首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drosophila calpains, Calpain A and Calpain B, show typical calpain domain structures similar to mammalian calpains. However, the small subunit of mammalian calpains, shown to be essential in both genetic and biochemical aspects, is absent in Drosophila calpains and is not required for enzymatic activity. How they compensate for the lack of small subunit is mostly unknown. Here we conducted experiments using recombinant Drosophila Calpain B for further characterization of the enzyme with particular focuses on two issues: possibility of homodimerization and mode of autolysis. The native molecular weight of Calpain B indicates that the active enzyme is primarily monomeric. Co-expression of two recombinant Calpain B proteins each with a unique affinity tag and a subsequent single round of affinity tag purification resulted in isolation of only one recombinant calpain type, suggesting there is no homodimeric interaction. Also the C-termini of Drosophila calpains lack many of the key hydrophobic residues considered to be important in the dimerization of mammalian calpains. Further, initial autolysis of Calpain B seems to occur intramolecularly, which supports the monomeric nature of Drosophila calpains. These results strongly suggest that dimerization is not an essential requirement for Drosophila calpains.  相似文献   

2.
Drosophila melanogaster is one of the most popular and powerful model organisms that help our understanding of mammalian (human) life processes at the molecular level. Calpains are Ca(2+)-activated cytoplasmic proteases thought to play multiple roles in intracellular signal processing by limited proteolysis of target substrate proteins, thereby changing their function. The calpain superfamily consists of 14 genes in mammals, but only 4 genes in Drosophila. One may assume that the calpain system, i.e. recognizing calpain-dependent life processes and identifying the substrates cleaved while exerting their functions, would prove easier to solve in Drosophila than in mammals. Recently, major progress has been made in characterizing Drosophila Calpain A, Calpain B and Calpain C. The fourth member, Calpain D (or SOL), was analyzed earlier. At this juncture, it seems justifiable to summarize our knowledge about the Drosophila enzymes, in comparison to the ubiquitous mammalian ones, as regards structure-function relations, mode of activation by Ca(2+) and other factors, inhibition, potential targeting, expression pattern in vivo, etc. Equipped with all this information, we may now embark on the genetic modification of family members, interpreting mutant phenotypes in terms of the cell biology of calpains.  相似文献   

3.
Although the Ca(2+)-dependent proteinase (calpain) system has been found in every vertebrate cell that has been examined for its presence and has been detected in Drosophila and parasites, the physiological function(s) of this system remains unclear. Calpain activity has been associated with cleavages that alter regulation of various enzyme activities, with remodeling or disassembly of the cell cytoskeleton, and with cleavages of hormone receptors. The mechanism regulating activity of the calpain system in vivo also is unknown. It has been proposed that binding of the calpains to phospholipid in a cell membrane lowers the Ca2+ concentration, [Ca2+], required for the calpains to autolyze, and that autolysis converts an inactive proenzyme into an active protease. Recent studies, however, show that the calpains bind to specific proteins and not to phospholipids, and that binding to cell membranes does not affect the [Ca2+] required for autolysis. It seems likely that calpain activity is regulated by binding of Ca2+ to specific sites on the calpain molecule, with binding to each site eliciting a response (proteolytic activity, calpastatin binding, etc.) specific for that site. Regulation must also involve an, as yet, undiscovered mechanism that increases the affinity of the Ca(2+)-binding sites for Ca2+.  相似文献   

4.
The conventional calpains, m- and micro-calpain, are suggested to be involved in apoptosis triggered by many different mechanisms. However, it has not been possible to definitively associate calpain function with apoptosis, largely because of the incomplete selectivity of the cell permeable calpain inhibitors used in previous studies. In the present study, Chinese hamster ovary (CHO) cell lines overexpressing micro-calpain or the highly specific calpain inhibitor protein, calpastatin, have been utilized to explore apoptosis signals that are influenced by calpain content. This approach allows unambiguous alteration of calpain activity in cells. Serum depletion, treatment with the endoplasmic reticulum (ER) calcium ATPase inhibitor thapsigargin, and treatment with calcium ionophore A23187 produced apoptosis in CHO cells, which was increased in calpain overexpressing cells and decreased by induced expression of calpastatin. Inhibition of calpain activity protected beta-spectrin, but not alpha-spectrin, from proteolysis. The calpains seemed not to be involved in apoptosis triggered by a number of other treatments. Calpain protected against TNF-alpha induced apoptosis. In contrast to previous studies, we found no evidence that calpains proteolyze I kappa B-alpha in TNF-alpha-stimulated cells. These studies indicate that the conventional calpains participate in some, but not all, apoptotic signaling mechanisms. In most cases, they contributed to apoptosis, but in at least one case, they were protective.  相似文献   

5.
6.
Calpains are calcium regulated cysteine proteases that have been described in a wide range of cellular processes, including apoptosis, migration and cell cycle regulation. In addition, calpains have been implicated in differentiation, but their impact on neural differentiation requires further investigation. Here, we addressed the role of calpain 1 and calpain 2 in neural stem cell (NSC) self-renewal and differentiation. We found that calpain inhibition using either the chemical inhibitor calpeptin or the endogenous calpain inhibitor calpastatin favored differentiation of NSCs. This effect was associated with significant changes in cell cycle-related proteins and may be regulated by calcium. Interestingly, calpain 1 and calpain 2 were found to play distinct roles in NSC fate decision. Calpain 1 expression levels were higher in self-renewing NSC and decreased with differentiation, while calpain 2 increased throughout differentiation. In addition, calpain 1 silencing resulted in increased levels of both neuronal and glial markers, β-III Tubulin and glial fibrillary acidic protein (GFAP). Calpain 2 silencing elicited decreased levels of GFAP. These results support a role for calpain 1 in repressing differentiation, thus maintaining a proliferative NSC pool, and suggest that calpain 2 is involved in glial differentiation.  相似文献   

7.
Comparison of calpain I and calpain II from carp muscle   总被引:2,自引:0,他引:2  
1. The content of calpain II is 3.4 times more than that of calpain I when estimated by the elution profiles from a column of DEAE-cellulose. 2. Calpain I required 1 mM Ca2+ and calpain II required 5 mM Ca2+ to show the full activities. These data demonstrated that Ca2+-sensitivities of both calpains were lower than those of mammalian calpains, respectively. 3. The optimum caseinolytic activity was pH 7.2 for calpain I and pH 7.5 for calpain II. 4. The molecular weight of calpain I was estimated to be 110 k and that of calpain II to be 120 k by gel filtration. 5. Calpain I was much more heat-stable than calpain II around 50-60 degrees C. 6. Both calpains were sensitive to calpastatin, an endogenous inhibitor for calpain.  相似文献   

8.
We have sequenced the cDNA of a novel Ca(2+)-activated cysteine proteinase (calpain) from the fruit fly, Drosophila melanogaster. The predicted protein, designated as CALPB, shows high similarity to the previously identified Drosophila calpain, CALPA. The two proteins were expressed in Escherichia coli and purified to homogeneity by metal-chelate affinity chromatography either from inclusion bodies or from the bacterial cytosol. Both enzymes were Ca(2+)-dependent proteinases and attained half-maximal activation in the presence of millimolar Ca(2+). The activity and the rate of activation of CALPA, but not CALPB, could be activated by phosphatidylinositol 4,5-diphosphate, phosphatidylinositol 4-monophosphate, phosphatidylinositol, and phosphatidic acid. A truncated form of CALPA, lacking the CALPA-specific unique insertion region, has also been expressed and characterized. Although it lacked the 16-amino acid long putative membrane-anchoring segment, its activation by phospholipids was similar to that of the full-length CALPA protein. The enzymes undergo N-terminal autolysis in a Ca(2+)-dependent manner which was shown with CALPB to run parallel with enzyme activation. Moreover, fully autolyzed CALPB lacked the characteristic activation phase indicating the requirement for autolysis upon activation of this calpain form in vitro. The analysis of the mechanism of activation in Drosophila calpains seems to corroborate the autolysis model of calpain activation.  相似文献   

9.
Mammalian ubiquitous micro- and m-calpains, as well as their Drosophila homologs, Calpain A and Calpain B, are Ca(2+)-activated cytoplasmic proteases that act by limited proteolysis of target proteins. Calpains are thought to be part of many cellular signaling pathways. These enzymes, however, require such high Ca(2+) concentration for half-maximal activation in vitro, [Ca(2+)](0.5), that hardly ever occurs in intact cells. This major dilemma has pervaded the literature on calpains for decades. In this paper several considerations are put forward that challenge the orthodox view and envisage mechanisms that may govern calpain action in vivo. The "unphysiologically" high Ca(2+) demand for activation may turn out to be an evolutionarily adjusted safety device.  相似文献   

10.
Calpain has long been an enigmatic enzyme, although it is involved in a variety of biological phenomena. Recent progress in calpain genetics has highlighted numerous physiological contexts in which the functions of calpain are of great significance. This review focuses on recent findings in the field of calpain genetics and the importance of calpain function. Calpain is an intracellular Ca(2+)-dependent cysteine protease (EC 3.4.22.17; Clan CA, family C02) found in almost all eukaryotes. It is also present in a few bacteria, but not in archaebacteria. Calpain has limited proteolytic activity; rather, it transforms or modulates the structure and/or activity of its substrates. It is, therefore, referred to as a 'modulator protease'. Within the human genome, 15 genes (CAPN1-3, CAPN5-16) encode a calpain-like protease (CysPc) domain along with several different functional domains. Thus, calpains can be regarded as a distinct family of versatile enzymes that fulfil numerous tasks in vivo. Genetic studies show that a variety of defects in many different organisms, including lethality, muscular dystrophies and gastropathy, actually stem from calpain deficiencies. The cause-effect relationships identified by these studies form the basis for ongoing and future studies regarding the physiological role of calpains.  相似文献   

11.
Calpain 1 and 2 are required for RNA replication of echovirus 1   总被引:1,自引:1,他引:0       下载免费PDF全文
Calpains are calcium-dependent cysteine proteases that degrade cytoskeletal and cytoplasmic proteins. We have studied the role of calpains in the life cycle of human echovirus 1 (EV1). The calpain inhibitors, including calpeptin, calpain inhibitor 1, and calpain inhibitor 2 as well as calpain 1 and calpain 2 short interfering RNAs, completely blocked EV1 infection in the host cells. The effect of the inhibitors was not specific for EV1, because they also inhibited infection by other picornaviruses, namely, human parechovirus 1 and coxsackievirus B3. The importance of the calpains in EV1 infection also was supported by the fact that EV1 increased calpain activity 3 h postinfection. Confocal microscopy and immunoelectron microscopy showed that the EV1/caveolin-1-positive vesicles also contain calpain 1 and 2. Our results indicate that calpains are not required for virus entry but that they are important at a later stage of infection. Calpain inhibitors blocked the production of EV1 particles after microinjection of EV1 RNA into the cells, and they effectively inhibited the synthesis of viral RNA in the host cells. Thus, both calpain 1 and calpain 2 are essential for the replication of EV1 RNA.  相似文献   

12.
Calpains mediate p53 activation and neuronal death evoked by DNA damage   总被引:6,自引:0,他引:6  
DNA damage is an initiator of neuronal death implicated in neuropathological conditions such as stroke. Previous evidence has shown that apoptotic death of embryonic cortical neurons treated with the DNA damaging agent camptothecin is dependent upon the tumor suppressor p53, an upstream death mediator, and more distal death effectors such as caspases. We show here that the calcium-regulated cysteine proteases, calpains, are activated during DNA damage induced by camptothecin treatment. Moreover, calpain deficiency, calpastatin expression, or pharmacological calpain inhibitors prevent the death of embryonic cortical neurons, indicating the important role of calpain in DNA damage-induced death. Calpain inhibition also significantly reduced and delayed the induction of p53. Consistent with the actions of calpains upstream of p53 and the proximal nature of p53 death signaling, calpain inhibition inhibited cytochrome c release and DEVD-AFC cleavage activity. Taken together, our results indicate that calpains are a key mediator of p53 induction and consequent caspase-dependent neuronal death due to DNA damage.  相似文献   

13.
Ca2+-dependent proteolytic activity was detected at pH 7.5 in head extracts of the fruit fly Drosophila melanogaster. This activity was abolished by iodoacetate, but was unaffected by phenylmethanesulphonyl fluoride. These properties resemble those of the Ca2+-dependent thiol-proteinase calpain. The activity appeared at Mr 280,000 on Sepharose CL-6B gel chromatography. DEAE-cellulose chromatography revealed two activity peaks, with elution positions corresponding to vertebrate calpains I and II. The fly head enzymes were inhibited by a heat-stable and trypsin-sensitive component of the fly head extract, which also inhibited calpains from rat kidney. The inhibitor emerged from Sepharose CL-6B columns at Mr 310,000 and from DEAE-cellulose at a position corresponding to the protein inhibitor calpastatin from other sources. It is concluded that Drosophila heads comprise the Ca2+-dependent calpain-calpastatin proteolytic system.  相似文献   

14.
Calpain 3/p94, the skeletal muscle-specific isoform of the calpain large subunit family, is a protein product of the gene responsible for limb-girdle muscular dystrophy type 2A (LGMD2A). Through yeast two-hybrid experiments, calpain 3 has been shown to bind to titin in myofibrils [Sorimachi et al. (1995) J. Biol. Chem. 270, 31158-31162]. However, because of extensive autolysis activity, calpain 3 localization in skeletal muscle has been undefined. In this study, we generated a polyclonal antibody against an N-terminal 98-amino-acid calpain 3 fragment, which is not homologous to the corresponding regions of other conventional calpains. This antibody stained myofibrils with a unique repeated doublet-pattern. Confocal microscopic observation with marker antibodies confirmed that calpain 3 is localized in the N2 region of myofibrils. Furthermore, using this antibody, we examined the localization of calpain 3 in LGMD2A muscles.  相似文献   

15.
1. Calpains (calcium-activated cysteine proteinases) have evolved by gene fusion events involving calmodulin-like genes, cysteine proteinase genes and other sequences of unknown origin. 2. The enzymes are composed of two non-identical subunits, each of which contains functional calcium-binding sequences. 3. Calpains are inhibited by the endogenous protein inhibitor, calpastatin and some calmodulin antagonists are also inhibitors of calpain. A number of synthetic proteinase inhibitors also inhibit calpains. 4. Calpains can be activated by phospholipids, an endogenous protein activator and some amino acid derivatives. 5. Various protein substrates for calpains have been recognized in vitro, but the identity of in situ substrates remains unclear. 6. Proposals have been made for calpain function, including involvement in signal transduction, platelet activation, cell fusion, mitosis and cytoskeleton and contractile protein turnover. 7. Calpain and calpastatin expression is altered in a number of abnormal states including muscular dystrophy, muscle denervation and tenotomy, hypertension and platelet abnormalities.  相似文献   

16.
Calpain   总被引:1,自引:0,他引:1  
The calcium-dependent thiol proteases, calpains, are widely expressed with ubiquitous and tissue specific isoforms. Calpains have been implicated in basic cellular processes including cell proliferation, apoptosis and differentiation. The focus of the current review is to summarize recent findings implicating calpains in cytoskeletal rearrangements and cell migration. Calpain cleaves many cytosolic proteins and therefore to be effective and limited in its scope, calpain activity has to be tightly regulated both temporally and spatially. Some mechanisms of regulation include calcium, growth factor-mediated phosphorylation and membrane targeting. Calpain inhibition reduces migration rates and inhibits cell invasiveness. Two putative mechanisms of calpain action during migration include its role as a signaling intermediate, acting upstream of Rho, and its effects on focal adhesion structure and disassembly. Therefore, calpains and downstream signaling molecules may be future targets for therapeutic interventions to treat cancer or chronic inflammation.  相似文献   

17.
18.
Calpains: an elaborate proteolytic system   总被引:1,自引:0,他引:1  
Calpain is an intracellular Ca(2+)-dependent cysteine protease (EC 3.4.22.17; Clan CA, family C02). Recent expansion of sequence data across the species definitively shows that calpain has been present throughout evolution; calpains are found in almost all eukaryotes and some bacteria, but not in archaebacteria. Fifteen genes within the human genome encode a calpain-like protease domain. Interestingly, some human calpains, particularly those with non-classical domain structures, are very similar to calpain homologs identified in evolutionarily distant organisms. Three-dimensional structural analyses have helped to identify calpain's unique mechanism of activation; the calpain protease domain comprises two core domains that fuse to form a functional protease only when bound to Ca(2+)via well-conserved amino acids. This finding highlights the mechanistic characteristics shared by the numerous calpain homologs, despite the fact that they have divergent domain structures. In other words, calpains function through the same mechanism but are regulated independently. This article reviews the recent progress in calpain research, focusing on those studies that have helped to elucidate its mechanism of action. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.  相似文献   

19.
Calpains are a family of calcium-dependent proteases. Two isoforms, calpain 1 and 2, have been implicated in angiogenesis and endothelial cell adhesion and migration. Calpains regulate the function of eNOS;however, the relation of calpains and eNOS to lymphangiogenesisis still unclear. In the present study, we evaluated the role of calpain and eNOS in the formation of cords by lymphatic endothelial cells on Matrigel. Human lymphatic microvascular dermal-derived endothelial cells were transfected with siRNA against calpain 1 or 2. Calpain 2 knockdown, but not calpain 1 knockdown, significantly reduced cord formation, adhesion, and migration on Matrigel. These decreases correlated with a reduction in eNOS, and phosphorylated eNOS and Hsp90 levels, as assayed by immunoprecipitation and western blotting. In contrast, the knockdown of calpain 1, but not calpain 2,increased cell adhesion, enhanced migration, and stabilized late-stage cord formation by increasing cord length compared to the control. These differences correlated with an increase in the level of phosphorylated eNOS. The results indicated that the functions of calpains and eNOS are important for cord formation by lymphatic endothelial cells. For the first time, we have found different functions of calpain 1 and 2. Calpain 1 is involved in the degradation of eNOS and Hsp90 and the phosphorylation of eNOS,while calpain 2 regulates eNOS phosphorylation during cord formation by lymphatic endothelial cells on Matrigel.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号