首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Huang S  Zeng H  Zhang J  Wei S  Huang L 《Phytochemistry》2011,72(17):2124-2129
There are six different vitamin B6 (VB6) forms, pyridoxal (PL), pyridoxamine (PM), pyridoxine (PN), pyridoxal 5′-phosphate (PLP), pyridoxamine 5′-phosphate (PMP), and pyridoxine 5′-phosphate (PNP), of which PLP is the active form. Although plants are a major source of VB6 in the human diet, and VB6 plays an important role in plants, the mechanisms underlying the interconversions of different VB6 forms are not well understood. In this study, in vitro tobacco plants were grown on Murashige and Skoog (MS) basal media supplemented with 100 mg/L of PM, PL or PN and the abundance of the different B6 vitamers in leaf tissue was quantified by high performance liquid chromatography (HPLC). The total amount of VB6 was about 3.9 μg/g fresh weight of which PL, PM, PN, PLP and PMP accounted for 23%, 14%, 37%, 20% and 6%, respectively. Tobacco plants contained a trace amount of PNP. Supplementation of the culture medium with any of the non-phosphorylated vitamers resulted in an increase in total VB6 by about 10-fold, but had very little impact on the concentrations of the endogenous phosphorylated vitamers. Administration of either PM or PN increased their endogenous levels more than the levels of any other endogenous B6 vitamers. PL supplementation increased the levels of plant PN and PM significantly, but not that of PL, suggesting that efficient conversion pathways from PL to PN and PM are present in tobacco. Additionally, maintenance of a stable level of PLP in the plant is not well-correlated to changes in levels of non-phosphorylated forms.  相似文献   

2.
Pyridox(am)ine 5′-phosphate oxidase (PNPO) catalyzes oxidation of pyridoxine 5′-phosphate (PNP) and pyridoxamine 5′-phosphate (PMP) to pyridoxal 5′-phosphate (PLP), the active form of vitamin B6. PNPO deficiency results in neonatal/infantile seizures and neurodevelopmental delay. To gain insight into this disorder we generated Pnpo deficient (pnpo−/−) zebrafish (CRISPR/Cas9 gene editing). Locomotion analysis showed that pnpo−/− zebrafish develop seizures resulting in only 38% of pnpo−/− zebrafish surviving beyond 20 days post fertilization (dpf). The age of seizure onset varied and survival after the onset was brief. Biochemical profiling at 20 dpf revealed a reduction of PLP and pyridoxal (PL) and accumulation of PMP and pyridoxamine (PM). Amino acids involved in neurotransmission including glutamate, γ-aminobutyric acid (GABA) and glycine were decreased. Concentrations of several, mostly essential, amino acids were increased in pnpo−/− zebrafish suggesting impaired activity of PLP-dependent transaminases involved in their degradation. PLP treatment increased survival at 20 dpf and led to complete normalization of PLP, PL, glutamate, GABA and glycine. However, amino acid profiles only partially normalized and accumulation of PMP and PM persisted. Taken together, our data indicate that not only decreased PLP but also accumulation of PMP may play a role in the clinical phenotype of PNPO deficiency.  相似文献   

3.
4.
There are six different vitamin B6 (VB6) forms, pyridoxal (PL), pyridoxamine (PM), pyridoxine (PN), pyridoxal 5′-phosphate (PLP), pyridoxamine 5′-phosphate (PMP) and pyridoxine 5′-phosphate (PNP). PLP is a coenzyme required by more than 100 cellular enzymes. In spite of the importance of this vitamin, the understanding of VB6 metabolic conversion in plants is limited. In this study, we developed a sensitive and reliable method to assay VB6-metabolizing enzyme activities by monitoring their products visually using high-performance liquid chromatography. With this method, the reactions catalyzed by PL/PM/PN kinase, PMP/PNP oxidase, PM-pyruvate aminotransferase, PL reductase and PLP phosphatase were all nicely detected using crude protein extracts of tobacco leaves. Under optimal in vitro conditions, specific activities of those enzymes were 0.15 ± 0.03, 0.10 ± 0.03, 0.08 ± 0.02, 0.64 ± 0.13 and 23.08 ± 1.98 nmol product/min/mg protein, respectively. This is the first report on the conversion between PM and PL catalyzed by PM-pyruvate aminotransferase in plants. Furthermore, the PL reductase activity was found to be heat inducible. Our study sheds light on the VB6 metabolism taking place in plants.  相似文献   

5.
The vitamin B6 status of seemingly healthy adolescent girls was determined using several accepted and proposed parameters in an effort to establish guidelines for status evaluation. High-performance liquid chromatography-derived plasma B6 vitamers (pyridoxal phosphate, PLP; pyridoxine phosphate, PNP; pyridoxamine phosphate, PMP; pyridoxal, PL; pyridoxine, PN; and pyridoxamine, PM) and 4-pyridoxic acid (4-PA) concentrations and urinary 4-PA levels of 28 white adolescent females, 12–15 years, having radiomonitored plasma PLP concentrations and coenzyme stimulation of erythrocyte alanine aminotransferase activities indicative of adequate status were determined. Mean vitamin B6 and protein intakes were 1.48 mg and 78.3 g. Ranges for plasma B6 vitamer and 4-PA concentrations (nmol/1) were: PLP, 40.9–122.2; PNP, non-detectable (ND)—16.1; PMP, ND—8.1; PL, ND—15; PN, ND—21.9; PM, ND—17.8; and 4-PA, ND—55.7. PLP was the only vitamer found in plasma of all subjects. Urinary 4-PA concentrations ranged from 0.11 to 2.50 μmol/mmol of creatinine. B6 vitamer values of these girls should be of use in the establishment of normal ranges for vitamin B6 status parameters.  相似文献   

6.
Magnetic interactions in the three copper(II)-complex polymers, [Cu(PZ)(NO3)2]n, [Cu(PM)(NO3)2(H2O)2]n, and [Cu(PM)2(NO3)2]n are discussed on the basis of extended Hückel calculations inthe formulas PZ and PM stand for pyrazine and pyrimidine, respectively. Interactions between the Cu-3d orbitals and the lone-pair orbitals of pyrazine and pyrimidine are analyzed from the viewpoint of `through-space' and `through-bond' interactions using binuclear complexes to model the three copper(II) polymers. Three conclusions can be drawn from the orbital interaction analysis: (1) in the first polymer, a superexchange pathway is formed with the bond of Cu–-N and the through-bond interaction between the lone pairs of the nitrogen atoms of pyrazine will lead to an antiferromagnet state; (2) in the second polymer a superexchange pathway is formed with the bond of Cu–-N and the through-space interaction between the lone pairs of the nitrogen atoms of pyrimidine, and as a result an antiferromagnetic state will be preferred; and (3) in the third polymer., there is no effective pathway in respect of overlap interaction and the HOMO and the LUMO are actually degenerate, and thus a ferromagnetic state will arise. The band structures are analyzed to characterize the magnetic properties of the antiferromagnetic polymers, [Cu(PZ)(NO3)2]n and [Cu(PM)(NO3)2(H2O)2], and the ferromagnetic polymer, [Cu(PM)2(NO3)2]n.  相似文献   

7.
Cu(II) complexes of Alzheimer's disease-related β-amyloid (Aβ) peptides exhibit metal-centered oxidation chemistry. The metallo-Aβ complexes are the hallmark of the disease and have been attributed to the generation of reactive oxygen species (ROS), causing oxidative stress. In this communication, the inhibitions of the oxidative activity of Cu(II)-Aβ by vitamin B6 compounds pyridoxamine (PM), pyridoxine (PN), pyridoxal (PL), and pyridoxal-5'-phosphate (PLP) are presented. These B6's are competitive inhibitors toward dopamine oxidation by Cu(II)-Aβ(1-20), with K(i) values of 1.4, 8.3, 1.2, and 0.2mM, respectively. The phospho-moiety in PLP seems to exhibit cooperative inhibition, affording a clue for future design of inhibitors.  相似文献   

8.
The substrate activity of pyridoxamine (PM) for brain pyridoxal (PL) kinase was examined in view of a recent report which indicated that PM was a poor substrate for this enzyme. Bovine brain PL kinase was shown by liquid chromatography to catalyze the phosphorylation of PM (Km = 65 microM). The identity of the reaction product, pyridoxamine 5'-phosphate, was confirmed by is ability to act as a substrate for liver pyridoxine (pyridoxamine) 5'-phosphate oxidase. The results, which indicate that PM is a good substrate for brain PL kinase, are consistent with the proposed role of intracellular phosphorylation in the uptake of vitamin B-6 brain tissue.  相似文献   

9.
The aqueous solution equilibria and solute structure of vitamin B6 compounds and several model compounds have been investigated using 13C-nmr spectroscopy. The unsubstituted α-carbon of these compounds is a very good probe for data which permits assignment of the ionization steps to indicidual groups. While the ionizations of the pyridinium and phenolic groups take place simultaneously in 3-hydroxypyridine, they take place in well-separated steps in pyridoxamine (PM), pyridoxamine phosphate (PMP), and pyridoxal phosphate. It has been established that the ionization with a pKa value of 3.7 is predominantly phenolic in origin in PM and PMP. A zwitterionic structure consistent with the earlier spectroscopic investigations is proposed for the vitamin B6 compounds in neutral aqueous solution.  相似文献   

10.
Synthesis and single crystal X-ray structures of the first paramagnetic transition metal complexes containing chiral ethylenedithio-tetrathiafulvalene-oxazoline (EDT-TTF-OX) 1a-c and ethylenedithio-tetrathiafulvalene-thiomethyloxazoline 2 (EDT-TTF-(SMe)OX) ligands based on copper (II) and cobalt (II) are described. The racemic [EDT-TTF-OX][Cu(hfac)2] complex 3a crystallizes in the triclinic centrosymmetric space group , whereas the enantiopure counterparts 3b-c crystallize in the triclinic non-centrosymmetric space group P1. Cu(II) adopts a distorted square pyramidal coordination geometry, a much weaker Cu?STTF interaction also being identified. The same coordination pattern around Cu(II) is observed in the complex [(rac)-EDT-TTF-(SMe)OX][Cu(hfac)2] (4) in spite of the bidentate nature of the redox active ligand. DFT theoretical calculations afforded two equilibrium configurations for a corresponding model complex, in which the metal centre establishes secondary coordination either with one STTF or with the SMe group. The same ligand coordinates the cobalt (II) to afford the octahedral complex [(rac)-EDT-TTF-(SMe)OX][Co(hfac)2] (5). In all these novel complexes, the paramagnetic centres are structurally and magnetically isolated. Cyclic voltammetry measurements show the stability of the radical cation species.  相似文献   

11.
Summary Non-enzymic-decarboxylation of aspartic acid at 85° is catalyzed by Al3+ and pyridoxal. The reaction is optimum at pH 4.0. Both Al3+ and pyridoxal are specifically required because replacing these by other cations or by other vitamin B6 derivatives greatly lowers the formation of alanine. Conversion of 8 µmoles of aspartic acid to alanine is optimum in presence of 1µmole of Al3+ and 5 µmoles of pyridoxal. Increasing the concentration of pyridoxal to more than 5 µmoles lowers the alanine formation by the latter being converted to pyruvate by transamination with the excess pyridoxal.Studies on the mechanism of decarboxylation suggest that aspartic acid is first converted to oxalacetic acid by transamination with pyridoxal which in turn is converted to pyridoxamine. This is followed by decarboxylation of oxalacetic acid to form pyruvic acid which transaminates with pyridoxamine to form alanine. The results are interpreted to suggest that the non-enzymic aspartate-decarboxylation process is closely related to and inseparable from the non-enzymic transamination process in a manner analogous to that reported for the highly purified asparate-decarboxylase. The possible significance of these results to prebiotic molecular evolution is briefly discussed.  相似文献   

12.
The stability constants of the ternary Cu(II), Ni(II), and Co(II) complexes containing pyridoxamine (PM) and as a second ligand (L) glycine, DL-alanine, DL-valine, and β-phenylalnine were determined by pH-metric titration in 0.50 M KNO3 at 30°C. The corresponding constants of the equilibrium, log X, are greater than would be expected for purely statistical reasons (log X = 0.6), except for few complex cases of Co(II). It has been also concluded that amino acids compete more than pyridoxamine for Ni(II) and Co(II) through the formation of 1:2:1:0 species rather than 2:1:1:0 of PM:L:M2+:H+.  相似文献   

13.
Three complexes of the composition {[Cu(μ1,5-dca)2(mppca)2] · H2O}n (1), [Cu(μ1,5-dca)2(nppca)2]n (2) and [Cu(μ-Cl)2(mppca)2]n (3) (dca = dicyanamide, ; mppca = N-(4′-methylphenyl)-4-pyridinecarboxamide; nppca = N-(4′-nitrophenyl)-4-pyridinecarboxamide) have been synthesized and characterized by single crystal X-ray crystallography and magnetic susceptibility studies. Different supramolecular structures of the complexes have been constructed by different non-covalent motifs in the crystalline solids. In complex 1, adjacent copper(II) atoms are connected by double μ1,5-dca(end-to-end) bridges to form a chain-like structure. The chains are linked by π-π interactions and hydrogen bonds between the ligands and water molecules to form a 3D network. In complex 2, copper(II) atom has a coordination environment similar to 1, but water molecules have not been found. Weak C-H?N hydrogen bonding and π-π interaction yield a 3D supramolecular network which is different from that of complex 1. Complex 3 is a 1D polymeric chain in which Cu(II) ions are bridged by Cl, and only CH/π interactions had been found. Magnetic measurements revealed antiferromagnetic properties of 1, 3 and ferromagnetic behavior of 2.  相似文献   

14.
There exist at least three different polymorphs in the copper(II) complex [Cu(hino)2] with a hinokitiol ligand (Hhino; 4-isopropyltropolone1). In addition to deep-green plate crystals 1a and deep-green rod crystals 1b, whose crystal structures have been recently reported, novel green needle crystals 1c of [Cu(hino)2] were found, the crystal structure of which was here determined by single-crystal X-ray analysis. Since only one crystal structure has been reported for the copper(II) complex [Cu(trop)2] with a tropolone ligand (Htrop), the polymorphism found in the crystals of [Cu(hino)2] would be due to the presence of the isopropyl group on the tropolone ring. The synthetic conditions giving the three polymorphs in good yields were found and the crystals were characterized with elemental analysis, FT-IR, TG/DTA and X-ray powder diffraction (XPD) measurements, as well as solution molecular weight measurements for 1a. The solid-state magnetic behaviors or the temperature-dependent magnetic susceptibilities were measured with Superconductivity Quantum Interference Devices (SQUID): 1a showed a weak ferromagnetic interaction, 1b showed a paramagnetic nature with S=1/2, while 1c showed a weak antiferromagnetic interaction. The antimicrobial activities for selected bacteria, yeasts and molds were also measured in the water-suspension system: 1a and 1b showed no activity, while 1c showed modest activities, and these activities were compared with those of the neutral Hino and the anionic hino ligands.  相似文献   

15.
In situ reaction of the aminobenzoic acids 2-aminobenzoic acid and 3,5-diaminobenzoic acid with salicylaldehyde provide easy access to the ligands 2-[{(2-hydroxyphenyl)methylene}amino]benzoic acid (L1) and 3,5-bis[{(2-hydroxyphenyl)methylene}amino]benzoic acid (L2). Addition of a Fe(II) or Cu(II) salt to the solution of the ligand yields the corresponding Fe and Cu complexes. The species synthesized have been structurally characterized by single-crystal X-ray diffraction. The Fe(II) complex [Fe(L1)(MeOH)3] (1) crystallizes in the triclinic space group . The Cu(II) complex [Cu(L1)] (2) is a one-dimensional chain and crystallizes in the monoclinic space group P21. The Cu(II) complex [Et3NH]2[Cu2(L2)2] (3) crystallizes in the monoclinic space group P21/n. The magnetic properties of 1, 2 and 3 have been studied, showing that the Cu(II) ions of 2 and 3 are ferromagnetically coupled. Complexes 1 and 3 have strong potential as metal-bearing building blocks for the synthesis of metal-organic frameworks.  相似文献   

16.
The complexes [Cu(samen)Cu(L)] and [Cu(samen)Ni(L)2] (Lbpy, phen) have been synthesized by the reaction of sodium N,N′-ethylenedisalicylamidatocuprate(II) pentahydrate (Na2- [Cu(samen)]·5H2O), a divalent metal ion, and 2,2′- dipyridyl or 1,10-phenanthroline. Cryomagnetic data for the CuCu complexes did not fit the Bleaney- Bowers equation; but the data did fit a modified Bleaney-Bowers equation
with a large negative J and a significant negative θ, suggesting that a considerable magnetic interaction operates between essentially planar [Cu(samen)Cu(L)] molecules. The magnetisms of the CuNi complexes were well interpreted in terms of the susceptibility equation based on the Heisenberg model. An antiferromagnetic spin-exchange interaction (J= −13∼−14 cm−1) was suggested between the metal ions.  相似文献   

17.
Although quinones represent a class of organic compounds that may exert toxic effects both in vitro and in vivo, the molecular mechanisms involved in quinone species toxicity are still largely unknown, especially in the presence of transition metals, which may both induce the transformation of the various quinone species and result in generation of harmful reactive oxygen species. In this study, the oxidation of 1,4-naphthohydroquinone (NH2Q) in the absence and presence of nanomolar concentrations of Cu(II) in 10 mM NaCl solution over a pH range of 6.5–7.5 has been investigated, with detailed kinetic models developed to describe the predominant mechanisms operative in these systems. In the absence of copper, the apparent oxidation rate of NH2Q increased with increasing pH and initial NH2Q concentration, with concomitant oxygen consumption and peroxide generation. The doubly dissociated species, NQ2−, has been shown to be the reactive species with regard to the one-electron oxidation by O2 and comproportionation with the quinone species, both generating the semiquinone radical (NSQ). The oxidation of NSQ by O2 is shown to be the most important pathway for superoxide (O2) generation with a high intrinsic rate constant of 1.0×108 M−1 s−1. Both NSQ and O2 served as chain-propagating species in the autoxidation of NH2Q. Cu(II) is capable of catalyzing the oxidation of NH2Q in the presence of O2 with the oxidation also accelerated by increasing the pH. Both the uncharged (NH2Q0) and the mono-anionic (NHQ) species were found to be the kinetically active forms, reducing Cu(II) with an intrinsic rate constant of 4.0×104 and 1.2×107 M−1 s−1, respectively. The presence of O2 facilitated the catalytic role of Cu(II) by rapidly regenerating Cu(II) via continuous oxidation of Cu(I) and also by efficient removal of NSQ resulting in the generation of O2. The half-cell reduction potentials of various redox couples at neutral pH indicated good agreement between thermodynamic and kinetic considerations for various key reactions involved, further validating the proposed mechanisms involved in both the autoxidation and the copper-catalyzed oxidation of NH2Q in circumneutral pH solutions.  相似文献   

18.
The oligomerization of [CuII(Hx(tmdnTAA))]x+ (x = 0, 1, 2 and (tmdnTAA))2− is 2,4,9,11-tetramethyl-dinaphto[14]-2,4,6,9,11,13-hexaeneN4) was initiated in homogeneous solution via the reaction of this Cu(II) complex with pulse radiolytically generated radicals. The reaction produces Cu(III) intermediates which are rapidly converted to Cu(II) ligand-radical species. In contrast to the mechanism proposed for the electrochemical oligomerization, where the local concentration of radicals is probably high, the reaction kinetics in homogeneous solution is propagated by a process where the Cu(II) ligand-radical precursors react with [CuII(Hx(tmdnTAA))]x+.  相似文献   

19.
Orthorhombic single crystals of cytoplasmic aspartate aminotransferase were examined alone or in the presence of substrates or inhibitors to quantitatively compare the interaction of ligands with the active-site chromophore between soluble and crystalline enzyme. As in enzyme solutions, equilibrium kinetic measurements can be made between substrates and single crystals of cytoplasmic aspartate aminotransferase. The absorption spectra of ligand-free enzyme forms and of enzyme-substrate or-inhibitor complexes are as distinctive as when the enzyme is in solution. The dissociation constants for glutamate with the pyridoxal form of the enzyme are identical to those in solution. The substrate analog erythro--hydroxyaspartate also binds with equal affinity to the active site in enzyme crystals as in solution; and the affinity of -ketoglutarate to bind in nonproductive complexes with the pyridoxal form of the enzyme is also unimpaired in the crystal (K d =2 mM). In contrast to the affinity constants, the stoichiometry of the interactions does not appear to correlate to those in solution. In the presence of an amino acid plus keto acid substrates pair, the absorbance values of the enzyme-substrate complex(es) could be interpreted as for occupany of only half the available sites in the crystals. Yet an amino acid, cysteine sulfinate, and -keto acids such as , -difluorooxalacetate convert all active sites in the crystal to the pyridoxamine or pyridoxal form when added to the pyridoxal or pyridoxamine forms, respectively. This ability to completely undergo substrate-induced half-transamination and the apparently conflicting results in trapping half the sites in enzyme-substrate complexes are incorporated into a proposed reciprocating mechanism applicable only to the crystalline state of the enzyme and dictated by crystal packing forces rather than an intrinsic property of the enzyme. Active-site bound pyridoxal phosphate continues to behave as a pH indicator; nevertheless, the pK value of the single crystals is a pH unit (pK=7.15) higher than that in solution. This variation is interpreted as indication of a difference in the environment of the chromophore between the crystal and solution states. While the environmental difference does not significantly alter the affinity for substrates, it could account for the reduced rates in transformation of the enzyme-substrate complexes in half-transamination reactions in the crystalline state.  相似文献   

20.
A novel one-dimensional chiral copper(II) complex with single end-on (EO) azide bridge and chiral 2,2-bipyridine ligand, [Cu(N3)2(L)]n (1), and a mononuclear chiral copper(II) complex, [Cu(N3)2(L)] (2) (L = (1R)-6,6-dimethyl-5,7-methano-2-(2-pyridinyl)-4,5,6,7-tetrahydroquinoline), have been synthesized and characterized. The crystal structure determination shows that complex 1 is a one-dimensional chiral coordination polymer with non-equivalent Cu-N(azide) bonds, in which the central Cu(II) ion is penta-coordinated in the form of a slightly distorted square-based pyramid. Compound 2 is a four-coordinated mononuclear complex where the Cu(II) ion has a highly distorted tetrahedronal environment. Both complexes 1 and 2 crystallize in the chiral space group: P212121 and P1, respectively. The magnetic studies show that there exists antiferromagnetic interaction between the copper(II) ions in complex 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号