30 helical transmembrane (TM) protein structures were identified. The average amount of buried water in helical TM proteins is about the same as for all water-soluble (WS) proteins, but it is greater than the average for helical WS proteins. Buried waters in TM proteins make more polar contacts, and are more frequently found contacting helices than in WS proteins. The distribution of the buried water binding sites across the membrane profile shows that the sites to some extent reflect protein function. There is also evidence for asymmetry of the sites, with more in the extracellular half of the membrane. Many of the buried water contact sites are conserved across families of proteins, including family members having different functions. This suggests that at least some buried waters play a role in structural stabilization. Disease-causing mutations, which are known to result in misfolded TM proteins, occur at buried water contact sites at a higher than random frequency, which also supports a stabilizing role for buried water molecules.  相似文献   

16.
Charged and polar amino acids in the transmembrane domains of integral membrane proteins can be crucial for protein function and also promote helix-helix association or protein oligomerization. Yet, our current understanding is still limited on how these hydrophilic amino acids are efficiently translocated from the Sec61/SecY translocon into the cell membrane during the biogenesis of membrane proteins. In hepatitis C virus, the putative transmembrane segments of envelope glycoproteins E1 and E2 were suggested to heterodimerize via a Lys-Asp ion-pair in the host endoplasmic reticulum. Therefore in this work, we carried out molecular dynamic simulations in explicit lipid bilayer and solvent environment to explore the stability of all possible bridging ion-pairs using the model of H-segment helix dimers. We observed that, frequently, several water molecules penetrated from the interface into the membrane core to stabilize the charged and polar pairs. The hydration time and amount of water molecules in the membrane core depended on the position of the charged residues as well as on the type of ion-pairs. Similar microsolvation events were observed in simulations of the putative E1-E2 transmembrane helix dimers. Simulations of helix monomers from other members of the Flaviviridae family suggest that these systems show similar behaviors. Thus this study illustrates the important contribution of water microsolvation to overcome the unfavorable energetic cost of burying charged and polar amino acids in membrane lipid bilayers. Also, it emphasizes the novel role of bridging charged or polar interactions stabilized by water molecules in the hydrophobic lipid bilayer core that has an important biological function for helix dimerization in several envelope glycoproteins from the family of Flaviviridae viruses.  相似文献   

17.
Single-span transmembrane (TM) helices have structural and functional roles well beyond serving as mere anchors to tether water-soluble domains in the vicinity of the membrane. They frequently direct the assembly of protein complexes and mediate signal transduction in ways analogous to small modular domains in water-soluble proteins. This review highlights different sequence and structural motifs that direct TM assembly and discusses their roles in diverse biological processes. We believe that TM interactions are potential therapeutic targets, as evidenced by natural proteins that modulate other TM interactions and recent developments in the design of TM-targeting peptides.  相似文献   

18.
A set of 298 protein families from psychrophilic Vibrio salmonicida was compiled to identify genotypic characteristics that discern it from orthologous sequences from the mesophilic Vibrio/Photobacterium branch of the gamma-Proteobacteria (Vibrionaceae family). In our comparative exploration we employed alignment based bioinformatical and statistical methods. Interesting information was found in the substitution matrices, and the pattern of asymmetries in the amino acid substitution process. Together with the compositional difference, they identified the amino acids Ile, Asn, Ala and Gln as those having the most psycrophilic involvement. Ile and Asn are enhanced whereas Gln and Ala are suppressed. The inflexible Pro residue is also suppressed in loop regions, as expected in a flexible structure. The dataset were also classified and analysed according to the predicted subcellular location, and we made an additional study of 183 intracellular and 65 membrane proteins. Our results revealed that the psychrophilic proteins have similar hydrophobic and charge contributions in the core of the protein as mesophilic proteins, while the solvent-exposed surface area is significantly more hydrophobic. In addition, the psychrophilic intracellular (but not the membrane) proteins are significantly more negatively charged at the surface. Our analysis supports the hypothesis of preference for more flexible amino acids at the molecular surface. Life in cold climate seems to be obtained through many minor structural modifications rather than certain amino acids substitutions.  相似文献   

19.
Recent studies with model peptides and statistical analyses of the crystal structures of membrane proteins have shown that buried polar interactions contribute significantly to the stabilization of the three-dimensional structures of membrane proteins. Here, we probe how the location of these polar groups along the transmembrane helices affect their free energies of interaction. Asn residues were placed singly and in pairs at three positions within a model transmembrane helix, which had previously been shown to support the formation of trimers in micelles. The model helix was designed to form a transmembrane coiled coil, with Val side chains at the "a" positions of the heptad repeat. Variants of this peptide were prepared in which an Asn residue was introduced at one or more of the "a" positions, and their free energies of association were determined by analytical ultracentrifugation. When placed near the middle of the transmembrane helix, the formation of trimers was stabilized by at least -2.0 kcal/mol per Asn side chain. When the Asn was placed at the interface between the hydrophobic and polar regions of the peptide, the substitution was neither stabilizing nor destabilizing (0.0 +/- 0.5 kcal/mol of monomer). Finally, it has previously been shown that a Val-for-Asn mutation in a water-soluble coiled coil destabilizes the structure by approximately 1.5 kcal/mol of monomer [Acharya, A., et al. (2002) Biochemistry 41, 14122-14131]. Thus, the headgroup region of a micelle appears to have a conformational impact intermediate between that of bulk water and the apolar region of micelle. A similarly large dependence on the location of the polar residues was found in a statistical survey of helical transmembrane proteins. The tendency of different types of residues to be buried in the interiors versus being exposed to lipids was analyzed. Asn and Gln show a very strong tendency to be buried when they are located near the middle of a transmembrane helix. However, when placed near the ends of transmembrane helices, they show little preference for the surface versus the interior of the protein. These data show that Asn side chains within the apolar region of the transmembrane helix provide a significantly larger driving force for association than Asn residues near the apolar/polar interface. Thus, although polar interactions are able to strongly stabilize the folding of membrane proteins, the energetics of association depend on their location within the hydrophobic region of a transmembrane helix.  相似文献   

20.
Secondary transporters in humans are a large group of proteins that transport a wide range of ions, metals, organic and inorganic solutes involved in energy transduction, control of membrane potential and osmotic balance, metabolic processes and in the absorption or efflux of drugs and xenobiotics. They are also emerging as important targets for development of new drugs and as target sites for drug delivery to specific organs or tissues. We have performed amino acid composition (AAC) and phylogenetic analyses and membrane topology predictions for 336 human secondary transport proteins and used the results to confirm protein classification and to look for trends and correlations with structural domains and specific substrates and/or function. Some proteins showed statistically high contents of individual amino acids or of groups of amino acids with similar physicochemical properties. One recurring trend was a correlation between high contents of charged and/or polar residues with misleading results in predictions of membrane topology, which was especially prevalent in Mitochondrial Carrier family proteins. We demonstrate how charged or polar residues located in the middle of transmembrane helices can interfere with their identification by membrane topology tools resulting in missed helices in the prediction. Comparison of AAC in the human proteins with that in 235 secondary transport proteins from Escherichia coli revealed similar overall trends along with differences in average contents for some individual amino acids and groups of similar amino acids that are presumed to result from a greater number of functions and complexity in the higher organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号