首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Outcrosses from genetically modified (GM) to conventional crops by pollen-mediated gene flow (PMGF) are a concern when growing GM crops close to non-GM fields. This also applies to the experimental releases of GM plants in field trials. Therefore, biosafety measures such as isolation distances and surveying of PMGF are required by the regulatory authorities in Switzerland. For two and three years, respectively, we monitored crop-to-crop PMGF from GM wheat field trials in two locations in Switzerland. The pollen donors were two GM spring wheat lines with enhanced fungal resistance and a herbicide tolerance as a selection marker. Seeds from the experimental plots were sampled to test the detection method for outcrosses. Two outcrosses were found adjacent to a transgenic plot within the experimental area. For the survey of PMGF, pollen receptor plots of the conventional wheat variety Frisal used for transformation were planted in the border crop and around the experimental field up to a distance of 200 m. Although the environmental conditions were favorable and the donor and receptor plots flowered at the same time, only three outcrosses were found in approximately 185,000 tested seedlings from seeds collected outside the experimental area. All three hybrids were found in the border crop surrounding the experimental area, but none outside the field. We conclude that a pollen barrier (border crop) and an additional isolation distance of 5 m is a sufficient measure to reduce PMGF from a GM wheat field trial to cleistogamous varieties in commercial fields below a level that can be detected.  相似文献   

2.
This paper considers the statistical analysis of entomological count data from field experiments with genetically modified (GM) plants. Such trials are carried out to assess environmental safety. Potential effects on nontarget organisms (NTOs), as indicators of biodiversity, are investigated. The European Food Safety Authority (EFSA) gives broad guidance on the environmental risk assessment (ERA) of GM plants. Field experiments must contain suitable comparator crops as a benchmark for the assessment of designated endpoints. In this paper, a detailed protocol is proposed to perform data analysis for the purpose of assessing environmental safety. The protocol includes the specification of a list of endpoints and their hierarchical relations, the specification of intended levels of data analysis, and the specification of provisional limits of concern to decide on the need for further investigation. The protocol emphasizes a graphical representation of estimates and confidence intervals for the ratio of mean abundances for the GM plant and its comparator crop. Interpretation relies mainly on equivalence testing in which confidence intervals are compared with the limits of concern. The proposed methodology is illustrated with entomological count data resulting from multiyear, multilocation field trials. A cisgenically modified potato line (with enhanced resistance to late blight disease) was compared to the original conventional potato variety in the Netherlands and Ireland in two successive years (2013, 2014). It is shown that the protocol encompasses alternative schemes for safety assessment resulting from different research questions and/or expert choices. Graphical displays of equivalence testing at several hierarchical levels and their interpretation are presented for one of these schemes. The proposed approaches should be of help in the ERA of GM or other novel plants.  相似文献   

3.
The commercial use of genetically modified (GM) crops requires prior assessment of the risks to the environment when these crops are grown in the field or distributed. Assessments protocols vary across countries and GM crop events, but there is a common need to assess environmental biosafety. In this study, we conducted an environmental risk assessment in a confined field of GM tomato plants that can produce miraculin, a taste-altering protein that causes sour tastes to be perceived as sweet, for practical use in Japan. The evaluation was conducted for 1) competitiveness (the ability to compete with wild plants for nutrients, sunlight, and growing areas and prevent their growth) and 2) the production of toxic substances (the ability to produce substances that interfere with the habitat and growth of wild plants, animals, and microorganisms). Investigations of plant morphology and growth characteristics as well as tolerance to low temperature during early growth and overwintering for assessment endpoints related to competitiveness showed no biologically meaningful difference between GM tomato and non-GM tomato. In addition, harmful substances in plant residues and root secretions were assessed by the plow-in method, succeeding crop test and soil microflora tests, and it was determined that GM tomato does not exhibit an increase in harmful substances. Based on these results, it was concluded that GM miraculin-accumulating tomato is comparable to conventional tomato and is unlikely to have unintended adverse effects in the natural environment of Japan.  相似文献   

4.
5.
A major concern related to the adoption of genetically modified (GM) crops in agricultural systems is the possibility of unwanted GM inputs into non-GM crop production systems. Given the increasing commercial cultivation of GM crops in the European Union (EU), there is an urgent need to define measures to prevent mixing of GM with non-GM products during crop production. Cross-fertilization is one of the various mechanisms that could lead to GM-inputs into non-GM crop systems. Isolation distances between GM and non-GM fields are widely accepted to be an effective measure to reduce these inputs. However, the question of adequate isolation distances between GM and non-GM maize is still subject of controversy both amongst scientists and regulators. As several European countries have proposed largely differing isolation distances for maize ranging from 25 to 800 m, there is a need for scientific criteria when using cross-fertilization data of maize to define isolation distances between GM and non-GM maize. We have reviewed existing cross-fertilization studies in maize, established relevant criteria for the evaluation of these studies and applied these criteria to define science-based isolation distances. To keep GM-inputs in the final product well below the 0.9% threshold defined by the EU, isolation distances of 20 m for silage and 50 m for grain maize, respectively, are proposed. An evaluation using statistical data on maize acreage and an aerial photographs assessment of a typical agricultural landscape by means of Geographic Information Systems (GIS) showed that spatial resources would allow applying the defined isolation distances for the cultivation of GM maize in the majority of the cases under actual Swiss agricultural conditions. The here developed approach, using defined criteria to consider the agricultural context of maize cultivation, may be of assistance for the analysis of cross-fertilization data in other countries.  相似文献   

6.
7.
From 2000 to 2003 a range of Farm Scale Evaluation (FSE) trials were established in the UK to assess the effect of the release and management of herbicide tolerant (HT) crops on arable weeds and invertebrates. The FSE trials for maize were also used to investigate crop-to-crop gene flow and to develop a statistical model for the prediction of gene flow frequency that can be used to evaluate current separation distance guidelines for GM crops. Seed samples were collected from the non-GM half of 55 trial sites and 1,055 were tested for evidence of gene flow from the GM HT halves using a quantitative PCR assay specific to the HT (pat) gene. Rates of gene flow were found to decrease rapidly with increasing distance from the GM source. Gene flow was detected in 30% of the samples (40 out of 135) at 150 m from the GM source and events of GM to non-GM gene flow were detected at distances up to and including 200 m from the GM source. The quantitative data were subjected to statistical analysis and a two-step model was found to provide the best fit for the data. A dynamic whole field model predicted that a square field (150 m x 150 m in size) of grain maize would require a separation distance of 3 m for the adjacent crop to be below a 0.9% threshold (with <2% probability of exceeding the threshold). The data and models presented here are discussed in the context of necessary separation distances to achieve various possible thresholds for adventitious presence of GM in maize.  相似文献   

8.
Gene flow from genetically modified (GM) crops to conventional non-GM crops is a serious concern for protection of conventional and organic farming. Gene flow from GM watermelon developed for rootstock use, containing cucumber green mottle mosaic virus (CGMMV)-coat protein (CP) gene, to a non-GM isogenic control variety “Clhalteok” and grafted watermelon “Keumcheon” was investigated in a small scale field trial as a pilot study. Hybrids between GM and non-GM watermelons were screened from 1304 “Chalteok” seeds and 856 “Keumcheon” seeds using the duplex PCR method targeting theCGMMV- CP gene as a marker. Hybrids were found in all pollen recipient plots. The gene flow frequencies were greater for “Chaiteok” than for “KeumcheonD; with 75% outcrossing in the “Chaiteok” plot at the closest distance (0.8 m) to the GM plot. A much larger scale field trial is necessary to identify the isolation distance between GM and non-GM watermelon, as the behaviors of insect pollinators needs to be clarified in Korea.  相似文献   

9.
Duc C  Nentwig W  Lindfeld A 《PloS one》2011,6(10):e25014
The cultivation of genetically modified (GM) plants has raised several environmental concerns. One of these concerns regards non-target soil fauna organisms, which play an important role in the decomposition of organic matter and hence are largely exposed to GM plant residues. Soil fauna may be directly affected by transgene products or indirectly by pleiotropic effects such as a modified plant metabolism. Thus, ecosystem services and functioning might be affected negatively. In a litterbag experiment in the field we analysed the decomposition process and the soil fauna community involved. Therefore, we used four experimental GM wheat varieties, two with a race-specific antifungal resistance against powdery mildew (Pm3b) and two with an unspecific antifungal resistance based on the expression of chitinase and glucanase. We compared them with two non-GM isolines and six conventional cereal varieties. To elucidate the mechanisms that cause differences in plant decomposition, structural plant components (i.e. C∶N ratio, lignin, cellulose, hemicellulose) were examined and soil properties, temperature and precipitation were monitored. The most frequent taxa extracted from decaying plant material were mites (Cryptostigmata, Gamasina and Uropodina), springtails (Isotomidae), annelids (Enchytraeidae) and Diptera (Cecidomyiidae larvae). Despite a single significant transgenic/month interaction for Cecidomyiidae larvae, which is probably random, we detected no impact of the GM wheat on the soil fauna community. However, soil fauna differences among conventional cereal varieties were more pronounced than between GM and non-GM wheat. While leaf residue decomposition in GM and non-GM wheat was similar, differences among conventional cereals were evident. Furthermore, sampling date and location were found to greatly influence soil fauna community and decomposition processes. The results give no indication of ecologically relevant adverse effects of antifungal GM wheat on the composition and the activity of the soil fauna community.  相似文献   

10.
Genetic modification using gene transfer (GM) is still controversial when applied to plant breeding at least in Europe. One major concern is how GM affects other genes and thus the metabolism of the plant. In this study, 225 genetically modified lines of the ornamental plant Gerbera hybrida and 42 non-GM gerbera varieties were used to investigate changes in secondary metabolism. The cytotoxicity of GM and non-GM gerbera extracts was evaluated on human cell lines derived from lung, liver, and intestinal tissues. The results indicate that the safety profile for GM gerbera lines is similar to the viability pattern for non-GM varieties-none of the extracts were toxic. In addition, metabolic fingerprints of gerbera extracts were identified using thin-layer chromatography and analysed by principal component analysis (PCA), the nearest neighbour classifier, and Fligner-Killeen test. No new compounds unique to GM lines were observed. With PCA, no separation between GM gerbera lines and varieties could be demonstrated. In the nearest neighbour classifier, 54% of the samples found the expected neighbour based on the gene constructs used for transformation. With Fligner-Killeen test, we studied if the amounts of compounds vary more in GM gerberas than in varieties. In most cases, there were no statistically significant differences between the varieties and GM lines or there was more variation among the non-GM varieties than in the GM lines. The variance of a single compound was significantly larger in transgenic gerbera lines than in varieties and of three compounds in non-GM varieties.  相似文献   

11.
Genetic modification of plants may result in unintended effects causing potentially adverse effects on the environment. A comparative safety assessment is therefore required by authorities, such as the European Food Safety Authority, in which the genetically modified plant is compared with its conventional counterpart. Part of the environmental risk assessment is a comparative field experiment in which the effect on non‐target organisms is compared. Statistical analysis of such trials come in two flavors: difference testing and equivalence testing. It is important to know the statistical properties of these, for example, the power to detect environmental change of a given magnitude, before the start of an experiment. Such prospective power analysis can best be studied by means of a statistical simulation model. This paper describes a general framework for simulating data typically encountered in environmental risk assessment of genetically modified plants. The simulation model, available as Supplementary Material, can be used to generate count data having different statistical distributions possibly with excess‐zeros. In addition the model employs completely randomized or randomized block experiments, can be used to simulate single or multiple trials across environments, enables genotype by environment interaction by adding random variety effects, and finally includes repeated measures in time following a constant, linear or quadratic pattern in time possibly with some form of autocorrelation. The model also allows to add a set of reference varieties to the GM plants and its comparator to assess the natural variation which can then be used to set limits of concern for equivalence testing. The different count distributions are described in some detail and some examples of how to use the simulation model to study various aspects, including a prospective power analysis, are provided.  相似文献   

12.
To fulfill existing guidelines, applicants that aim to place their genetically modified (GM) insect‐resistant crop plants on the market are required to provide data from field experiments that address the potential impacts of the GM plants on nontarget organisms (NTO's). Such data may be based on varied experimental designs. The recent EFSA guidance document for environmental risk assessment (2010) does not provide clear and structured suggestions that address the statistics of field trials on effects on NTO's. This review examines existing practices in GM plant field testing such as the way of randomization, replication, and pseudoreplication. Emphasis is placed on the importance of design features used for the field trials in which effects on NTO's are assessed. The importance of statistical power and the positive and negative aspects of various statistical models are discussed. Equivalence and difference testing are compared, and the importance of checking the distribution of experimental data is stressed to decide on the selection of the proper statistical model. While for continuous data (e.g., pH and temperature) classical statistical approaches – for example, analysis of variance (ANOVA) – are appropriate, for discontinuous data (counts) only generalized linear models (GLM) are shown to be efficient. There is no golden rule as to which statistical test is the most appropriate for any experimental situation. In particular, in experiments in which block designs are used and covariates play a role GLMs should be used. Generic advice is offered that will help in both the setting up of field testing and the interpretation and data analysis of the data obtained in this testing. The combination of decision trees and a checklist for field trials, which are provided, will help in the interpretation of the statistical analyses of field trials and to assess whether such analyses were correctly applied.  相似文献   

13.
Transgenic crops are approved for release in some countries, while many more countries are wrestling with the issue of how to conduct risk assessments. Controls on field trials often include monitoring of horizontal gene transfer (HGT) from crops to surrounding soil microorganisms. Our analysis of antibiotic-resistant bacteria and of the sensitivity of current techniques for monitoring HGT from transgenic plants to soil microorganisms has two major implications for field trial assessments of transgenic crops: first, HGT from transgenic plants to microbes could still have an environmental impact at a frequency approximately a trillion times lower than the current risk assessment literature estimates the frequency to be; and second, current methods of environmental sampling to capture genes or traits in a recombinant are too insensitive for monitoring evolution by HGT. A model for HGT involving iterative short-patch events explains how HGT can occur at high frequencies but be detected at extremely low frequencies.  相似文献   

14.
The ability to decide what kind of environmental changes observed during post-market environmental monitoring of genetically modified (GM) crops represent environmental harm is an essential part of most legal frameworks regulating the commercial release of GM crops into the environment. Among others, such decisions are necessary to initiate remedial measures or to sustain claims of redress linked to environmental liability. Given that consensus on criteria to evaluate ‘environmental harm’ has not yet been found, there are a number of challenges for risk managers when interpreting GM crop monitoring data for environmental decision-making. In the present paper, we argue that the challenges in decision-making have four main causes. The first three causes relate to scientific data collection and analysis, which have methodological limits. The forth cause concerns scientific data evaluation, which is controversial among the different stakeholders involved in the debate on potential impacts of GM crops on the environment. This results in controversy how the effects of GM crops should be valued and what constitutes environmental harm. This controversy may influence decision-making about triggering corrective actions by regulators. We analyse all four challenges and propose potential strategies for addressing them. We conclude that environmental monitoring has its limits in reducing uncertainties remaining from the environmental risk assessment prior to market approval. We argue that remaining uncertainties related to adverse environmental effects of GM crops would probably be assessed in a more efficient and rigorous way during pre-market risk assessment. Risk managers should acknowledge the limits of environmental monitoring programmes as a tool for decision-making.  相似文献   

15.
In this study, we show that compositional differences in grain harvested from genetically modified (GM) maize hybrids derived from near-isogenic trait-positive and trait-negative segregant inbreds are more likely related to backcrossing practices than to the GM trait. To demonstrate this, four paired GM trait-positive (NK603: herbicide tolerance) and trait-negative near-isogenic inbred male lines were generated. These were crossed with two different females (testers) to create a series of trait-positive and trait-negative hybrid variants. The hypothesis was, that compositional variation within the hybrid variants would reflect differences associated with backcrossing practices and provide context to any observed differences between GM and non-GM hybrids. The F1 hybrids, as well as corresponding conventional comparator hybrids, were grown concurrently at four field sites across the United States during the 2013 season. Grain was harvested for compositional analysis; proximates (protein, starch, and oil), amino acids, fatty acids, minerals, tocopherols (α-, δ-, γ-), β-carotene, phytic acid, and raffinose were measured. Statistical analysis showed that within each hybrid tester set, there were very few significant (p < 0.05) differences between the paired trait-positive and trait-negative hybrids or between the conventional comparators and the trait-positive or trait-negative hybrids. Assessments of the magnitudes of differences and variance component analysis highlighted that growing location, and the tester used in hybrid formation, had a markedly greater effect on composition than did the GM trait. Significantly, for each tester set, compositional differences within the trait-positive and trait-negative hybrid variants were greater than differences between the GM and non-GM comparators. Overall, GM trait insertion is not intrinsically a meaningful contributor to compositional variation, and observed differences between GM and non-GM comparators typically reflect incidental changes associated with conventional breeding practices. These results contribute to ongoing discussions on the relevance of negative segregants as comparators in GM assessments.  相似文献   

16.
Variety registration of lucerne often fails because of the difficulty to pass the distinction test. This test is presently based on phenotypic traits. We proposed to evaluate if high-throughput genotyping of varieties with genotyping-by-sequencing markers could help to distinguish among 20 varieties and if the genetic distances were correlated to phenotypic ones. Genotyping was performed either on 40 individuals or on 4 bulks of 100 plants per variety. At the methodological level, we obtained a high number of polymorphic markers, a precise determination of the allele dosage on the individuals, a high reproducibility of allele frequency estimated on bulks and a good correlation between allele frequencies scored on individuals or on bulks. Each pair of the 20 varieties was significantly distinct when using the markers. In addition, the varieties grouped in a way that was consistent with their genetic origin. Genetic distances were correlated to phenotypic distances obtained from data collected in the distinction tests. We suggest that molecular markers could be useful to assist distinction tests during the official trials for registration of lucerne varieties.  相似文献   

17.
To respect the European labelling threshold for the adventitious presence of genetically modified organisms (GMOs) in food and feed, stakeholders mainly rely on real-time PCR analysis, which provides a measurement expressed as a percentage of GM-DNA. However, this measurement veils the complexity of gene flow, especially in the case of gene stacking. We have investigated the impact of gene stacking on adventitious GM presence due to pollen flow and seed admixture as well as its translation in terms of the percentage of GM-DNA in a non-GM maize harvest. In the case of varieties bearing one to four stacked events, we established a set of relationships between the percentage of GM kernels and the percentage of GM-DNA in a non-GM harvest as well as a set of relationships between the rate of seed admixture and the percentages of GM material in a non-GM harvest. Thanks to these relationships, and based on simulations with a gene flow model, we have been able to demonstrate that the number of events and the stacking structure of the emitting fields impact the ability of a non-GM maize producer to comply with given GM kernel or GM-DNA thresholds. We also show that a great variability in the rates of GM kernels, embryos and DNA results from seed admixture. Finally, the choice of a unit of measurement for a GM threshold in seed lots can have opposite effects on the ability of farmers to comply with a given threshold depending on whether they are crop or seed producers.  相似文献   

18.
19.
The impacts of planted transgenic rice varieties on bacterial communities in paddy soils were monitored using both cultivation and molecular methods. The rice field plot consisted of eighteen subplots planted with two genetically modified (GM) rice and four non-GM rice plants in three replicates. Analysis with denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA genes revealed that the bacterial community structures were quite similar to each other in a given month, suggesting that there were no significant differences in bacterial communities between GM and non- GM rice soils. The bacterial community structures appeared to be generally stable with the seasons, as shown by a slight variation of microbial population levels and DGGE banding patterns over the year. Comparison analysis of 16S rDNA clone libraries constructed from soil bacterial DNA showed that there were no significant differences between GM and non-GM soil libraries but revealed seasonal differences of phyla distribution between August and December. The composition profile of phospholipid fatty acids (PLFA) between GM and non-GM soils also was not significantly different to each other. When soil DNAs were analyzed with PCR by using primers for the bar gene, which was introduced into GM rice, positive DNA bands were found in October and December soils. However, no bar gene sequence was detected in PCR analysis with DNAs extracted from both cultured and uncultured soil bacterial fractions. The result of this study suggested that, in spite of seasonal variations of bacterial communities and persistence of the bar gene, the bacterial communities of the experimental rice field were not significantly affected by cultivation of GM rice varieties.  相似文献   

20.
We present for the first time a comparative analysis of blood and organ system data from trials with rats fed three main commercialized genetically modified (GM) maize (NK 603, MON 810, MON 863), which are present in food and feed in the world. NK 603 has been modified to be tolerant to the broad spectrum herbicide Roundup and thus contains residues of this formulation. MON 810 and MON 863 are engineered to synthesize two different Bt toxins used as insecticides. Approximately 60 different biochemical parameters were classified per organ and measured in serum and urine after 5 and 14 weeks of feeding. GM maize-fed rats were compared first to their respective isogenic or parental non-GM equivalent control groups. This was followed by comparison to six reference groups, which had consumed various other non-GM maize varieties. We applied nonparametric methods, including multiple pairwise comparisons with a False Discovery Rate approach. Principal Component Analysis allowed the investigation of scattering of different factors (sex, weeks of feeding, diet, dose and group). Our analysis clearly reveals for the 3 GMOs new side effects linked with GM maize consumption, which were sex- and often dose-dependent. Effects were mostly associated with the kidney and liver, the dietary detoxifying organs, although different between the 3 GMOs. Other effects were also noticed in the heart, adrenal glands, spleen and haematopoietic system. We conclude that these data highlight signs of hepatorenal toxicity, possibly due to the new pesticides specific to each GM corn. In addition, unintended direct or indirect metabolic consequences of the genetic modification cannot be excluded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号