首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The spectrum of the Rapid Mo(V) electron paramagnetic resonance signal from xanthine oxidase dissolved in 17O-enriched water is presented. Difference technqiues have been used to eliminate the 16O contribution. Clearly observed structure in the spectrum is attributed to moderately strong hyperfine coupling of one oxygen atom to molybdenum. Though complete interpretation of the spectrum has not been attempted, one component of A(17O) is about 1.6 mT. The possibility that the oxygen is present in a Mo---OH group, whose proton is the strongly-coupled proton of the Rapid signal, is discussed.  相似文献   

2.
R C Bray  S Gutteridge 《Biochemistry》1982,21(23):5992-5999
The effect of using [17O]water (24-50% enriched) as solvent on the Mo(V) electron paramagnetic resonance spectra of different reduced forms of xanthine oxidase has been investigated. All the Mo(V) signals are affected. Procedures are described, based on the use of difference spectral techniques, that facilitate interpretation of such spectra. The number of coupled oxygen atoms may be determined by estimation of the fraction of the spectrum that remains unchanged by the isotope at a known enrichment. For a species having two coupled oxygen atoms, the use of two different isotope enrichments permits elimination from the difference spectra of the contribution of the two singly substituted species. From the application of these methods, it is concluded that not only the strength of the hyperfine coupling of oxygen ligands of molybdenum but also their number and their exchangeability with the solvent vary from one reduced form of the enzyme to another. The inhibited species from active xanthine oxidase has been studied in the most detail. It has two weakly coupled oxygen atoms [A(17O)av = 0.1-0.2 mT] that do not exchange with the solvent. A cyclic structure is proposed for this species in which two oxygen ligands of molybdenum are bonded to the carbon of the formaldehyde or other alcohol or aldehyde molecule that reacted in producing the signal. Structures of the other signal-giving species from active xanthine oxidase (Very Rapid and Rapid types 1 and 2) are discussed, as is corresponding information on species from the desulfo enzyme and from sulfite oxidase.  相似文献   

3.
Studies have been carried out of effects of 17O substitution on a Mo(V) e.p.r. signal from xanthine oxidase, known as Very Rapid. This transient signal is believed to represent an intermediate in enzymic turnover. When Very Rapid was developed from enzyme equilibrate with 17O-enriched water, strong coupling of Mo(V) to a single oxygen atom was observed, with A(17O)1,2,3 1.34, 1.40, 1.36 mT. The isotropic character of the splittings is interpreted as favouring a structure of the type Mo--O--C. The rate of exchange with water of the oxygen atom detected in the signal was studied. In oxidized enzyme, which contains a terminal oxygen ligand, the exchange rate constant was 2--4 h-1 (pH 5.9--7.8 and about 20 degrees C). However, if the exchange was allowed to take place whilst the enzyme was turning over a substrate, then the process occurred within a few seconds. The present and previous results are interpreted as favouring an enzymic mechanism in which a terminal oxygen ligand reacts, as a nucleophile, with a substrate carbonium ion. To complete the reaction, product liberation, by hydrolysis of the enzyme-bound species, occurs in such a way as to cleave the Mo--O bond, thus explaining the fast oxygen exchange in the presence of the substrate.  相似文献   

4.
High resolution proton nuclear magnetic resonance has been used to observe protons at the active site of chymotrypsin Aδ and at the same region of chymotrypsinogen A. A single resonance with the intensity of one proton is located in the low field region of the nuclear magnetic resonance spectrum. This resonance is observed in H2O solutions but not in 2H2O. On going from low to high pH the resonance titrates upfield 3 parts per million in both proteins and has a pK of 7.5. The titration can be prevented by alkylating His57 with either of two active site directed chloromethyl ketones. Using these data the proton resonance has been assigned to a proton in a hydrogen bond between His57 and Asp102. Further confirmation of this assignment lies in the observation of a similar resonance in this same low field region of the nuclear magnetic resonance spectrum of trypsin, trypsinogen, subtilisin BPN′ and α-lytic protease all of which have the Asp-His-Ser triad at their active sites.This proton resonance in chymotrypsin Aδ was used as a probe to monitor the charge state of the active site upon formation of a stable acyl-enzyme analogue N2(N-acetylalanyl)-N1benzoylcarbazoyl-chymotrypsin Aδ. In this derivative the His-Asp proton resonance titrates from the same low pH end point as in the native enzyme, ?18 parts per million, to a new high pH end point of ?14.4 parts per million (versus ?15.0 parts per million in the native enzyme). The difference of 0.6 parts per million in the high pH end points between the native and acyl enzyme is interpreted as supporting the suggestion that a hydrogen bond exists between Ser195 and His57 in the native enzyme and zymogen.We conclude from these studies that the charge relay system from Asp102 across His57 to Ser195 is intact in chymotrypsin Aδ and chymotrypsinogen A, and that, in the native enzyme, it slightly polarizes Ser195.  相似文献   

5.
Formamide as a substrate of xanthine oxidase.   总被引:1,自引:1,他引:0       下载免费PDF全文
Formamide is a substrate of xanthine oxidase. At pH 8.2 and 1.14 mM-O2, Vmax.(app.) is 3.1 s-1 and Km (app.) is 0.7 M. Mo(V) e.p.r. signals obtained by treating the enzyme with formamide were studied, and these provide new information about the ligation of molybdenum in the enzyme and about the enzymic mechanism. The substrate is the first compound that is not a nitrogen-containing heterocycle to give a Very Rapid signal. This supports the hypothesis that the Very Rapid signal, though it is not detectable with all substrates, represents an essential intermediate in turnover. Formamide also gives the Inhibited signal and is the first non-aldehyde substrate to do so. The Rapid type 1 signal obtained in the presence of formamide was examined in H2O enriched with 2H or with 17O. The single oxygen atom detectable in the signal is shown to be strongly and anisotropically coupled. This indicates that this atom remains as an oxo ligand of molybdenum in this signal-giving species. Other structural features of this species are discussed.  相似文献   

6.
Proton as well as deuteron ENDOR (electron-nuclear double resonance) spectroscopy were performed of methanol dehydrogenase and pyrrolo-quinoline semiquinone (PQQH.). Samples were examined in H2O- and 2H2O-containing buffers at 4.2 °K with Ka-band (33.5 GHz) frequency. Measurements of the enzyme in 2H2O revealed that the signals observed around the proton free-precession frequency belong to exchangeable protons. Therefore, our earlier assumption (R. de Beer et al. (1979) J. Chem. Phys.70, 4491–4495) that these signals originate from protons in the aromatic ring of PQQH. is incorrect. The proton matrix signal of the enzyme in H2O and 2H2O are nearly similar, while a deuteron matrix signal is not observed in the latter case. It is concluded, therefore, that the coenzyme is situated in a hydrophobic site of the enzyme.  相似文献   

7.
Mo K-edge X-ray absorption spectroscopy (XAS) has been used to probe the environment of Mo in dimethylsulfoxide (DMSO) reductase from Rhodobacter capsulatus in concert with protein crystallographic studies. The oxidised (MoVI) protein has been investigated in solution at 77?K; the Mo K-edge position (20006.4?eV) is consistent with the presence of MoVI and, in agreement with the protein crystallographic results, the extended X-ray absorption fine structure (EXAFS) is also consistent with a seven-coordinate site. The site is composed of one oxo-group (Mo=O 1.71?Å), four S atoms (considered to arise from the dithiolene groups of the two molybdopterins, two at 2.32?Å and two at 2.47?Å, and two O atoms, one at 1.92?Å (considered to be H-bonded to Trp 116) and one at 2.27?Å (considered to arise from Ser 147). The Mo K-edge XAS recorded for single crystals of oxidised (MoVI) DMSO reductase at 77?K showed a close correspondence to the data for the frozen solution but had an inferior signal:noise ratio. The dithionite-reduced form of the enzyme and a unique form of the enzyme produced by the addition of dimethylsulfide (DMS) to the oxidised (MoVI) enzyme have essentially identical energies for the Mo K-edge, at 20004.4?eV and 20004.5?eV, respectively; these values, together with the lack of a significant presence of MoV in the samples as monitored by EPR spectroscopy, are taken to indicate the presence of MoIV. For the dithionite-reduced sample, the Mo K-edge EXAFS indicates a coordination environment for Mo of two O atoms, one at 2.05?Å and one at 2.51?Å, and four S atoms at 2.36?Å. The coordination environment of the Mo in the DMS-reduced form of the enzyme involves three O atoms, one at 1.69?Å, one at 1.91?Å and one at 2.11?Å, plus four S atoms, two at 2.28?Å and two at 2.37?Å. The EXAFS and the protein crystallographic results for the DMS-reduced form of the enzyme are consistent with the formation of the substrate, DMSO, bound to MoIV with an Mo-O bond of length 1.92?Å.  相似文献   

8.
Studies were carried out on the inhibitory complex of alloxanthine (1H-pyrazolo[3,4-d]pyrimidine-4,5-diol) with xanthine oxidase, in extension of the work of Williams & Bray [Biochem. J. (1981) 195, 753-760]. By suitable regulation of the reaction conditions, up to 10% of the functional enzyme could be converted into the complex in the Mo(V) oxidation state. The e.p.r. spectrum of the complex was investigated in detail with the help of computer simulation and substitution with stable isotopes. Close structural analogy of the signal-giving species to that of the Very Rapid intermediate in enzyme turnover is shown by g-values (2.0279, 1.9593 and 1.9442) and by coupling to 33S in the cyanide-labile site of the enzyme [A(33S) 0.30, 3.10 and 0.70mT]. However, whereas in the Very Rapid signal there is strong coupling to 17O [Gutteridge & Bray, Biochem. J. (1980) 189, 615-623], instead, in the Alloxanthine signal there is strong coupling to a single nitrogen atom [A(14N) 0.35, 0.35, 0.32 mT]. This is presumed to originate from the 2-position of the heterocyclic ring system. From this work and from earlier kinetic studies it is concluded that alloxanthine, after being bound reversibly at the active centre, reacts slowly with it, in a specific manner, distinct from that in the normal catalytic reaction with substrates. This reaction involves elimination of an oxygen ligand of molybdenum and co-ordination, in this site, of alloxanthine via the N-2 nitrogen atom, to give a complex that is structurally but not chemically closely analogous to that of the Very Rapid species.  相似文献   

9.
An ESR spectrum is observed during the anaerobic incubation of the diazonaphthol dye sulfonazo III, with rat hepatic microsomes and NADPH. This spectrum is characterized by a partially resolved 17-line hyperfine pattern and g = 2.0043, as is consistent with the spectrum of an azo anion free radical, [R-N-N-R′]?. Oxygen, which strongly inhibits microsomal azoreductase, destroys the ESR signal. The oxidation of the azo anion radical metabolite by oxygen to the parent azo dye may account for the oxygen inhibition of microsomal azoreductase.  相似文献   

10.
Escherichia coli nitrate reductase A (NarGHI) is a membrane-bound enzyme that couples quinol oxidation at a periplasmically oriented Q-site (QD) to proton release into the periplasm during anaerobic respiration. To elucidate the molecular mechanism underlying such a coupling, endogenous menasemiquinone-8 intermediates stabilized at the QD site (MSQD) of NarGHI have been studied by high-resolution pulsed EPR methods in combination with 1H2O/2H2O exchange experiments. One of the two non-exchangeable proton hyperfine couplings resolved in hyperfine sublevel correlation (HYSCORE) spectra of the radical displays characteristics typical from quinone methyl protons. However, its unusually small isotropic value reflects a singularly low spin density on the quinone carbon α carrying the methyl group, which is ascribed to a strong asymmetry of the MSQD binding mode and consistent with single-sided hydrogen bonding to the quinone oxygen O1. Furthermore, a single exchangeable proton hyperfine coupling is resolved, both by comparing the HYSCORE spectra of the radical in 1H2O and 2H2O samples and by selective detection of the exchanged deuterons using Q-band 2H Mims electron nuclear double resonance (ENDOR) spectroscopy. Spectral analysis reveals its peculiar characteristics, i.e. a large anisotropic hyperfine coupling together with an almost zero isotropic contribution. It is assigned to a proton involved in a short ∼1.6 Å in-plane hydrogen bond between the quinone O1 oxygen and the Nδ of the His-66 residue, an axial ligand of the distal heme bD. Structural and mechanistic implications of these results for the electron-coupled proton translocation mechanism at the QD site are discussed, in light of the unusually high thermodynamic stability of MSQD.  相似文献   

11.
Selective uptake of cadmium by the parenchyumal cells of liver.   总被引:1,自引:1,他引:0       下载免费PDF全文
Studies of the effect of substitution with 17O on the e.p.r. spectra at 9 and 35 GHz of Mo(V) in the phosphate complex of sulphite oxidase are reported. Substitution of 17O-enriched water for normal water, for samples of the enzymes reduced by sulphite in the presence of normal phosphate, produced no detectable effect on the e.p.r. signal. If phosphate substituted with 17O was used, coupling due to 17O, producing large anisotropic splittings in the spectrum, was clearly detectable. It is concluded that phosphate is co-ordinated directly to molybdenum in the active site of the enzyme, in an equatorial type of ligand position. An oxygen ligand must be displaced from the molybdenum in the process of binding the phosphate. Implications concerning the mechanism of the enzyme reactions are discussed.  相似文献   

12.
Current hypotheses of the biosynthesis of presqualene pyrophosphate were tested by the examination of presqualene alcohol biosynthesized from [1R,5R,9R-1,5,9-D3]farnesyl pyrophosphate and from [1-18O]farnesyl pyrophosphate. Nuclear magnetic resonance spectrometry showed that the octet of the two cyclopropylcarbinyl protons seen in the spectrum of protio-presqualene alcohol, centered at τ 6.35, was replaced by a broad doublet of one proton (τ, 6.23; J, 6.2 Hz), which became sharpened after deuterium decoupling and was reduced to a singlet after deuterium and proton decoupling. Also the doublet of a single olefinic proton adjacent to the cyclopropane ring, seen in the spectrum of protio-presqualene alcohol at τ 5.08 (J, 8.5 Hz), was reduced to a broad singlet. The presqualene alcohol biosynthesized from the [1-18O]farnesyl pyrophosphate contained the same isotopic concentration as its precursor. The observations, taken together with previous results, are interpreted to mean that the pyrophosphate-bearing group of one farnesyl pyrophosphate molecule appears without chhnge of configuration, and without previous cleavage of the CO bond of farnesyl pyrophosphate, in presqualene pyrophosphate and that the pro-R hydrogen atom at C-1 of the second farnesyl pyrophosphate molecule appears at C-3 of the cyclopropane ring anti to the vinylic substituent. The observations support the view that presqualene pyrophosphate is not an artifact, but a true intermediate in the biosynthesis of squalene.  相似文献   

13.
《BBA》1987,893(2):184-189
Replacement of H2O by 2H2O in oxygen-evolving Photosystem II preparations caused an increased resolution of the fine structure of the S2 state EPR spectrum. In both 2H2O and H2O samples, comparison of the S2 spectra generated by illumination at 200 and 283 K (10°C) showed a difference in the fine structure on the hyperfine lines. A reduction in the spacing of the outer hyperfine lines was also observed when samples illuminated at 283 K were compared to those where S2 was formed by 200 K illumination. The observations are interpreted as due to proton binding, perhaps as water, at or near the manganese complex giving rise to the S2 signal.  相似文献   

14.
The rate constants for the reversible addition of protons and sulfite to the 5,6 double bond of cytidine and 3-methylcytidine have been spectrophotometrically measured under conditions (25°C, μ = 1.0 ) where the deamination of 5,6-dihydrocytidine-6-sulfonate is minimal. Both the addition and the elimination of sulfite from the ring system are subject to general catalysis of proton transfer. For the reaction in either direction, plots of the pseudo-firstorder rate constants against increasing buffer concentration are biphasic and indicative of at least a two-step reaction pathway with both steps being subject to general acid-base catalysis. Kinetic hydrogen-deuterium isotope effects were measured for both buffer-catalyzed steps of sulfite elimination from 3-methyl-5,6-dihydrocytidine-6-sulfonate and sulfite addition to 3-methylcytidine. Both H2O and D2O were used as solvent. For both the addition and the elimination of SO32− values of k2H/k2D were 6.3–7.1 and 2.3–2.6 at low and high imidazole buffer concentration, respectively. The large isotope effects values in the range of 6–7 can be attributed to rate-determining proton transfer to carbon-5 of the cytidine ring system. The smaller values are more likely caused by proton transfer to a electronegative atom such as the oxygen on carbon-2 of the cytidine ring. The equilibrium constants for bisulfite buffer addition to 3-methylcytidine and cytidine at 25°C, μ = 1.0 , pH 7.2, are 10.2 and 1.3 −1, respectively.  相似文献   

15.
The tris(pyrazolyl)borate and related tripodal N-donor ligands originally developed by Trofimenko stabilize mononuclear compounds containing MoVIO2, MoVIO, MoVO, and MoIVO units and effectively inhibit their polynucleation in organic solvents. Dioxo-Mo(VI) complexes of the type LMoO2(SPh), where L = hydrotris(3,5-dimethylpyrazol-1-yl)borate (Tp), hydrotris(3-isopropylpyrazol-1-yl)borate (TpiPr), and hydrotris(3,5-dimethyl-1,2,4-triazol-1-yl)borate (Tz) and related derivatives are the only model systems that mimic the complete reaction sequence of sulfite oxidase, in which oxygen from water is ultimately incorporated into product. The quasi-reversible, one-electron reduction of TpMoO2(SPh) in acetonitrile exhibits a positive potential shift upon addition of a hydroxylic proton donor, and the magnitude of the shift correlates with the acidity of the proton donor. These reductions produce two Mo(V) species, [TpMoVO2(SPh)] and TpMoVO(OH)(SPh), that are related by protonation. Measurement of the relative amounts of these two Mo(V) species by EPR spectroscopy enabled the pKa of the MoV(OH) unit in acetonitrile to be determined and showed it to be several pKa units smaller than that for water in acetonitrile. Similar electrochemical-EPR experiments for TpiPrMoO2(SPh) indicated that the pKa for its MoV(OH) unit was ∼1.7 units smaller than that for TpMoVO(OH)(SPh). Density functional theory calculations also predict a smaller pKa for TpiPrMoVO(OH)(SPh) compared to TpMoVO(OH)(SPh). Analysis of these results indicates that coupled electron-proton transfer (CEPT) is thermodynamically favored over the indirect process of metal reduction followed by protonation. The crystal structure of TpiPrMoO2(SPh) is also presented.  相似文献   

16.
Reaction of [Mo(O)Cl(CNMe)4]+ with the linear tetraphos ligand meso and rac prP4 leads to a mixture of [Mo(O)Cl(κ4-meso-prP4)]+ and [Mo(O)Cl(CNMe)(κ3-rac-prP4)]+ which are identified by X-ray structural analysis and/or 31P NMR spectroscopy. In the meso κ4-product both of the phenyl groups of the central phosphorus atoms are oriented towards the oxo ligand whereas in the rac κ3-product one of these phenyl groups is oriented to the oxo and the other to the chloro ligand. The origin of the different coordination modes lies in the different steric demands of the oxo and chloro ligands. The influences of the steric interactions are enhanced by the fact that exchange of the fourth isonitrile is difficult. This hypothesis is supported by the preparation of the complex [Mo(O)Cl(CNMe)(dpepp)]PF6 whose isonitrile ligand is inert towards exchange by monophosphines, even under drastic conditions.  相似文献   

17.
Resonance Raman spectra of protocatechuate 3,4-dioxygenase from Pseudomonas aeruginosa have been investigated during the reaction of the enzyme with substrate and oxygen. It is found that the spectrum of the turned-over enzyme is indistinguishable from that of the resting enzyme in the absence of substrate, and is characterized by resonance-enhanced tyrosinate ring vibrational modes at 1263 and 1174 cm?1. In the ternary ESO2 complex, however, the tyrosinate vibrational modes are shifted to 1252 and 1165 cm?1, respectively. There is no evidence for any dioxygen vibrations in the spectra of ESO2 complexes prepared with 16O2, 18O2, and 16O18O in the region between 1300 and 200 cm?1. The results of this resonance Raman study are interpreted to indicate that molecular oxygen is attached only to the substrate (but not iron) in the stable intermediate, and that the concomitant rearrangement at C4 of the substrate induces a substantial change in geometry of the tyrosine residues associated with the iron complex. Furthermore, the optical spectrum of the ESO2 complex (λmax = 520 nm) is dominated by tyrosinate → Fe(III) charge transfer and contains little or no peroxide → Fe(III) charge transfer. These results invalidate the previously advanced analogy in spectral properties between this enzyme and the respiratory protein, oxyhemerythrin.  相似文献   

18.
 The individual rate constants for intramolecular electron transfer (IET) between the MoVIFeII and MoVFeIII forms of chicken liver sulfite oxidase (SO) have been determined at a variety of pH values, and at high and low anion concentrations. Large anions such as EDTA do not inhibit IET as dramatically as do small anions such as SO4 2– and Cl, which suggests that specific anion binding at the sterically constrained Mo active site is necessary for IET inhibition to occur.IET may require that SO adopt a conformation in which the Mo and Fe centers are held in close proximity by electrostatic interactions between the predominantly positively charged Mo active site, and the negatively charged heme edge. Thus, small anions which can fit into the Mo active site will weaken this electrostatic attraction and disfavor IET. The rate constant for IET from FeII to MoVI decreases with increasing pH, both in the presence and absence of 50 mM SO4 2–. However, the rate constant for the reverse process exhibits no significant pH dependence in the absence of SO4 2–, and increases with pH in the presence of 50 mM SO4 2–. This behavior is consistent with a mechanism in which IET from MoV to FeIII is coupled to proton transfer from MoV–OH to OH, and the reverse IET process is coupled to proton transfer from H2O to MoVI=O. At high concentrations of small anions, direct access of H2O or OHto the Mo-OH will be blocked, which provides a second possible mechanism for inhibition of IET by such anions. Inhibition by anions is not strictly competitive, however, and Tyr322 may play an important intermediary role in transferring the proton when an anion blocks direct access of H2O or OH to the Mo-OH. Competing H-bonding interactions of the Mo-OH moiety with Tyr322 and with the anion occupying the active site may also be responsible for the well-known equilibrium between two EPR-distinct forms of SO that is observed for the two-electron reduced enzyme. Received: 21 December 1998 / Accepted: 6 April 1999  相似文献   

19.
Membrane-bound nitrate reductase from Marinobacter hydrocarbonoclasticus 617 can be solubilized in either of two ways that will ultimately determine the presence or absence of the small (Ι) subunit. The enzyme complex (NarGHI) is composed of three subunits with molecular masses of 130, 65, and 20 kDa. This enzyme contains approximately 14 Fe, 0.8 Mo, and 1.3 molybdopterin guanine dinucleotides per enzyme molecule. Curiously, one heme b and 0.4 heme c per enzyme molecule have been detected. These hemes were potentiometrically characterized by optical spectroscopy at pH 7.6 and two noninteracting species were identified with respective midpoint potentials at E m = +197 mV (heme c) and −4.5 mV (heme b). Variable-temperature (4–120 K) X-band electron paramagnetic resonance (EPR) studies performed on both as-isolated and dithionite-reduced nitrate reductase showed, respectively, an EPR signal characteristic of a [3Fe–4S]+ cluster and overlapping signals associated with at least three types of [4Fe–4S]+ centers. EPR of the as-isolated enzyme shows two distinct pH-dependent Mo(V) signals with hyperfine coupling to a solvent-exchangeable proton. These signals, called “low-pH” and “high-pH,” changed to a pH-independent Mo(V) signal upon nitrate or nitrite addition. Nitrate addition to dithionite-reduced samples at pH 6 and 7.6 yields some of the EPR signals described above and a new rhombic signal that has no hyperfine structure. The relationship between the distinct EPR-active Mo(V) species and their plausible structures is discussed on the basis of the structural information available to date for closely related membrane-bound nitrate reductases. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
The Mo(V) center of plant sulfite oxidase from Arabidopsis thaliana (At-SO) has been studied by continuous wave and pulsed EPR methods. Three different Mo(V) EPR signals have been observed, depending on pH and the technique used to generate the Mo(V) oxidation state. At pH 6, reduction by sulfite followed by partial reoxidation with ferricyanide generates an EPR spectrum with g-values similar to the low-pH (lpH) form of vertebrate SOs, but no nearby exchangeable protons can be detected. On the other hand, reduction of At-SO with Ti(III) citrate at pH 6 generates a Mo(V) signal with large hyperfine splittings from a single exchangeable proton, as is typically observed for lpH SO from vertebrates. Reduction of At-SO with sulfite at high pH generates the well-known high-pH (hpH) signal common to all sulfite oxidizing enzymes. It is proposed that, depending on the conformation of Arg374, the active site of At-SO may be in "closed" or "open" forms that differ in the degree of accessibility of the Mo center to substrate and water molecules. It is suggested that at low pH the sulfite-reduced At-SO has coordinated sulfate and is in the "closed form". Reoxidation to Mo(V) by ferricyanide leaves bound sulfate trapped at the active site, and consequently, there are no ligands with exchangeable protons. Reduction with Ti(III) citrate injects an electron directly into the active site to generate the [Mo(V)[triple bond]O(OH)]2+ unit that is well-known from model chemistry and which has a single exchangeable proton with a large isotropic hyperfine interaction. At high pH, the active site is in the "open form", and water can readily exchange into the site to generate the hpH SO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号