首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two peptidases which convert 125I-Lys-Arg-ME and 125I-ME-Arg6, respectively, to 125I-ME, have been identified and characterized in bovine adrenomedullary chromaffin granules. The former is referred to as a secretory granule peptidase (SGP) and the latter as a carboxypeptidase B-like enzyme (CPB-like) [7] which is here further characterized. SGP cleaved 125I-Lys-Arg-ME to produce only 125I-ME and was localized in chromaffin granules which contained co2+-stimulated CPB-like activity, ME, and catecholamines. Both the SGP and the CPB-like enzymes appear to be thiol-metalloproteases. While the CPB-like enzyme seems likely to be involved in processing the enkephalin precursors [7], SGP may function as a trypsin-like or aminopeptidase enzyme in secretory granules.  相似文献   

2.
A photoreactive (d-Ala2, p-N3-Phe4-Met5)enkephalin derivative was prepared, iodinated with carrier-free 125I, and then purified by high-performance liquid chromatography. The purified radioactive photoprobe was monoiodinated at the amino terminal tyrosine residue. This radioactive photoprobe was used to photoaffinity label membranes prepared from the rat brain (minus cerebellum) and the spinal cord. The photolabeled membranes were analyzed by sodium dodecyl sulfate gel electrophoresis. A 46,000-Da protein was specifically photolabeled in these membrane preparations. The photolabeling of this protein was inhibited by peptides related to enkephalin but not by unrelated substance P or gastrin tetrapeptide. A concentration-dependent inhibition of the photolabeling of the 46,000-Da protein was observed in the presence of competing ligands specific for the μ-, δ-, and κ-opioid receptors. These data demonstrate that the radioactive photoprobe labels the μ-, δ-, and κ-opioid receptors. Although there is no evidence available to show that the 46,000-Da protein is identical in all the cases, our data strongly suggest that it is a binding protein common to all of the opioid receptor subtypes.  相似文献   

3.
A membrane-bound aminopeptidase which cleaves the tyrosin-glycine bond of enkephalin was purified about 1600-fold from monkey brain. This aminopeptidase hydrolyzed Leu-enkephalin with a Km value of 35 μM and also hydrolyzed basic, neutral and aromatic amino acid β-naphthylamides. An apparently homogeneous enzyme consisted of a single polypeptide chain with a molecular weight of approx. 100 000. The optimum pH was in the neutral region. From the analysis of the reaction products, only aminopeptidase activity was detected. The enzyme was inactivated by metal chelators, but the activity could be restored by the addition of divalent cations, such as Co2+, Mg2+ and Zn2+. Puromycin, bestatin and amastatin, which are aminopeptidase inhibitors derived from microorganism, showed strong competitive inhibition of the enzyme, the most potent being amastatin, with a Ki value of 0.02 μM.  相似文献   

4.
Guinea pig ileum tissue preparations contain enzymes which degrade both leucine and methionine enkephalin by cleavage of the N-terminal tyrosine residue. Similar enkephalin degrading activity is also found in the fluid bath surrounding ileum tissue preparations and appears to arise from serum and broken cell enzymes. Chelating agents such as 1,10-phenanthroline and 8-OH quinoline are effective inhibitors of enkephalin destruction by these enzymes but in the concentrations necessary to inhibit all enzyme activity, they disturb the contractility of the ileum during invitro bioassays. The presence of enkephalin degrading enzymes and the lack of appropriate peptidase inhibitors may hinder the determination and quantification of enkephalin release in this tissue.  相似文献   

5.
The role of exposed tyrosine side-chains in enzyme-catalysed reactions has been studied for porcine-pancreatic alpha-amylase, sweet-potato beta-amylase, and Aspergillus niger glucamylase using N-acetylimidazole as the specific protein reagent. The changes in activity binding affinity (Δk?1/k+1), and kinetic parameters (Km,k2) due to acetylation of the phenolic hydroxyl groups have been determined. Acetylation of each enzyme occurred by an “apparent” first-order reaction with a rate constant of 0.72–1.4 x 10?1min?1. Acetylation increased the apparent Km (soluble starch as the substrate) for each enzyme (appreciably for alpha-amylase and glucamylase), whereas k2 remained unchanged. Similarly, for each enzyme, the binding affinity for immobilised cyclohexa-amylose decreased appreciably, whereas the catalytic activity was reduced only to a small degree (and remained unchanged for beta-amylase). It is concluded that the tyrosine groups located in the active centre of each enzyme have a substrate-binding function.  相似文献   

6.
Tyrosine-specific protein kinase (ATP: protein phosphotransferase, EC 2.7.1.37) activity was measured in normal human nonadherent peripheral blood lymphocytes using synthetic peptide substrates having sequence homologies with either pp60src or c-myc. A high level of tyrosine-specific protein kinase activity was found associated with the cell particulate fraction (100 000 × g pellet). High-pressure liquid chromatography and phosphoamino acid analysis of the synthetic peptide substrates substantiated the phosphorylation of tyrosine residues by the particulate fraction enzyme. The human enzyme was also capable of phosphorylating a synthetic random polymer of 80% glutamic acid and 20% tyrosine. Enzyme activity was half-maximal with 22 μM Mg·ATP and had apparent Km values for the synthetic peptides from 1.9 to 7.1 mM. The enzyme preferred Mg2+ to Mn2+ for optimal activity and was stimulated 2–5-fold by low levels (0.05%) of some ionic as well as non-ionic detergents including deoxycholate, Nonidet P-40 and Triton X-100. The enzyme activity was not stimulated by N6;O2′-dibutyryl cyclic AMP (100 μM), N6;O2′-dibutyryl cyclic GMP (100 μM), Ca2+ (200 μM), insulin (1 μg/ml) or homogeneous human T-cell growth factor (3 μg/ml) under the conditions used. Alkaline-resistant phosphorylation of particulate proteins in vitro revealed protein bands with Mr 59 000 and 54 000 suggesting that there are endogenous substrates for the human lymphocyte tyrosine protein kinase.  相似文献   

7.
The N-terminal segment of the Semliki Forest virus polyprotein is an intramolecular serine protease that cleaves itself off after the invariant Trp267 from a viral polyprotein and generates the mature capsid protein. After this autoproteolytic cleavage, the free carboxylic group of Trp267 interacts with the catalytic triad (His145, Asp167 and Ser219) and inactivates the enzyme. We have deleted the last 1-7 C-terminal residues of the mature capsid protease to investigate whether removal of Trp267 regenerates enzymatic activity. Although the C-terminally truncated polypeptides do not adopt a defined three-dimensional structure and show biophysical properties observed in natively unfolded proteins, they efficiently catalyse the hydrolysis of aromatic amino acid esters, with higher catalytic efficiency for tryptophan compared to tyrosine esters and kcat/KM values up to 5 × 105 s−1 M−1. The enzymatic mechanism of these deletion variants is typical of serine proteases. The pH enzyme activity profile shows a pKa1 = 6.9, and the Ser219Ala substitution destroys the enzymatic activity. In addition, the fast release of the first product of the enzymatic reaction is followed by a steady-state second phase, indicative of formation and breakdown of a covalent acyl-enzyme intermediate. The rates of acylation and deacylation are k2 = 4.4±0.6 s−1 and k3 = 1.6±0.5 s−1, respectively, for a tyrosine derivative ester substrate, and the amplitude of the burst phase indicates that 95% of the enzyme molecules are active. In summary, our data provide further evidence for the potential catalytic activity of natively unfolded proteins, and provide the basis for engineering of alphavirus capsid proteins towards hydrolytic enzymes with novel specificities.  相似文献   

8.
Summary The carboxypeptidase previously described3 that releases tyrosine from tubulinyl-tyrosine was obtained from rat brain preparation free of tubulin-tyrosine ligase. The enzyme was purified 24-fold. Its activity was increased by 2 mm MgCl2 or 30 mm KCl. Mercaptoethanol (50 mm), colchicine (0.2 mm) and tyrosine (0.2 mm) showed practically no effect on the release of tyrosine whereas iodoacetate (2 mm), deoxycholate (0.5%), CuCl2 (0.1 mm), ZnC12 (0.1 mm) and NaCl or KCI (240 mm) had a strong inhibitory effect. The optimal pH of this enzyme. was 6.3–7.A preparation containing tubulin-tyrosine ligase free of carboxypeptidase was also obtained. This preparation catalyzed the release of tyrosine from tyrosinated tubulin in the presence of ADP, Mg2+, K and Pi and the incorporation of tyrosine into tubulin. For the releasing activity the optimal concentration of MgCl2 was 3–20 mm and of KCl was 10–30 mm. For ADP the maximal activity was at 0.3 mm or higher.An important difference between the activities of the carboxypeptidase and the ligase was that the former was active on denatured tubulin whereas the latter was not.  相似文献   

9.
Phospholipase A2 (PLA2) is an enzyme which participates in signalling mechanisms cleaving arachidonate from sn-2 position of glycerophospholipids. In this study we have verified the existence of a PLA2-like activity in the free living protozoan, Tetrahymena pyriformis GL. This activity is Ca2+-independent, EDTA (10 mM) has no effect on its activity. Quinacrine (0.1 mM) and 4-bromophenacyl bromide (BPB; 0.1 mM) inhibited, melittin (20 μg/ml significantly stimulated the PLA2 activity and the release of free arachidonic acid (AA) from 1-acyl 2-14C-arachidonyl-3-phosphatidylethanolamine substrate. Melittin stimulated PLA2 hyperactivity is Ca2+-dependent. There was no considerable alteration in the PLA2 activity by stimulation of the activity by tyrosine kinase (with vanadate, H202), phospholipase C (PLC) (with phorbol 12, 13-dibutyrate) or G-proteins (with NaF, AlF4 thus in Tetrahymena PLA2 activity seems to be independent of these—in Tetrahymena (also functioning)—signalling pathways. Treatment with quinacrine and BPB leads to decreased synthesis and disturbed breakdown of phospholipids and phosphoinositides. These findings suggest that PLA2 activity is in connection with the phospholipid metabolism of Tetrahymena.  相似文献   

10.
A method is described for the purification to homogeneity of the DOPA-decarboxylase present in the integument of blowfly larve. The enzyme has a Mr of 90,000–96,000 and is composed of two subunits of Mr 50,000 and 46,000. The enzyme decarboxylates DOPA and is practically inactive towards 5-hydroxytryptophan, tryptophan, tyrosine, and phenylalanine. Enzyme activity is enhanced by Al3+ and Mn2+ and is depressed by Cu2+ and Hg2+. N-Acetyldopamine is a competitive inhibitor of the decarboxylase.  相似文献   

11.
The rate of degradation of 125I-labelled [Tyr11]somatostatin by isolated rat hepatocytes was similar to that of unlabelled somatostatin. Reaction was dependent upon cell concentration and temperature, being rapid at 37°C and negligible at 0°C. The apparent Km for the overall degradation process was approximately the same for degradation by hepatocytes and by partially-purified liver plasma membranes. Extracellular breakdown of somatostatin, by proteases released from cells into the incubation medium, represented less than 10% of the cell-associated degradation. Homogenization of hepatocytes resulted in a 10–20-fold increase in the degrading ability of the cells. After incubation of 125I-labelled [Tyr11]somatostatin and 125I-labelled [Tyr1]somatostatin with hepatocytes, 125I-labelled tyrosine was the major radioactive product identified in the incubation medium. The rate of release of 125I-labelled tyrosine from the labelled [Tyr1] analogue was approximately 11 times greater than from the labelled [Tyr11] analogue. 125I-labelled [Tyr11]somatostatin bound to the cells in a non-saturable manner and approx. 70% of the cell-associated radioactivity could be dissociated by dilute acid. The rate of degradation of somatostatin was unchanged by reagents that inhibit the internalisation and lysosomal degradation of polypeptides by cell suspensions but was reduced by reagents that inhibit sulphydryl-dependent proteases. It is proposed that plasma-membrane associated proteolysis, involving both endo- and exopeptidases may represent the predominant degradative pathway of somatostatin in vivo.  相似文献   

12.
Phospholipase A2 (EC 3.1.1.4) from cobra venom (Naja naja naja) has been covalently immobilized to aryl amine porous glass beads by diazo coupling. The attachment of the enzyme to the glass beads is apparently through tyrosine. The activity of the immobilized enzyme toward phospholipid substrate has been monitored using the Triton X-100/phospholipid mixed micelle assay system. The activity of the immobilized phospholipase A2 toward phosphatidylcholine is about 160 μmol min?1 ml?1 of glass beads, and the specific activity is about 13 μmol min?1 mg?1 of protein in this assay system. The pH rate profile and apparent pKa in 10 mm Ca2+ of the immobilized enzyme parallels that of the soluble enzyme. The substrate specificity of the immobilized enzyme toward individual phospholipid species in mixed micelles is phosphatidylcholine ? phosphatidylethanolamine. In binary lipid mixtures in mixed micelles containing phosphatidylcholine and phosphatidylethanolamine together, a reversal in specificity is observed, and phosphatidylethanolamine is the preferred substrate. This unusual specificity reversal in binary mixtures is also observed for the soluble enzyme. The activity of the immobilized enzyme toward phospholipid inserted in mixed micelles is the same as toward a synthetic phospholipid which forms monomers, while a 20-fold decrease in activity toward monomeric substrate is observed for the soluble enzyme. The immobilized enzyme is stable at temperatures of 90 °C as is the soluble enzyme. However, p-bromphenacyl bromide, a reagent which inactivates the soluble enzyme, does not inactivate the immobilized enzyme. The immobilized enzyme can be stored frozen for several months and is reusable. The mechanism of action of immobilized phospholipase A2 from cobra venom and the potential usefullness of the bound enzyme as a probe for phospholipids in surfaces of membranes is considered.  相似文献   

13.
When polymorphonuclear neutrophils were stored at 4 °C for up to 2 weeks, the maintenance of the integrity of PMNs was examined by determining changes in enzyme activity, enzyme release, stimulated superoxide anion generation, and sensitivity to hypotonicity. Until at least 3-day storage, no changes were observed in enzyme activity, enzyme release, and stimulated superoxide anion generagion. After 1-week storage, the ability of PMNs to generate superoxide anions decreased considerably and the extracellular release of lactate dehydrogenase (LDH) was observed. After 2 weeks of storage, this LDH release and inhibition of O2?-generating ability of PMNs increased further, although enzyme activities were only slightly affected except for acid p-nitrophenyl phosphatase. The resistance of PMNs to hypotonic solutions decreased with increasing preservation time at 4 °C.  相似文献   

14.
THERE is a daily rhythm in the activity of tyrosine transaminase in rat liver1 which is characterized by a three-fold rise in enzyme activity from low daytime values to a peak several hours after dark. The oscillation persists in the absence of the pituitary or adrenal glands2–4 and during fasting5,6. Noradrenaline seems to play a role in the regulation of the enzyme and thereby contributes to the generation of the daily rhythm of activity7, but elevation of tissue noradrenaline in vivo suppresses the circadian enzyme rhythm at basal levels8. Noradrenaline inhibits tyrosine transaminase activity in vitro by competing with enzyme for binding with the pyridoxal-5′-phosphate co-factor7 and recent observations suggest that noradrenaline regulates tyrosine transaminase turnover in vivo by the same mechanism.  相似文献   

15.
Sunitinib® (SU11248) is a highly potent tyrosine kinase inhibitor targeting vascular endothelial growth factor receptor (VEGFR). Radiolabeled inhibitors of RTKs might be useful tools for monitoring RTKs levels in tumour tissue giving valuable information for anti-angiogenic therapy. We report here the synthesis of a 125I-labeled derivative of sunitinib® and its first radiopharmaceutical characterization.The non-radioactive reference compound 5-iodo-sunitinib 4 was prepared by Knoevenagel condensation of 5-iodo-oxindole with the corresponding substituted 5-formyl-1H-pyrrole. In a competition binding assay against VEGFR-2 a binding constant (Kd) of 16 nM for 4 was found. The ability of 4 to inhibit tyrosine kinase activity was demonstrated on RTK expressing cells suggesting this radiotracer as a useful tool for monitoring VEGFR expression. 5-[125I]lodo-sunitinib, [125I]-4 was obtained via destannylation of the corresponding tributylstannyl precursor with [125I]NaI in the presence of H2O2 in high radiochemical yield (>95%) and radiochemical purity (<98%) after HPLC purification. Determination of human plasma protein binding at time intervals of 0; 1; 2; 4 and 24 h suggested a low non-specific binding of 5-10%. Preliminary biodistribution studies of [125I]-4 in healthy CD-1 mice showed a relatively high uptake in VEGFR-2 rich tissues like kidney and lung followed by rapid washout (9.6 and 9.7; 4.5 and 3.8% ID/g of kidney and lung at 1 and 4 h, respectively).  相似文献   

16.
The fluorescent and photo-affinity derivatives of enkephalin, Tyr-D-Ala-Gly-Phe-Leu-Lys-Nε-Rhodamine (II) and Tyr-D-Ala-Gly-Phe-Leu-Lys-Nε-nitro-azidophenyl (III), were prepared by conventional methods followed by chemical modification. The two peptides inhibit the binding of 125I-labeled enkephalin to brain membrane preparations, with apparent IC50 values of 5.9 nM and 5.5 nM for peptides II and III, respectively. The iodinated derivative of peptide III binds specifically to brain membrane preparations with an apparent Kd of about 2.1 × 10?9M.  相似文献   

17.
Allantoinase was purified about 10-fold from nitrogen fixing root nodules of pigeonpea (Cajanus cajan) using (NH4)2S04 fractionation and chromatography on Sephadex G-100. The purified preparation showed a specific activity of 1.73 nkat/mg protein, Mr of 125 000, pH optimum between 7.5 and 7.7 and Km of 13.3 mM. The enzyme was heat stable up to 70dg and metal ions, except Hg2+, had no effect on the enzyme activity. The enzyme was inhibited significantly by reducing agents. Amino acids, ammonium, nitrate, potential precursors of allantoin and a number of other intermediate metabolites of ureide biosynthetic pathway had no effect on enzyme activity. It is suggested that allantoinase is unlikely to regulate the production of ureides in the nodule tissue.  相似文献   

18.
2-Aminomuconate, an intermediate in the metabolism of tryptophan in mammals, is also an intermediate in the biodegradation of nitrobenzene by Pseudomonas pseudoalcaligenes JS45. Strain JS45 hydrolyzes 2-aminomuconate to 4-oxalocrotonic acid, with the release of ammonia, which serves as the nitrogen source for growth of the microorganism. As an initial step in studying the novel deamination mechanism, we report here the purification and some properties of 2-aminomuconate deaminase. The purified enzyme migrates as a single band with a molecular mass of 16.6 kDa in 15% polyacrylamide gel electrophoresis under denaturing conditions. The estimated molecular mass of the native enzyme was 100 kDa by gel filtration and 4 to 20% gradient nondenaturing polyacrylamide gel electrophoresis, suggesting that the enzyme consists of six identical subunits. The enzyme was stable at room temperature and exhibited optimal activity at pH 6.6. The Km for 2-aminomuconate was approximately 67 μM, and the Vmax was 125 μmol · min−1 · mg−1. The N-terminal amino acid sequence of the enzyme did not show any significant similarity to any sequence in the databases. The purified enzyme converted 2-aminomuconate directly to 4-oxalocrotonate, rather than 2-hydroxymuconate, which suggests that the deamination was carried out via an imine intermediate.  相似文献   

19.
Abstract: The acute effect of physiological doses of estradiol (E2) on the dopaminergic activity in the striatum was studied. In a first series of experiments, ovariectomized rats were injected with 17α or 17β E2 (125, 250, or 500 ng/kg of body weight, s.c.), and in situ tyrosine hydroxylase (TH) activity (determined by DOPA accumulation in the striatum after intraperitoneal administration of NSD 1015) was quantified. A dose-dependent increase in striatal TH activity was observed within minutes after 17β (but not 17α) E2 treatment. To examine whether E2 acts directly on the striatum, in a second series of experiments, anesthetized rats were implanted in the striatum with a push-pull cannula supplied with an artificial CSF containing [3H]tyrosine. The extracellular concentrations of total and tritiated dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) were measured at 20-min intervals. Addition of 10?9M 17β (but not 17α) E2 to the superfusing fluid immediately evoked an ~50% increase in [3H]DA and [3H]DOPAC extracellular concentrations, but total DA and DOPAC concentrations remained constant. This selective increase in the newly synthesized DA and DOPAC release suggested that E2 affects DA synthesis rather than DA release. Finally, to determine whether this rapid E2-induced stimulation of DA synthesis was a consequence of an increase in TH level of phosphorylation, the enzyme constant of inhibition by DA (Ki DA) was calculated. Incubation of striatal slices in the presence of 10?9M 17β (but not 17α) E2 indeed evoked an approximate twofold increase in the Ki DA of one form of the enzyme. It is concluded that physiological levels of E2 can act directly on striatal tissue to stimulate DA synthesis. This stimulation appears to be mediated, at least in part, by a decrease in TH susceptibility to end-product inhibition, presumably due to phosphorylation of the enzyme. The rapid onset of this effect, and the fact that the striatum does not contain detectable nuclear E2 receptors, suggest a nongenomic action of the steroid.  相似文献   

20.
Plasma membrane extracts from Herpes simplex virus type 1 transformed hamster embryo fibroblasts were chromatographed on Lens culinaris lectin coupled to Sepharose (LcH-Sepharose) and analysed by dodecyl sulphate polyacrylamide gel electrophoresis. Coomassie blue-staining revealed two major protein bands with apparent molecular weights of 125 000 and of about 75 000–90 000. In plasma membranes isolated from these tumor cells prior labeled with [3H]fucose or [3H]glucosamine these bands contained the highest amounts of incorporated radioactivity. Separation by LeH-Sepharose-affinity chromatography as well as metabolic labeling clearly demonstrates their glycoprotein character. The 125 000 protein coincides with alkaline phosphodiesterase I activity with a Km of 6 · 10?4 M for TMP p-nitrophenyl ester and is competitively inhibited by UDP-N-acetylglucosamine. This enzymatic activity is also present in normal hamster embryo fibroblasts. Gel electrophoresis of the Lens culinaris lectin-binding glycoproteins from plasma membranes of normal hamster embryo fibroblasts additionally revealed a strong alkaline phosphatase activity represented by an apparent molecular weight of 150 000, while HSV1 hamster tumor cells contain only a very weak activity of this enzyme activity. HSV-lytically infected cells, however, have unchanged levels of alkaline phosphatase activity, whereas alkaline phosphodiesterase activity increases slightly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号