首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Fungal Biology Reviews》2020,34(4):189-201
Genome-editing CRISPR-Cas systems, using Cas9 and Cas12a endonucleases, have improved our ability to precisely edit genomes and control gene expression. We summarize here the knowledge gained from using CRISPR-Cas9 and CRISPR-Cas12a in fungal research. Also discussed are strategies developed for limiting the occurrences of off-target mutations caused by CRISPR-Cas genome editing.  相似文献   

2.
The Streptococcus pyogenes CRISPR/Cas9 (SpCas9) system is now widely utilized to generate genome engineered mice; however, some studies raised issues related to off-target mutations with this system. Herein, we utilized the Campylobacter jejuni Cas9 (CjCas9) system to generate knockout mice. We designed sgRNAs targeting mouse Tyr or Foxn1 and microinjected into zygotes along with CjCas9 mRNA. We obtained newborn mice from the microinjected embryos and confirmed that 50% (Tyr) and 38.5% (Foxn1) of the newborn mice have biallelic mutation on the intended target sequences, indicating efficient genome targeting by CjCas9. In addition, we analyzed off-target mutations in founder mutant mice by targeted deep sequencing and whole genome sequencing. Both analyses revealed no off-target mutations at potential off-target sites predicted in silico and no unexpected random mutations in analyzed founder animals. In conclusion, the CjCas9 system can be utilized to generate genome edited mice in a precise manner.  相似文献   

3.
Targeted chromosomal insertion of large genetic payloads in human cells leverages and broadens synthetic biology and genetic therapy efforts. Yet, obtaining large-scale gene knock-ins remains particularly challenging especially in hard-to-transfect stem and progenitor cells. Here, fully viral gene-deleted adenovector particles (AdVPs) are investigated as sources of optimized high-specificity CRISPR-Cas9 nucleases and donor DNA constructs tailored for targeted insertion of full-length dystrophin expression units (up to 14.8-kb) through homologous recombination (HR) or homology-mediated end joining (HMEJ). In muscle progenitor cells, donors prone to HMEJ yielded higher CRISPR-Cas9-dependent genome editing frequencies than HR donors, with values ranging between 6% and 34%. In contrast, AdVP transduction of HR and HMEJ substrates in induced pluripotent stem cells (iPSCs) resulted in similar CRISPR-Cas9-dependent genome editing levels. Notably, when compared to regular iPSCs, in p53 knockdown iPSCs, CRISPR-Cas9-dependent genome editing frequencies increased up to 6.7-fold specifically when transducing HMEJ donor constructs. Finally, single DNA molecule analysis by molecular combing confirmed that AdVP-based genome editing achieves long-term complementation of DMD-causing mutations through the site-specific insertion of full-length dystrophin expression units. In conclusion, AdVPs are a robust and flexible platform for installing large genomic edits in human cells and p53 inhibition fosters HMEJ-based genome editing in iPSCs.  相似文献   

4.
5.
6.
CRISPR/Cas9是新兴的基因编辑技术,在生命科学研究中发挥着重要的作用。将它引入本科生的实验教学,使本科生了解这项前沿科研技术很有意义。我们创建了一个基于CRISPR/ Cas9技术的本科教学实验体系。该实验体系侧重CRISPR/Cas9技术在哺乳动物细胞中的应用,选用一株基因组上被插入mCherry基因的小鼠胚胎成纤维细胞为实验材料,命名为STO-82。首先设计靶向mCherry的sgRNA,构建CRISPR-Cas9/sgRNA共表达质粒。经测序验证无误后,转染到STO-82细胞。采用流式细胞仪分析检测mCherry阴性和阳性两群细胞,分选出阴性单细胞并扩大培养。最后用测序检验单克隆细胞中靶标DNA序列的编辑情况。结果显示,靶位点有插入或缺失突变,说明体系创建成功。该实验体系将sgRNA设计、CRISPR-Cas9/sgRNA共表达质粒的构建、细胞转染、单细胞分选、单克隆细胞培养、测序序列分析等内容融合为一个综合实验,用于高年级本科生的实验教学。根据实际情况,将教学实践内容分解分块教学,也可以做完整性项目教学。本教学实践采用10人左右的小班分块教学,2人一组,经过3个班(共13组)的实践,绝大部分学生都能完成实验,得到预期结果。通过这个实验,学生加深了对CRISPR/Cas9技术的原理和实验流程的理解,锻炼了实验操作能力和严谨的科研思维,也使学生对该技术的医疗应用风险有了一些认识。  相似文献   

7.
Unclear or misclassified genetic background of laboratory rodents or a lack of strain awareness causes a number of difficulties in performing or reproducing scientific experiments. Until now, genetic differentiation between strains and substrains of inbred mice has been a challenge. We have developed a screening method for analyzing inbred strains regarding their genetic background. It is based on 240 highly informative short tandem repeat (STR) markers covering the 19 autosomes as well as X and Y chromosomes. Combination of analysis results for presence of known C57BL/6 substrain-specific mutations together with autosomal STR markers and the Y-chromosomal STR-haplotype provides a comprehensive snapshot of the genetic background of mice. In this study, the genetic background of 72 mouse lines obtained from 18 scientific institutions in Germany and Austria was determined. By analyzing only 3 individuals per genetically modified line it was possible to detect mixed genetic backgrounds frequently. In several lines presence of a mispairing Y chromosome was detected. At least every second genetically modified line displayed a mixed genetic background which could lead to unexpected and non-reproducible results, irrespective of the investigated gene of interest.  相似文献   

8.
Genome editing using the Cas9 endonuclease of Streptococcus pyogenes has demonstrated unparalleled efficacy and facility for mo fying genomes in a wide variety of organisms. Caenorhabditis elegans is one of the most convenient multicellular organisms for gene analysis, and the application of this novel genome editing technique to this organism promises to revolutionize analysis of gene funct in the future. CRISPR-Cas9 has been successfully used to generate imprecise insertions and deletions via non-homologous end-join mechanisms and to create precise mutations by homology-directed repair from donor templates. Key variables are the methods used deliver the Cas9 endonuclease and the efficiency of the single guide RNAs. CRISPR-Cas9-mediated editing appears to be highly spec in C. elegans, with no reported off-target effects. In this review, I briefly summarize recent progress in CRISPR-Cas9-based geno editing in C. elegans, highlighting technical improvements in mutagenesis and mutation detection, and discuss potential future app cations of this technique.  相似文献   

9.
Mice provide an unlimited source of animal models to study mammalian gene function and human diseases. The powerful genetic modification toolbox existing for the mouse genome enables the creation of, literally, thousands of genetically modified mouse strains, carrying spontaneous or induced mutations, transgenes or knock-out/knock-in alleles which, in addition, can exist in hundreds of different genetic backgrounds. Such an immense diversity of individuals needs to be adequately annotated, to ensure that the most relevant information is kept associated with the name of each mouse line, and hence, the scientific community can correctly interpret and benefit from the reported animal model. Therefore, rules and guidelines for correctly naming genes, alleles and mouse strains are required. The Mouse Genome Informatics Database is the authoritative source of official names for mouse genes, alleles, and strains. Nomenclature follows the rules and guidelines established by the International Committee on Standardized Genetic Nomenclature for Mice. Herewith, both from the International Society for Transgenic Technologies (ISTT) and from the scientific journal Transgenic Research, we would like to encourage all our colleagues to adhere and follow adequately the standard nomenclature rules when describing mouse models. The entire scientific community using genetically modified mice in experiments will benefit.  相似文献   

10.
乙酰基亚硝基脲诱导小鼠突变的初步研究   总被引:7,自引:0,他引:7  
目的 探索乙酰基亚硝基脲 (ENU)诱导小鼠突变的效率 ,筛查并获得能显性遗传的突变型小鼠。方法 采用 8~ 10周龄的雄性C57BL 6小鼠 33只、DBA 2小鼠 18只 ,腹腔注射ENU10 0mg kg ,每周一次共三次 ,与同品系母鼠配种 ,在后代小鼠中针对可见表型筛查突变个体。结果 处理雄鼠有 9至 13周的不育期 ;在已经筛查的12 4 1只小鼠中得到眼睛异常、多趾、少趾及腹部白斑、矮小等突变个体 6 1只 ,突变率约 5 % ;获得单基因显性遗传的突变品系 2种。结论 ENU为小鼠的强诱突变剂 ;通过诱变可以得到遗传突变小鼠 ,为建立人类疾病动物模型提供条件 ;大规模诱变实验对小鼠功能基因组的研究有重要意义  相似文献   

11.
Modern genetic engineering technologies enable us to manipulate the mouse genome in increasingly complex ways to model human biology and disease. As a result, the number of mouse strains carrying transgenes or induced mutations has increased markedly. Thorough understanding of strain and gene nomenclature is essential to ensure that investigators know what kind of mouse they have, and what to expect in terms of phenotype. Genetically engineered mice alter gene function by over-expressing, eliminating, or modifying a gene product. The resulting phenotype is often unexpected and not completely understood, necessitating special care and potentially complex breeding and husbandry strategies. Animal care technicians responsible for routine maintenance of the colony, facility managers, veterinarians, and research personnel working with mice should be well informed about the nature of the mutation, distinguishing characteristics, and necessary precautions in handling the mice. Personnel working with mice also must be aware of the multitude of factors intrinsic to the mouse and present in the environment that can influence reproductive performance. Finally, diligent adherence to the maintenance of genetic quality in conjunction with cryopreservation of germplasm is the best insurance against loss of a colony.  相似文献   

12.
基于细菌基因组规律成蔟的间隔短回文重复(Clustered regularly interspaced short palindromic repeats)发展而来的新型基因编辑方法(CRISPR-Cas9)对生物医学研究是一场划时代的革命。它几乎可用于大多数生物体的基因编辑。秀丽线虫是一种非常经典的遗传学模式生物,CRISPR-Cas9基因编辑技术进一步加速了对其基因功能及各种生物学问题的研究。文中主要总结CRISPR-Cas9基因编辑系统在遗传学模式生物秀丽线虫中的发展和应用。  相似文献   

13.
Endolysins are produced by (bacterio)phages to rapidly degrade the bacterial cell wall and release new viral particles. Despite sharing a common function, endolysins present in phages that infect a specific bacterial species can be highly diverse and vary in types, number, and organization of their catalytic and cell wall binding domains. While much is now known about the biochemistry of phage endolysins, far less is known about the implication of their diversity on phage–host adaptation and evolution. Using CRISPR-Cas9 genome editing, we could genetically exchange a subset of different endolysin genes into distinct lactococcal phage genomes. Regardless of the type and biochemical properties of these endolysins, fitness costs associated to their genetic exchange were marginal if both recipient and donor phages were infecting the same bacterial strain, but gradually increased when taking place between phage that infect different strains or bacterial species. From an evolutionary perspective, we observed that endolysins could be naturally exchanged by homologous recombination between phages coinfecting a same bacterial strain. Furthermore, phage endolysins could adapt to their new phage/host environment by acquiring adaptative mutations. These observations highlight the remarkable ability of phage lytic systems to recombine and adapt and, therefore, explain their large diversity and mosaicism. It also indicates that evolution should be considered to act on functional modules rather than on bacteriophages themselves. Furthermore, the extensive degree of evolvability observed for phage endolysins offers new perspectives for their engineering as antimicrobial agents.

Endolysins are produced by bacteriophages to degrade the host cell wall and release new particles, but the implications of their diversity on phage-host adaptation and evolution is unknown. This study uses CRISPR-Cas9 genome editing to reveal novel insights into bacteriophage endolysin diversity and phage-bacteria interactions as well as into endolysin adaptation towards a new bacterial host.  相似文献   

14.
我国果胶酶制剂使用广泛但专一性不高,高效、专一的果胶酶制剂在市场上仍然匮乏。利用基因工程技术改造果胶酶生产菌株——黑曲霉来生产单一成分的果胶酶成为解决果胶酶应用需求的一种有效方案。构建一种高效的CRISPR-Cas9基因编辑技术,可为构建高产单一性果胶酶的黑曲霉底盘菌株提供有效的基因编辑工具。首先敲除产果胶酶黑曲霉基因组上的pyrG基因构建尿嘧啶营养缺陷型菌株AnΔpyrG,并在AnΔpyrG菌株的pyrG基因位点定点整合Cas9基因表达盒和pyrG基因表达盒,构建组成型表达Cas9基因的黑曲霉菌株AnCas9,再构建含有gpdA启动子、锤头结构核酶、HDV核酶的稳定性表达sgRNA的pLM2-sgRNA质粒,建立CRISPR-Cas9基因编辑体系。利用该技术失活AnCas9菌株中的2个聚半乳糖醛酸酶基因4978020和4983861来检测构建的CRISPR-Cas9基因编辑效率并检测4978020基因功能缺失菌株的表型变化和产酶变化,结果表明果胶酶基因编辑效率大于50%,AnΔ4978020的表型和果胶酶酶活性与出发菌株均无明显变化。在黑曲霉中成功构建了高效的Cas9基因编辑技术,4978020基因功能缺失也不影响菌株表型,为构建高产单一性果胶酶黑曲霉底盘菌株奠定基础。  相似文献   

15.
Although the green seaweed Ulva is one of the most common seaweeds in the coastal regions with well-studied ecological characteristics, few reverse genetic technologies have been developed for it. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system is a simple genome-editing technology based on a ribonucleoprotein (RNP) complex composed of an endonuclease and programmable RNA to target particular DNA sequences. Genome editing makes it possible to generate mutations on a target gene in non-model organisms without established transgenic technologies. In this study, we applied the CRISPR-Cas9 RNP genome-editing system to the green seaweed Ulva prolifera, using polyethylene glycol (PEG)-mediated transfection. Our experimental system disrupts a single gene (UpAPT) encoding adenine phosphoribosyl transferase (APT) and generates a resistant phenotype for gametophytes cultured in a medium with toxic compound 2-fluoroadenine. The PEG-mediated transfection used for gametes resulted in 2-fluoroadenine-resistant strains containing short indels or substitutions on UpAPT. Our results showed that the CRISPR-Cas9 system with PEG-mediated transfection was efficient for genome editing in Ulva.  相似文献   

16.
The bacterial CRISPR-Cas9 system has been adapted for use as a genome editing tool. While several recent reports have indicated that successful genome editing of mice can be achieved, detailed phenotypic and molecular analyses of the mutant animals are limited. Following pronuclear micro-injection of fertilized eggs with either wild-type Cas9 or the nickase mutant (D10A) and single or paired guide RNA (sgRNA) for targeting of the tyrosinase (Tyr) gene, we assessed genome editing in mice using rapid phenotypic readouts (eye and coat color). Mutant mice with insertions or deletions (indels) in Tyr were efficiently generated without detectable off-target cleavage events. Gene correction of a single nucleotide by homologous recombination (HR) could only occur when the sgRNA recognition sites in the donor DNA were modified. Gene repair did not occur if the donor DNA was not modified because Cas9 catalytic activity was completely inhibited. Our results indicate that allelic mosaicism can occur following -Cas9-mediated editing in mice and appears to correlate with sgRNA cleavage efficiency at the single-cell stage. We also show that larger than expected deletions may be overlooked based on the screening strategy employed. An unbiased analysis of all the deleted nucleotides in our experiments revealed that the highest frequencies of nucleotide deletions were clustered around the predicted Cas9 cleavage sites, with slightly broader distributions than expected. Finally, additional analysis of founder mice and their offspring indicate that their general health, fertility, and the transmission of genetic changes were not compromised. These results provide the foundation to interpret and predict the diverse outcomes following CRISPR-Cas9-mediated genome editing experiments in mice.  相似文献   

17.
18.
Genetic variables that influence phenotype   总被引:3,自引:0,他引:3  
Characterization of genetically engineered mice requires consideration of the gene of interest and the genetic background on which the mutation is maintained. A fundamental prerequisite to deciphering the genetic factors that influence the phenotype of a mutant mouse is an understanding of genetic nomenclature. Mutations and transgenes are often maintained on segregating or mixed backgrounds of often-unspecified origin. Minimizing the importance of strain and substrain differences, especially among 129 strains, can lead to poor experimental design or faulty interpretations of data. Genetic factors that influence phenotype can be categorized as traits that are unique to the background strain, unique to the gene of interest, or an interaction of both the background strain and the gene of interest. The commonly used inbred strains are generally well characterized and understood; however, specific genetic alterations combined with genes unique to the background inbred strain may lead to unexpected results. Genetic background effects can be analyzed and controlled for by using specific targeting and breeding strategies. Selection of appropriate experimental controls is critical. Ideally, mutations or transgenes should be characterized on more than one genetic background and in hybrids of the two progenitor strains. This approach may lead to the identification of novel genetic modifiers of the "gene of interest." Conditional mutagenesis technologies increase the options for controlling genetic background effects in addition to permitting the study of developmental and temporal changes in gene and protein expression and thus phenotype.  相似文献   

19.
Recent advances in genome editing, especially CRISPR-Cas nucleases, have revolutionized both laboratory research and clinical therapeutics. CRISPR-Cas nucleases, together with the DNA damage repair pathway in cells, enable both genetic diversification by classical non-homologous end joining (c-NHEJ) and precise genome modification by homology-based repair (HBR). Genome editing in zygotes is a convenient way to edit the germline, paving the way for animal disease model generation, as well as human embryo genome editing therapy for some life-threatening and incurable diseases. HBR efficiency is highly dependent on the DNA donor that is utilized as a repair template. Here, we review recent progress in improving CRISPR-Cas nuclease-induced HBR in mammalian embryos by designing a suitable DNA donor. Moreover, we want to provide a guide for producing animal disease models and correcting genetic mutations through CRISPR-Cas nuclease-induced HBR in mammalian embryos. Finally, we discuss recent developments in precise genome-modification technology based on the CRISPR-Cas system.Supplementary InformationThe online version of this article (10.1007/s13238-021-00838-7) contains supplementary material, which is available to authorized users.  相似文献   

20.
《Fungal biology》2020,124(3-4):228-234
The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system is widely used as a tool to precisely manipulate genomic sequence targeted by sgRNA (single guide RNA) and is adapted in different species for genome editing. One of the major concerns of CRISPR-Cas9 is the possibility of off-target effects, which can be remedied by the deployment of high fidelity Cas9 variants. Ustilago maydis is a maize fungal pathogen, which has served as a model organism for biotrophic pathogens for decades. The successful adaption of CRISPR-Cas9 in U. maydis greatly facilitated effector biology studies. Here, we constructed an U. maydis reporter strain that allows in vivo quantification of efficiency and target specificity of three high fidelity Cas9 variants, Cas9HF1, Cas9esp1.1 and Cas9hypa. This approach identified Cas9HF1 as most specific Cas9 variant in U. maydis. Furthermore, whole genome sequencing showed absence of off-target effects in U. maydis by CRISPR-Cas9 editing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号