首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以丰香和红丰草莓为试材,对果实发育成熟过程中细胞壁水解酶活性和细胞壁成份变化进行了研究.结果表明:半乳糖苷酶和α-甘露糖苷酶活性随草莓果实成熟而提高,葡萄糖苷酶活性不随草莓果实成熟而提高.随着果实发育成熟,纤维素酶活性、果胶酶活性不断提高.果实中未检测到内切多聚半乳糖醛酸酶活性,外切多聚半乳糖醛酸酶活性变化不随果实成熟软化而提高.随果实发育成熟,细胞壁中可溶性果胶和半纤维素增加,而离子结合果胶和共价结合果胶及纤维素减少.  相似文献   

2.
Notwithstanding the economic importance of non-climacteric fruits like grape and strawberry, little is known about the mechanisms that regulate their ripening. Up to now no growth regulator has emerged with a primary role similar to that played by ethylene in the ripening of the climacteric fruits. Strawberries can produce ethylene, although in limited amounts. Two cDNAs coding for enzymes of the ethylene biosynthetic pathway (i.e. FaACO1 and FaACO2), and three cDNAs encoding different ethylene receptors have been isolated. Two receptors (i.e. FaEtr1 and FaErs1) belong to the type-I while the third (i.e. FaEtr2) belongs to the type-II group. The expression of both the ACO and the receptor-encoding genes has been studied in fruits at different stages of development and in fruits treated with hormones (i.e. ethylene and the auxin analogue NAA). All the data thus obtained have been correlated to the known data about ethylene production by strawberry fruits. Interestingly, a good correlation has resulted between the expression of the genes described in this work and the data of ethylene production. In particular, similarly to what occurs during climacteric fruit ripening, there is an increased synthesis of receptors concomitant with the increased synthesis of ethylene in strawberries as well. Moreover, the receptors mostly expressed in ripening strawberries are the type-II ones, that is those with a degenerate histidine-kinase domain. Since the latter domain is thought to establish a weaker link to the CTR1 proteins, even the little ethylene produced by ripening strawberries might be sufficient to trigger ripening-related physiological responses.  相似文献   

3.
Exo-galactanase/beta-galactosidase (EC 3.2.1.23) activity is thought to be responsible for the loss of galactosyl residues from the cell walls of ripening tomatoes. Transgenic tomato plants (Lycopersicon esculentum Mill cv. Ailsa Craig) with reduced exo-galactanase/beta-galactosidase mRNA were generated to test this hypothesis and to investigate the role of the enzyme in fruit softening. A previously identified tomato beta-galactosidase cDNA clone, TBG1, was used in the experiments. Heterologous expression of the clone in yeast demonstrated that TBG1 could release galactosyl residues from tomato cell wall galactans. Transgenic plants showed a reduction in TBG1 mRNA to 10% of normal levels in the ripening fruits. However, despite the reduction in message, total beta-galactosidase and exo-galactanase activities were unaffected. Furthermore, there was no apparent effect on levels of cell wall galactosyl residues when compared with the control. It was concluded that during the ripening of tomato fruits a family of beta-galactosidases capable of degrading cell wall galactans are active and down-regulation of TBG1 message to 10% was insufficient to alter the degree of galactan degradation.  相似文献   

4.
5.
Pectin esterases (PE, EC 3.1.1.11) catalyse the demethylation of pectin. As a result of its activity, structural interactions among cell wall components during cell wall turnover and loosening are affected. In plants, PEs are typically encoded by a gene family. This family has been studied in strawberry (Fragaria x ananassa Duch.) in order to investigate the role of distinct PE genes during fruit ripening and senescence. By a combination of a PCR-based library screening and RT-PCR four different strawberry PE cDNAs, termed FaPE1 to FaPE4, have been isolated. Differential expression of each FaPE gene in various organs and during fruit development was revealed by northern blot. FaPE1 is specifically expressed in fruit, showing an increasing expression during the ripening process up to a maximum in the turning stage. Concerning hormone regulation, auxin treatment increased FaPE1 mRNA levels in green fruit, whereas exogenous ethylene decreased FaPE1 mRNA levels in ripe and senescing fruits. It is proposed that this repression of FaPE1 expression could be involved in textural changes occurring during fruit senescence.  相似文献   

6.
Downregulation of RdDM during strawberry fruit ripening   总被引:1,自引:0,他引:1  

Background

Recently, DNA methylation was proposed to regulate fleshy fruit ripening. Fleshy fruits can be distinguished by their ripening process as climacteric fruits, such as tomatoes, or non-climacteric fruits, such as strawberries. Tomatoes undergo a global decrease in DNA methylation during ripening, due to increased expression of a DNA demethylase gene. The dynamics and biological relevance of DNA methylation during the ripening of non-climacteric fruits are unknown.

Results

Here, we generate single-base resolution maps of the DNA methylome in immature and ripe strawberry. We observe an overall loss of DNA methylation during strawberry fruit ripening. Thus, ripening-induced DNA hypomethylation occurs not only in climacteric fruit, but also in non-climacteric fruit. Application of a DNA methylation inhibitor causes an early ripening phenotype, suggesting that DNA hypomethylation is important for strawberry fruit ripening. The mechanisms underlying DNA hypomethylation during the ripening of tomato and strawberry are distinct. Unlike in tomatoes, DNA demethylase genes are not upregulated during the ripening of strawberries. Instead, genes involved in RNA-directed DNA methylation are downregulated during strawberry ripening. Further, ripening-induced DNA hypomethylation is associated with decreased siRNA levels, consistent with reduced RdDM activity. Therefore, we propose that a downregulation of RdDM contributes to DNA hypomethylation during strawberry ripening.

Conclusions

Our findings provide new insight into the DNA methylation dynamics during the ripening of non-climacteric fruit and suggest a novel function of RdDM in regulating an important process in plant development.
  相似文献   

7.
8.
9.
FaPYR1 is involved in strawberry fruit ripening   总被引:2,自引:0,他引:2  
  相似文献   

10.
We have isolated and characterized a cDNA from a strawberry fruit subtractive library that shows homology to class-I low-molecular-weight (LMW) heat-shock protein genes from other higher plants. The strawberry cDNA (clone njjs4) was a 779 bp full-length cDNA with a single open reading frame of 468 bp that is expected to encode a protein of ca. 17.4 kDa with a pI of 6.57. Southern analysis with genomic DNA showed several high-molecular-weight hybridization bands, indicating that the corresponding njjs4 gene is not present as a single copy in the genome. This strawberry gene was not expressed in roots, leaves, flowers and stolons but in fruits at specific stages of elongation and ripening. However, a differential pattern of mRNA expression was detected in the fruit tissues achenes and receptacle. The njjs4 gene expression increased in achenes accompanying the process of seed maturation whereas in the receptacle, a high mRNA expression was detected in the W2 stage, during which most of the metabolic changes leading to the fruit ripening are occurring. Our results clearly show a specific relationship of this njjs4 strawberry gene with the processes of seed maturation and fruit ripening, and strongly support that at least some of the class-I LMW heat-shock protein-like genes have a heat-stress-independent role in plant development, including fruit ripening.  相似文献   

11.
The analyses of some antioxidant enzyme activities were carried out in the course of strawberry fruits development and ripening. The catalase activity was maximum in small-sized green fruits, it decreased in middle-sized green fruits and increased again during the ripening stages. The highest superoxide dismutase and peroxidase activities were observed in white fruits.  相似文献   

12.
Strawberry is an ideal model for studying the molecular biology of the development and ripening of non-climacteric fruits. Hormonal regulation of gene expression along all these processes in strawberries is still to be fully elucidated. Although auxins and ABA have been pointed out as the major regulatory hormones, few high-throughput analyses have been carried out to date. The role for ethylene and gibberellins as regulatory hormones during the development and ripening of the strawberry fruit remain still elusive. By using a custom-made and high-quality oligo microarray platform done with over 32,000 probes including all of the genes actually described in the strawberry genome, we have analysed the expression of genes during the development and ripening in the receptacles of these fruits. We classify these genes into two major groups depending upon their temporal and developmental expression. First group are genes induced during the initial development stages. The second group encompasses genes induced during the final maturation and ripening processes. Each of these two groups has been also divided into four sub-groups according their pattern of hormonal regulation. By analyzing gene expression, we clearly show that auxins and ABA are the main and key hormones that combined or independently are responsible of the development and ripening process. Auxins are responsible for the receptacle fruit development and, at the same time¸ prevent ripening by repressing crucial genes. ABA regulates the expression of the vast majority of genes involved in the ripening. The main genes expressed under the control of these hormones are presented and their physiological rule discussed. We also conclude that ethylene and gibberellins do not seem to play a prominent role during these processes.  相似文献   

13.
A family of polyketide synthase genes expressed in ripening Rubus fruits   总被引:1,自引:0,他引:1  
Kumar A  Ellis BE 《Phytochemistry》2003,62(3):513-526
Quality traits of raspberry fruits such as aroma and color derive in part from the polyketide derivatives, benzalacetone and dihydrochalcone, respectively. The formation of these metabolites during fruit ripening is the result of the activity of polyketide synthases (PKS), benzalcetone synthase and chalcone synthase (CHS), during fruit development. To gain an understanding of the regulation of these multiple PKSs during fruit ripening, we have characterized the repertoire of Rubus PKS genes and studied their expression patterns during fruit ripening. Using a PCR-based homology search, a family of ten PKS genes (Ripks1-10) sharing 82-98% nucleotide sequence identity was identified in the Rubus idaeus genome. Low stringency screening of a ripening fruit-specific cDNA library, identified three groups of PKS cDNAs. Group 1 and 2 cDNAs were also represented in the PCR amplified products, while group 3 represented a new class of Rubus PKS gene. The Rubus PKS gene-family thus consists of at least eleven members. The three cDNAs exhibit distinct tissue-specific and developmentally regulated patterns of expression. RiPKS5 has high constitutive levels of expression in all organs, including developing flowers and fruits, while RiPKS6 and RiPKS11 expression is consistent with developmental and tissue-specific regulation in various organs. The recombinant proteins encoded by the three RiPKS cDNAs showed a typical CHS-type PKS activity. While phylogenetic analysis placed the three Rubus PKSs in one cluster, suggesting a recent duplication event, their distinct expression patterns suggest that their regulation, and thus function(s), has evolved independently of the structural genes themselves.  相似文献   

14.
Although brassinosteroid (BR) has been suggested to play a role in strawberry fruit ripening, the defined function of this hormone remains unclear in the fruit. Here, BR content and BR receptor gene FaBRI1 expression were analysed during ??Akihime?? strawberry fruit development. We found that BR levels increased during the later developmental stages, and the mRNA expression levels of FaBRI1 increased rapidly from white to initial red stages, suggesting that BR is associated with fruit ripening. This was further confirmed by exogenous application of BR and its inhibitor brassinazole (BZ) to big-green fruit, which significantly promoted and inhibited strawberry fruit ripening, respectively. More importantly, down-regulation of FaBRI1 expression in de-greening fruit markedly retarded strawberry red-colouring. In conclusion, we have provided physiological and molecular evidence to demonstrate that BR plays a role in strawberry fruit ripening. In addition, both BR content and FaBRI1 expression reached their peak levels in small-green fruit, suggesting that BR might also be involved in early strawberry fruit development. Further experiments are required to validate the role of BR in strawberry fruit cell division.  相似文献   

15.
16.
17.
A cDNA encoding a putative translationally controlled tumor protein (TCTP) was isolated from a cDNA library made with mRNA isolated from red ripe strawberry fruits. This protein is highly conserved in all species analyzed. Expression of strawberry TCTP increased along the ripening of strawberry fruits, and is constitutively expressed in vegetative tissues. The putative function of this protein remains still unknown  相似文献   

18.
Strawberry (Fragaria × ananassa Duch), a fruit of economic and nutritional importance, is also a model species for fleshy fruits and genomics in Rosaceae. Strawberry fruit quality at different harvest stages is a function of the fruit's metabolite content, which results from physiological changes during fruit growth and ripening. In order to investigate strawberry fruit development, untargeted (GC-MS) and targeted (HPLC) metabolic profiling analyses were conducted. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were employed to explore the non-polar and polar metabolite profiles from fruit samples at seven developmental stages. Different cluster patterns and a broad range of metabolites that exerted influence on cluster formation of metabolite profiles were observed. Significant changes in metabolite levels were found in both fruits turning red and fruits over-ripening in comparison with red-ripening fruits. The levels of free amino acids decreased gradually before the red-ripening stage, but increased significantly in the over-ripening stage. Metabolite correlation and network analysis revealed the interdependencies of individual metabolites and metabolic pathways. Activities of several metabolic pathways, including ester biosynthesis, the tricarboxylic acid cycle, the shikimate pathway, and amino acid metabolism, shifted during fruit growth and ripening. These results not only confirmed published metabolic data but also revealed new insights into strawberry fruit composition and metabolite changes, thus demonstrating the value of metabolomics as a functional genomics tool in characterizing the mechanism of fruit quality formation, a key developmental stage in most economically important fruit crops.  相似文献   

19.
20.
Cinnamyl alcohol dehydrogenase (CAD; EC 1.1.1.195) catalyses the conversion of p-hydroxy-cinnamaldehydes to the corresponding alcohols and is considered a key enzyme in lignin biosynthesis. By a differential screening of a strawberry (Fragariax ananassa cv. Chandler) fruit specific subtractive cDNA library, a full-length clone corresponding to a cad gene was isolated (Fxacad1). Northern blot and quantitative real time PCR studies indicated that the strawberry Fxacad1 gene is expressed in fruits, runners, leaves, and flowers but not in roots. In addition, the gene presented a differential expression in fruits along the ripening process. Moreover, by screening of a strawberry genomic library a cad gene was isolated (Fxacad2). Similar to that found in other cad genes from higher plants, this strawberry cad gene is structured in five exons and four introns. Southern blot analyses suggest that, probably, a small cad gene family exists in strawberry. RT-PCR studies indicated that only the Fxacad1 gene was expressed in all the fruit ripening stages and vegetative tissues analysed. The Fxacad1 cDNA was expressed in E. coli cells and the corresponding protein was used to raise antibodies against the strawberry CAD polypeptide. The antibodies obtained were used for immunolocalization studies. The results showed that the CAD polypeptide was localized in lignifying cells of all the tissues examined (achenes, fruit receptacles, runners, leaves, pedicels, and flowers). Additionally, the cDNA was also expressed in yeast (Pichia pastoris) as an extracellular protein. The recombinant protein showed activity with the characteristic substrates of CAD enzymes from angiosperms, indicating that the gene cloned corresponds to a CAD protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号