首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The preparative aspects of isoelectric focusing (IEF) in immobilized pH gradients (IPG) have been investigated as a function of the following parameters: environmental ionic strength (I), gel geometry and shape of pH gradient. As model proteins, hemoglobin (Hb) A and a minor, glycosylated component (HbA1c), with a delta pI = 0.04 pH units, have been selected. The load capacity increases almost linearly, as a function of progressively higher I values, from 0.5 X up to 2 X molarity of buffering Immobiline (pK 7.0) to abruptly reach a plateau at 3 X concentration of buffering ion. The load capacity also increases almost linearly as a function of gel thickness from 1 to 5 mm, without apparently levelling off. When decreasing the pH interval from 1 pH unit (pH 6.8-7.8) to 1/2 pH unit (pH 7.05-7.55) the amount of protein loaded in the HbA zone could be increased by 40%. In 5 mm thick gels, at 2 X pK 7.0 Immobiline concentration, over a 1/2 pH unit span, up to 350 mg HbA (in a 12.5 X 11 cm gel) could be loaded in a single zone, the load limit of the system being around 45 mg protein/ml gel volume.  相似文献   

2.
Amphoteric, isoelectric agarose membranes, as devised by Martin and Hampson [Martin, A.J.P. and Hampson, F. (1978) J. Chromatogr. 159, 101-110], are found unsuitable for blocking electroendosmosis in multi-compartment electrolysers during preparative isoelectric focusing, due to the poor and highly unpredictable incorporation of carboxyls and amino groups on the polysaccharide moiety. New, polyacrylamide-based membranes are described, containing as buffers and titrants the Immobiline chemicals used to produce immobilized pH gradients. These new membranes are supported on both faces by a non-woven polypropylene cloth, a material exhibiting minimal adsorption properties for proteins. Due to the extensively developed Immobiline technology, membranes with highly predictable isoelectric points, well-defined buffering capacity and conductivity can be synthesized at any pH value along the pH 3-10 scale. They are effective in blocking electroendosmosis even when the delta pH on either side of the membrane is as high as 1.5 pH unit.  相似文献   

3.
In mixed-bed, carrier ampholyte-Immobiline gels, a primary, insolubilized pH gradient is admixed with a secondary, soluble pH gradient generated by amphoteric buffers. The latter are the standard carrier ampholytes (e.g. Ampholine, Pharmalyte, Biolyte, Servalyte), used in conventional isoelectric focusing, admixed to Immobiline gels in levels of approximately 0.5-1%. It is here shown that polybuffers 96 (covering the pH 6-9 range) and 74 (covering the pH 4-7 interval) used as eluents in chromatofocusing, can effectively substitute the standard carrier ampholytes with considerable savings (they are 1/16th as expensive as the latter chemicals).  相似文献   

4.
The evolution of isoelectric focusing is traced back over the years, from a somewhat shaky origin to present-day immobilized pH gradients. Four generations of methodology are classified and discussed: (A) Kolin's approach, consisting of a two-step technique, generation of a pH gradient by diffusion followed by a rapid electrokinetic protein separation; (B) Svensson-Rilbe's approach, consisting of creating a pH gradient in an electric field by utilizing as buffers a multitude of carrier ampholytes, i.e. of amphoteric species possessing good buffering capacity and conductivity at their pI; (C) immobilized pH gradients, by which non-amphoteric buffers and titrants (acrylamido weak acids and bases), titrated around their pK values, are grafted (insolubilized) onto a polyacrylamide gel matrix and (D) mixed-bed carrier ampholyte-Immobiline gel, by which a soluble, carrier ampholyte generated pH gradient coexists in the same matrix with an insoluble, Immobiline generated, pH gradient.  相似文献   

5.
A new technique for generatiing extended pH gradients (3–4 pH units) in Immobiline gels for isoelectric separations is described. A five-chamber gradient mixer has been built, based on the ‘Varigard’-type mixers of Peterson and Sober (Anal. Chem. 31, 1959, 857–862). Each chamber contains one of the following Immobilines, in this order: pK values 4.4, 4.6, 6.2, 7.0 and 8.5, titrated in the pH 4–8 interval with non-buffering Immobilines pK 9.3 (in the case of the two acidic Immobilines) and pK 3.6 (in the case of the three basic Immobilines). In this way it is possible to cast, in a highly reproducible way, an immobilized pH gradient in thepH range 4.0 to 7.5, which should be ideal for isoelectric separations in the first dimension of two-dimensional techniques. A computer program is also described which, given the molarities and pK values of the different Immobilines in the chambers of the Varigrad mixer, can generate the theoretical pH profile, together with the buffering capacity (β) and ionic strength (I) courses.  相似文献   

6.
A new technique for generating extended pH gradients (5 pH units) in Immobiline gels is reported. The previously described (J. Biochem. Biophys. Methods 7, 1983, 123-142) five-chamber gradient mixer has been replaced by a two-vessel device. A single mixture of the available Immobilines (pK 3.6, 4.6, 6.2, 7.0, 8.5 and 9.3) is made, with relative concentrations adjusted so as to produce the most uniform buffering power throughout the desired pH interval. This mixture is then divided into two portions, which are titrated to the extremes of the required pH span with an acidic titrant (Immobiline pK approximately 1) and a basic species (Immobiline pK 9.95). Highly reproducible pH gradients (pH 4-9) are thus generated, which appear extremely useful for the first dimensioned of 2-dimensional techniques. Our previously reported computer program has been implemented with an optimization algorithm which, given any cocktail of Immobilines, automatically adjusts the relative initial concentrations until the smoothest possible beta power is found. For the first time it is possible to perform IEF under controlled physico-chemical parameters: pH span and linearity, beta power, ionic strength and molarity of the buffering species.  相似文献   

7.
Modifications of the LKB Immobiline isoelectric focusing (IEF) technique are described for use under conditions that solubilize and denature most proteins (8 M urea and 2% Nonidet-P40). This procedure permits pH gradients that are four- to fivefold shallower than previously available with conventional ampholine-IEF procedures. It can also be used as a first dimension in two-dimensional gel electrophoresis. The advantage of the stable ultranarrow pH gradient is demonstrated by directly comparing the resolution of vertebrate brain tubulins using (i) denaturing conventional ampholine-IEF and (ii) denaturing Immobiline-IEF. Analysis of tubulin on the Immobiline-IEF gel increases the separation distance between the individual tubulins and distinguishes differences among tubulin samples that could not be resolved by conventional ampholine isoelectric focusing.  相似文献   

8.
An effective preparative isoelectric focusing method has been developed using the LKB Immobiline system in a vertical slab gel apparatus. Advantages of this procedure are ease of sample application, excellent resolution, and the direct visualization of focused bands. Narrow pH gradients have been used to separate apolipoprotein E3 isoforms (pH gradient 4.9-5.9) and to resolve the apolipoprotein C mixture (pH gradient 4.0-5.0). Recoveries ranged from 40 to 70%. The method should be valuable for protein and isoform purification.  相似文献   

9.
A new acrylamido buffer has been synthesized, for use in isoelectric focusing in immobilized pH gradients. This compound (2-acrylamido glycolic acid) has a pK = 3.1 (at 25 degrees C, 20 mM concentration during titration) and is used, by titration with the pK 9.3 Immobiline, to produce a linear pH gradient in the pH 2.5-3.5 interval. Pepsin (from pig stomach) focused in this acidic pH gradient is resolved into four components, two major (with pI values 2.76 and 2.78) and two minor (having pI values 2.89 and 2.90). This is the first time that such strongly acidic proteins could be focused in an immobilized pH gradient. Even in conventional isoelectric focusing in amphoteric buffers it has been impossible to focus reproducibly very-low-pI macromolecules.  相似文献   

10.
A new method is described for preparative protein purification, based on isoelectric focusing on immobilized pH gradients. The principle is entirely new, as it is based on keeping the protein of interest isoelectric, in a flow-chamber, and focusing the impurities in the Immobiline gel. For this, a hydraulic flow is coupled orthogonally to an electric flow, sweeping away the non-isoelectric impurities from the recycling chamber. The sample flow-chamber is built in the centre of the apparatus, and is coupled to an upper and lower segment of an immobilized pH gradient. The protein to be purified is kept isoelectric in the flow-chamber and prevented from leaving it by arranging for the extremities of the immobilized pH gradient, forming the ceiling and the floor of this chamber, to have isoelectric points just higher (e.g. +0.05 pH units, on the cathodic side) and just lower (e.g. -0.05 pH units, on the anodic side) than the known pI of the species of interest. Macromolecules and small ions leave the flow chamber at a rate corresponding to a first order reaction kinetics (the plot of log C vs. time being linear). In general, for macromolecules, 12 h of recycling under current allow removal of 95% impurities. After 24 h of recycling, the protein of interest is more than 99.5% pure. The recoveries are very high (approaching 100%) as the sample under purification never enters the Immobiline gel and thus does not have to be extracted from a hydrophilic matrix, as typical of preparative gel electrophoresis.  相似文献   

11.
The apparent isoelectric point of a component focused on polyacrylamide gels is normally estimated by extrapolating a pH gradient determined on one gel to another gel which has been stained for protein in order to locate the position of the component (1). The pH gradient is determined by slicing the gel transversely and reading the pH of the eluate after soaking the segments for 1–2 hr in a small amount of degassed water. It is assumed that the gradients in both gels are identical. Alternatively, an antimony microelectrode has been used to measure pH gradients directly in unsectioned gels (2). Similar techniques have been applied to polyacrylamide gel slabs and are reviewed by Vesterberg (3). Righetti and Drysdale (4) have recently reviewed these and other aspects of isoelectric focusing in gels.I report here a very precise method for the determination of a protein “isoelectric point” that can be accomplished with a single gel. The technique is demonstrated with yeast phosphoglycerate kinase and the very low density lipoprotein (VLDL) fraction from human plasma.  相似文献   

12.
With the synthesis of a new, strongly basic Immobiline (pK 10.3 at 10 degrees C) it has been possible to formulate a new pH 10-11 recipe for focusing very alkaline proteins, not amenable to fractionation with conventional isoelectric focusing in carrier ampholyte buffers. In this formulation, water is added as an acidic Immobiline having pK = 14 and a unit molar concentration (or with a pK = 15.74 and standard 55.56 molarity) since around pH 11 its buffering power becomes significant. The gel contains a 'conductivity quencher', i.e. a density gradient incorporated in the matrix, with the dense region located on the cathodic side (pH 11) for (a) smoothing the voltage gradient on the separation cell and (b) reducing the anodic electrosmotic flow due to the net positive charge acquired by the matrix at pH 11 (1 mM excess protonated amino groups to act as counterions to the 1 mm OH- groups in the bulk water solution generated by the local value of pH 11). Excellent focusing is obtained for such alkaline proteins as lysozyme (pI 10.55), So-6 (a leaf protein, pI 10.49), cytochrome c (pI 10.45) and ribonuclease (pI 10.12).  相似文献   

13.
The preparation of ultrathin polycrylamide gels with different kinds of gradients (pH, substrates, inhibitors) is described. By using these gels fro contact printing after isolectric with Ampholines or Immobilines and for diffusion tests, the influence of pH or increasing amounts of substrates or inhibitors on enzyme activities is studied. These methods are successfully applied for the optimization of zymogram techniques and for the easy characterization of industrial microbiol enzyme preparations for technological purposes. With buffer-generated pH gradient gels, the pH optimum of all isoenzyme activities is demonstrated by contatc printing; the total amount of esoenzyme acitivities dependent on pH is determined by a diffusion test. Gels with a linear gradient between 0 and 8 M urea are used for isoelectric focusing, diffusion tests and contact printing in order to differentiate the unfolding and denaturing effects of urea on isoenzymes. Alterations in polygalacturonase isoenzyme patterns dependent on urea concentration of denaturation but by the change of chargers. In respect to band sharpness and straightness urea can be added advantagenously up to 2 M without changing the isoelectric points or activities of the isoenzymes. for the reproducibility of zymograms it is interesting to see that different substrate concentrations reveal different isoenzyme patterns.  相似文献   

14.
Due to the high reproducibility of pH gradient slope and width, immobilized pH gradients (IPG) have been used as the first dimension of two-dimensional techniques in order to generate maps of constant spot position in the pMr. However, when coupling IPG to SDS (sodium dodecyl sulphate) gels two problems were encountered: vertical streaking, due to incomplete zone solubilization in SDS, and horizontal streaking, due to spot fusion along the pH axis caused by the electroendosmosis of the charged Immobiline gels. Two methodical modifications are herewith described to overcome these drawbacks: (a) the SDS equilibrium time of the first-dimension gel has been prolonged to at least 30 min; (b) the SDS electrophoresis gel has been cast together with a starting gel, containing 2.5 mM of each Immobiline species used in the first dimension, which serves as a transition from the charged to the uncharged gel.  相似文献   

15.
Stable pH gradients were formed and focusing of proteins was carried out in polyacrylamide gels containing mixtures of simple, amphoteric buffers, replacing the Ampholine hitherto used in isoelectric focusing (IF). Stable pH gradients can also be formed between acid anolyte and basic catholyte if Ampholine is replaced by nonamphoteric buffers. The fact that focusing can be carried out with nonampholytes shows that focusing in this case is, and in all other cases may be, nonisoelectric. It is postulated that the pH gradient in IF forms by steady-state stacking (isotachophoresis) and forms within the stack. In distinction to ordinary steady-state stacking, however, the stack remains confined within the gel (or density gradient) since the strong acid and base in the electrolyte reservoirs bar by deprotonation or electrostatic repulsion migration into the electrode chambers.  相似文献   

16.
The use of agarose gels as supporting media for flat-bed preparative isoelectric focusing was applied to the fractionation of serum proteins in the pH range 3.5–6, and red cell hemolysates in the pH range 3–8. The agarose gels are easy to prepare, give linear pH gradients, and do not appear to produce molecular sieving effects. Up to 1 g serum proteins can be loaded on the gels, with recoveries between 68 and 82%. Nucleoside phosphorylase from red cell lysates was recovered with 76% yield, indicating that no appreciable denaturation of this enzyme had occurred. Preparative isoelectric focusing in agarose gels provides a useful alternative to existing techniques of preparative isoelectric focusing in sucrose gradients or granulated gels.  相似文献   

17.
A previously described two-dimensional electrophoresis procedure (O'Farrell, 1975) combined isoelectric focusing and sodium dodecylsulfate slab gel electrophoresis to give high resolution of proteins with isoelectric points in the range of pH 4–7. This paper describes an alternate procedure for the first dimension which, unlike isoelectric focusing, resolves basic as well as acidic proteins. This method, referred to as nonequilibrium pH gradient electrophoresis (NEPHGE), involves a short time of electrophoresis toward the cathode and separates most proteins according to their isoelectric points. Ampholines of different pH ranges are used to optimize separation of proteins with different isoelectric points. The method is applied to the resolution of basic proteins with pH 7–10 Ampholines, and to the resolution of total cellular proteins with pH 3.5–10 Ampholines. Histones and ribosomal proteins can be readily resolved even though most have isoelectric points beyond the maximum pH attained in these gels. The separation obtained by NEPHGE with pH 3.5–10 Ampholines was compared to that obtained when isoelectric focusing was used in the first dimension. The protein spot size and resolution are similar (each method resolving more than 1000 proteins), but there is less resolution of acidic proteins in this NEPHGE gel due to compression of the pattern. On the other hand, NEPHGE gels extend the range of analysis to include the 15–30% of the proteins which are excluded from isoelectric focusing gels. The distribution of cell proteins according to isoelectric point and molecular weight for a procaryote (E. coli) was compared to that of a eucaryote (African green monkey kidney); the eucaryotic cell proteins are, on the average, larger and more basic.  相似文献   

18.
Using a semiporous plug of agar gel to support a sucrose density gradient column without restricting electrical conductivity, Massey and Deal [J. Biol. Chem.248, 56 (1973)] were able to use a conventional polyacrylamide gel electrophoresis apparatus to carry out single tube isoelectric focusing experiments in density gradients in only 2 hr using minute amounts (50 μg) of sample and very little ampholyte (0.18 ml); no cooling apparatus was required. In this work we report that 1) polyacrylamide provides a superior gel plug and 2) that ten isoelectric focusing tubes can easily be run simultaneously in a conventional polyacrylamide gel electrophoresis apparatus. In addition, the isoelectric points of eight proteins, with pI values ranging from 5.1 to 8.8 have been determined and the kinetics of the approach-to-isoelectric-focusing-equilibrium have been analyzed. Of special interest is the discovery that in the initial stages of focusing, in these sucrose density gradients, a major peak is formed at each end of the column; these two peaks migrate toward each other and finally coalesce into a single peak. Similar, although less pronounced, effects were previously observed by Catsimpoolas and Wang [Anal. Biochem.39, 141 (1971)] in focusing experiments in polyacrylamide gels. With all other conditions constant, the time required to reach equilibrium is 1) less in broad range (e.g., 3–10) pH gradients than it is in narrow range (e.g., 5–8) pH gradients and 2) generally greater with higher molecular weight substances than with lower molecular weight substances. Explanations are given for all of these kinetic phenomena.  相似文献   

19.
We have recently described an apparatus for protein purification based on a segmented Immobiline gel, having one or more liquid interlayers in between. The principle is entirely new, as it is based on keeping the protein of interest isoelectric, in a flow chamber, and focusing the impurities in an Immobiline gel. For this, a hydraulic flow is coupled orthogonally to an electric flow, sweeping away the non-isoelectric impurities from the recycling chamber. We now demonstrate that the present apparatus can be efficiently used for protein desalting. Hemoglobin A samples, containing 50 mM NaCl or 50 mM ammonium acetate, could be efficiently desalted in 2 h of recycling, after which the total salt content had decreased to less than 0.005 mM (a salt decrement of more than 10,000 fold the initial input). However, with polyprotic buffers (sulphate, citrate, phosphate, oligoamines) the desalting process was much slower, typically of the order of 20 h, possibly due to interaction of these species with the surrounding Immobiline matrix. In this last case, outside pH control (e.g. with a pH-stat) is necessary during protein purification, as, due to the faster removal of the monovalent counterion, the solution in the recycling chamber can become rather acidic or alkaline. It is demonstrated that the 2 extremities of the Immobiline segments facing the sample recycling chamber act indeed as isoelectric membranes, having a good buffering capacity, preventing the protein macroion from leaving the chamber by continuously titrating it to its isoelectric point.  相似文献   

20.
A new method for preparative protein purification is described, based on the use of Immobiline matrices. After electrofocusing, the protein zone of interest is recovered by electrophoretic transfer to a hydroxyapatite gel, from which it is eluted with 0.2 M phosphate buffer, pH 6.8, with yields for the proteins studied in the range 76-98%. For six different proteins, the focusing step gives a common upper limit of approximately 45 mg protein/ml gel as mean concentration in a focused protein zone. It is demonstrated that in practical preparative work, components with a pI difference of 0.007 pH units can be completely resolved, and that on a 5-mm-thick gel of dimensions 240 X 110 mm, samples containing as much as 400 mg of the major protein component can be applied. Focusing of large amounts of a salt-containing sample is demonstrated with the aid of human serum. A theoretical expression is given relating the concentration distribution and maximum protein concentration within a focused zone to the applied voltage, the pH slope used and the zone width. Based on this expression and the finding of an upper concentration limit for a protein we shown how to optimize the parameters in preparative work with immobilized pH gradients in relation to the separation power needed. Finally, it is shown that, in comparison with conventional preparative electrofocusing in polyacrylamide gels, immobilized pH gradients allow a ten-fold increase in load, whilst still giving a resolution comparable to that of analytical isoelectric focusing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号