首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The conformation of adducts derived from the reactions and covalent binding of the (+) and (-) enantiomers of 7β, 8α-dihydroxy-9α, 10α-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene (anti-BaPDE) with double-stranded calf thymus DNA in vitro were investigated utilizing the electric linear dichroism technique. The linear dichroism and absorption spectra of the covalent DNA complexes are interpreted in terms of a superposition of two types of binding sites. One of these conformations (site I) is a complex in which the plane of the pyrene residue is close to parallel (within 30°) to the planes of the DNA bases (quasi-intercalation), while the other (site II) is an external binding site; this latter type of adduct is attributed to the covalent binding of anti-BaPDE to the exocyclic amino group of deoxyguanine (N2-dG), while site I adducts are attributed to the 06-deoxyguanine and N6-deoxyadenine adducts identified in the product analysis of P. Brookes and M.R. Osborne (Carcinogenesis (1982) 3, 1223–1226). Site II adducts are dominant (~90% in the covalent complexes derived from the (+) enantiomer), but account for only 50±5% of the adducts in the case of the (—)-enantiomer. The orientation of site II complexes is different by 20±10° in the adducts derived from the binding of the (+) and the (—) enantiomers to DNA, the long axis of the pyrene chromophore being oriented more parallel to the axis of the DNA helix in the case of the (+) enantiomer. These findings support the proposals by Brookes and Osborne that the difference in spatial orientation of the N2-dG adducts of (-)-anti-BaPDE together with their lower abundance may account for the lower biological activity of the (—) enantiomer. The external site II adducts, rather than site I adducts, appear to be correlated with the biological activity of these comoounds.  相似文献   

2.
Incubation of 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid with ram seminal vesicle microsomes (RSVM) triggers the oxygenation of trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP-7,8-diol). The principal oxidation products are 7,8,9,10-tetrahydroxy-7,8,9,10-tetrahydrobenzo[a]pyrenes which are non-enzymatic hydrolysis products of r-7,t-8-dihydroxy-t-9,10-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene. At short incubation times, an additional product is isolated which is identified as r-7,t-8,t-9-trihydroxy-c-10-methoxy-7,8,9,10-tetrahydrobenzo[a]pyrene. This product appears to arise by solvolysis of the extracted diolepoxide during high performance liquid chromatography using methanol-water solvent systems. The incubation of 18O-labeled 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid with BP-7,8-diol and RSVM leads to very little incorporation of 18O into the stable solvolysis products (analyzed by gc-ms of their peracetates). Parallel incubations conducted with 16O-labeled hydroperoxide under an 18O2 atmosphere indicate that the principle source of the epoxide oxygen is molecular oxygen.  相似文献   

3.
A study was made of the complexation of the protein vector PGEk, which transfers nucleic acids into the nuclei of cancer cells, with phosphodiester d(TTAGGG)4 (TMO) and phosphorothioate Sd(TTAGGG)4 (TMS) oligonucleotides, which inhibit telomerase. PGEk (64 amino-acid residues) contains a hydrophobic domain that originates from the human epidermal growth factor (hEGF) and is responsible for the receptor-mediated transfer of PGEk across the cell membrane, and the hydrophilic domain, which is a nuclear localization signal (NLS) and serves to bind DNA and deliver it to the cell nucleus. Experiments were performed in 0.01-M Na-phosphate and 0.1-M NaCl at 37°C. An analysis of the circular dichroism (CD) spectra showed that TMO forms an antiparallel G-quadruplex, while TMS occurs in the form of unfolded strands. The number of PGEk molecules adsorbed on oligonucleotides was estimated from the quenching of PGEk fluorescence and the increase in its polarization upon titration with oligonucleotides. Adsorption isotherms were plotted in Scatchard coordinates. Adsorption of the first two PGEk molecules on TMO and TMS followed a noncooperative mechanism and was characterized by high association constants: K 1(TMO) = (7 ± 1) · 107 M?1 and K 1(TMS) = (3 (± 0.5) · 107 M?1. Further adsorption, up to five or six PGEk molecules per TMO molecule, showed high cooperation and K 2(TMO) = (4.0 ± 1.5) · 106 M?1. Unlike TMO, TMS only weakly bound the third PGEk molecule: K 2(TMS) = (8 ± 2) · 105 M?1. An analysis of the CD spectra showed that PGEk partly unfolded the G-quadruplex formed by TMO and did not have an effect on the single-stranded structure of TMS. The secondary structure of DNA and the number of protein subunits were established for the biologically active complexes PGEk-TMO and PGEk-TMS, which efficiently pass across the membrane of cancer cells and inhibit their proliferation.  相似文献   

4.
M Kaneko 《Mutation research》1984,131(3-4):157-161
The rate of removal of DNA adducts of several benzo[a]pyrene metabolites from nuclear DNA was compared by introducing a microsome-activating system in human fibroblast cells. Confluent human fibroblasts were exposed to benzo[a]pyrene in the presence of a microsomal activating system and DNA adducts were formed in the nuclear DNA. The adducts present in DNA were determined after 1 h of incubation and 48 h later. There was no difference in the rate of removal between 7S- and 7R -N2-[10-(7 beta, 8 alpha-trihydroxy-7,8,9,10- tetrahydrobenzo[a]pyrene)yl]deoxyguanosine, 7R -N2-[10(7beta, 8 alpha, 9 beta-trihydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene)yl]deoxyguanosine and the covalent adduct of 9-hydroxybenzo[a]pyrene-4,5-epoxide to guanosine. This finding does not agree with the idea that metabolites forming 'persistent DNA adducts' are always responsible for the carcinogenicity of their parent compound.  相似文献   

5.
The in vitro reaction of bacteriophage T7-DNA with the radioactive diastereomeric benzo(a)pyrene-diol-epoxides, (±) [3H9, 3H10]-7β,8α-dihydroxy-9α,10β-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene, and (±) [3H9, 3H10]-7β,8α-dihydroxy-9β,19β-epoxy-7,8,9,10-tetrahydrobenzo(1)pyrene, was investigated. Chromatographic analysis of digests of the DNA allowed the distinction of characteristic deoxynucleoside adduct peaks for the two benzo(a)pyrene-diol-epoxides. Our results, together with data from the literature, allow the identification of these adducts as mostly N2-(10-7β,8α,9α-trihydroxy-7,8,9,10-tetrahydrobenzo(a)pyreney1)deoxyguanosine and N2-(10-7β,8α,9β-trihydroxy-7,8,9,10-tetrahydrobenzo(a)pyreney1)deoxyguanosine, respectively. DNA-benzo(a)pyrene adducts with the same chromatographic properties were formed in mouse embryo fibroblasts upon treatment with benzo(a)pyrene.  相似文献   

6.
When the benzo(a)pyrene diol epoxide (±)-7β,8α-dihydroxy-9α,10α-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene (BPDE) is mixed into a DNA solution, a 10nm red shift in the absorption maximum of BPDE appears at 354nm which is due to a non-covalent intercalation complex. The major reaction pathway at this intercalation site is the hydrolysis of BPDE to its tetraol which is accompanied by a decrease in the absorbance and a shift from 354 to 353nm (the latter is due to intercalated tetraol). The non-covalent binding constants are approximately 8200M?1 for BPDE and 3300M?1 for the tetraol at 25°C, pH 7.0. Covalent adduct formation between BPDE and DNA occurs either at another, external binding site, or after some rearrangement of the intercalated BPDE, since covalent adducts display a 345nm absorption maximum (2nm red shift only).  相似文献   

7.
The interaction of the Trp–Sm(III) complex with herring sperm DNA (hs‐DNA) was investigated with the use of acridine orange (AO) dye as a spectral probe for UV‐vis spectrophotometry and fluorescence spectroscopy. The results showed that the both the Trp–Sm(III) complex and the AO molecule could intercalate into the double helix of the DNA. The Sm(III)–(Trp)3 complex was stabilized by intercalation into the DNA with binding constants: K?25°C = 7.14 × 105 L·mol?1 and K?37°C = 5.28 × 104 L·mol?1, and it could displace the AO dye from the AO–DNA complex in a competitive reaction. Computation of the thermodynamic functions demonstrates that ΔrHm? is the primary driving power of the interaction between the Sm(III)(Trp)3 complex and the DNA. The results from Scatchard and viscometry methods suggested that the interaction mode between the Sm(III)(Trp)3 complex and the hs‐DNA is groove binding and weak intercalation binding. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Abstract

DNA covalent binding studies with enantiomers of trans-7,8-dihydroxy- anti-9,10-epoxy- 7,8,9,10-tetrahydro-benzo [a] pyrene (anti-BPDE) have been carried out by means of spectroscopic techniques (UV, CD, and fluorescence). Synthetic polynucleotides are employed to investigate binding differences between the G · C and A · T base pairs and to elucidate the bases for the stereoselective covalent binding of DNA toward anti-BPDE. The results indicate that of all the polynucleotides studied, only poly(dA-dT) · poly(dA-dT) exhibits predominant intercalative covalent binding towards (+)-anti-BPDE and suffers the least covalent modification. Only minor intercalative covalent contributions are found in alternating polymer poly(dA-dC) · poly(dG-dT). These observations parallel the DNA physical binding results of anti-BPDE and its hydrolysis products. They support the hypothesis that intercalative covalent adducts derive from intercalative physical binding while the external covalent adducts derive from external bimolecular associations. In contrast to the A · T polymers, the guanine containing polymers exhibit pronounced reduction in covalent modification by (-)-anti-BPDE. The intercalative covalent binding mode becomes relatively more important in the adducts formed by the (-) enantiomer as a consequence of decreased external guanine binding. These findings are consistent with the guanine specificity, stereoselective covalent binding at dG, the absence of stereoselectivity at dA for anti-BPDE, and the enhanced binding heterogeneity for the (-) enantiomer as found in the native DNA studies. The possible sequence and/or conformational dependence of such stereoselective covalent binding is indicated by the opposite pyrenyl CD sign exhibited by (+)-anti-BPDE bound to polynucleotides with pyrimidine on one strand and purine on another vs. that bound to polymers containing alternating purine-pyrimidine sequences.  相似文献   

9.
Abstract

The interaction between Tb(IV)-NR complex and herring sperm DNA in buffer solution of Tris-HCl was investigated with the use of acridine orange(AO) as a spectral probe. The binding modes and other information were provided by the UV–spectrophotometry and fluorescence spectroscopy. The thermodynamic functions expressed that the binding constants of Tb(IV)-NR complex with DNA was Kθ298.15K = 4.03?×?105?L·mol?1, Kθ310.15K =1.30?×?107?L·mol?1, and the ΔrGθ m 298.15?K=?3.20?×?104 J·mol?1. The scatchard equation suggested that the interaction mode between Tb(IV)-NR complex and herring sperm DNA is electrostatic and weak intercalation bindings. FTIR spectroscopy results also indicate that there is a specific interaction between the Tb(IV)-NR complex and the A and G bases of DNA.  相似文献   

10.
Benzo[a]pyrene is metabolised by isolated viable hepatocytes from both untreated and 3-methylcholanthrene pretreated rats to reactive metabolites which covalently bind to DNA. The DNA from the hepatocytes was isolated, purified and enzymically hydrolysed to deoxyribonucleosides. The hydrocarbon-deoxyribonucleoside products after initial separation, on small columns of Sephadex LH-20, from unhydrolysed DNA, oligonucleotides and free bases, were resolved by high pressure liquid chromatography (HPLC). The qualitative nature of the adducts found in both control and pretreated cells was virtually identical; however pretreatment with 3-methylcholanthrene resulted in a quantitatively higher level of binding. The major hydrocarbon-deoxyribonucleoside adduct, found in hepatocytes co-chromatographed with that obtained following reaction of the diol-epoxide, (±)7α,8β-dihydroxy-9β,10β-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene with DNA. Small amounts of other adducts were also present including a more polar product which co-chromatographed with the major hydrocarbon-deoxyribonucleoside adduct formed following microsomal activation of 9-hydroxybenzo[a]pyrene and subsequent binding to DNA. In contrast to the results with hepatocytes, when microsomes were used to metabolically activate benzo[a]pyrene, the major DNA bound-product co-chromatographed with the more polar adduct formed upon further metabolism of 9-hydroxybenzo[a]pyrene. These results illustrate that great caution must be exercised in the extrapolation of results obtained from short-term mutagenesis test systems, utilising microsomes, to in vivo carcinogenicity studies.  相似文献   

11.
Fluorospectrophotometric studies on the binding of acridine orange (AO) with calf thymus DNA showed that the thermal denaturation of DNA reduced markedly the fluorescence of Complex II and the extent of this decrease depended on the temperature to which the DNA solutions were heated. The denaturation was carried out in the absence and presence of AO (methods A and B, respectively), and then fluorescence measurements of solutions were carried out at 23 °C. The fluorescence intensity-heating temperature curves obtained by methods A and B were similar in shape to the usual melting curves of DNA and AO-DNA solutions, respectively. The higher midpoint value obtained with method B indicates the stabilizing activity of AO against denaturation. These findings support an intercalation model for Complex II and an external self-association binding model for Complex I.A high concentration of ethylene diamine (EDA) restored the fluorescence of denatured Complex II to about 80% of the intensity value of native Complex II. The effects of spermine, kanamycin and dihydrostreptomycin were much stronger than that of EDA.Methylene blue (MB) and chlorpromazine (CP) reduced the fluorescence of native Complex II markedly. Since the analysis of the difference absorption spectra declared that MB and CP were intercalated without release of bound AO, the interacting MB and CP were considered to weaken the interaction between AO and DNA bases, that made AO more fluorescent. Free radical (CP·) of CP was prepared by a new method using H2O2, peroxidase, and ascorbic acid. Intercalated CP· showed a much stronger quenching effect on Complex II, indicating that unpaired electron spin contained in the costacking unit between CP· and DNA bases might affect the fluorescence of the adjacent AO molecule by paramagnetic perturbation.  相似文献   

12.
Oxygen consumption rates (QO2) of laboratory reared stage one zoeae of Pandalus borealis (Krøyer) at 1.5, 3, 4.5, 6, and 9°C were 1.5, 2.2, 2.6, 3.6 and 4.1μ O2 · mg?1 · h?1, respectively. These values of QO2 correspond to 0.26, 0.38, 0.44, 0.60, and 0.70 μl O2 · individual?1 · h?1. At 10.5 °C oxygen consumption rates decreased suggesting thermally induced respiratory stress.The equation log10QO2 = 0.55 log10T°C + 0.086 describes the relationship between QO2 (μl O2 · mg?1 · h?1) and sea-water temperature between 1.5 and 9°C. Corresponding values of QO2 for an individual (μl O2 · h?1) exhibited the relationship log10QO2 = 0.55 log10T°C ?0.686.The minimum daily metabolic caloric requirements for an individual zoea ranged from 0.04 at 3 °C to 0.07 calories per day at 8 °C. The number of calories ingested daily ranged from 0.4 to 0.5 at 3 to 8 °C.  相似文献   

13.
This work deals with studies on the content of carotenoids, the state of antioxidant (AO) enzymatic complex, and the intensity of lipid peroxidation in tissues (hepatopancreas, gill, and foot) of the Black Sea bivalve mollusc Anadara inaequivalvis. Tissues with a high content of the pigment have been established to have a low activity of the key AO enzymes: superoxide dismutase, catalase, and glutathione reductase, as well as an elevated content of reduced glutathione (R 2 = 0.81–0.97). The differences of the recorded activities between the tissues reached 1.7–2.9 times (p < 0.05–0.01). At increased concentrations (more than 2.5 mg · 100 g?1 tissue), carotenoids show an insignificant pro-oxidant effect manifested in a rise of glutathione peroxidase activity. The competitive interrelations between these molecular complexes for the same kinds of reactive oxygen species (O2, OH·, and 1O2) are discussed.  相似文献   

14.
The interaction between K2Cr2O7 and urease was investigated using fluorescence, UV-vis absorption, and circular dichroism (CD) spectroscopy. The experimental results showed that the fluorescence quenching of urease by K2Cr2O7 was a result of the formation of K2Cr2O7–urease complex. The apparent binding constant K A between K2Cr2O7 and urease at 295, 302, and 309 K were obtained to be 2.14?×?104, 1.96?×?104, and 1.92?×?104 L mol?1, respectively. The thermodynamic parameters, Δ and Δ were estimated to be ?5.90 kJ mol?1, 43.67 J mol?1 K?1 according to the Van’t Hoff equation. The electrostatic interaction played a major role in stabilizing the complex. The distance r between donor (urease) and acceptor (K2Cr2O7) was 5.08 nm. The effect of K2Cr2O7 on the conformation of urease was analyzed using UV-vis absorption, CD, synchronous fluorescence spectroscopy, and three-dimensional fluorescence spectra, the environment around Trp and Tyr residues were altered.  相似文献   

15.
Abstract

The reaction mechanisms of two isomeric bay-region diol epoxides of 5-methylchrysene (trans-1,2-dihydroxy-anti/-3,4-epoxy-1,2,3,4-tetrahydro-5-methylchrysene (DE-I) and trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydro-5-methylchrysene (DE-II) with double-stranded DNA in aqueous solutions were studied utilizing kinetic flow dichroism and fluorescence techniques. As in the case of the previously studied benzo(a)pyrene-7,8-diol-9,10-oxide isomers (BaPDE), both DE-I and DE-II rapidly form intercalation-type complexes (association constants K = 2700 and 1500 M?1 respectively in a neutral 5mM phosphate solution). The physically bound diol epoxide molecules react on time scales of minutes to form predominantly tetraols; a greater fraction (6±1%) of DE-I than of DE-II (2–3%) molecules react with the DNA to form covalent products. The DE-II isomer is characterized by a greater reactivity than DE-I, and the rates of reaction are markedly accelerated in the presence of DNA in both cases. The linear dichroism spectra of the covalent adducts reveal that the conformations of both types of adducts are similar, with the long axes of the phenanthrenyl chromophores tilted, on the average, at angles of 38-52° with respect to the average orientations of the transition moments (at 260 nm) of the DNA bases. The conformations of the covalently bound DE-I and DE-II molecules resemble those observed in the case of the highly tumorigenic (+) enantiomer of anti-BaPDE. The differences in the biological properties of these and other polycyclic aromatic diol epoxides are discussed in terms of their reactivities with DNA and the conformations of the adducts formed.  相似文献   

16.
Interaction between D-glucuronic acid and alkaline earth metal ions leads to the formation of the complexes such as M(D-glucuronate)X· nH2O and M(D-glucuronate)2 · nH2O, where M = Mg(II), Sr(II), and Ba(II), X = Cl? or Br?, and n = 2–4. Owing to the distinct spectral similarities with the structurally known Ca(D-gluguronate)Br · 3H2O compound, the metal cations bind to three sugar moieties (through O6, O5 of the first, O6', O4 of the second, and O1, O2 of the third residue) and to two H2O molecules, forming an eight-coordination geometry around each metal ion, in M(D-glucuronate)X · nH2O (except for Mg(II) ion, which is six-coordination). The metal ions in M(D-glucuronate)2-nH2O show six-coordination in different structural environments. The strong hydrogen bonding network of the free acid is weakened upon metalation and the sugar moiety crystallizes as α-anomer, in these series of metal-sugar complexes.  相似文献   

17.
Some previous reports on acellular binding of glucocorticoid · receptor complexes to rat liver nuclei have pointed to the conclusion that there exists a small number of high affinity nuclear “receptor” sites. Various investigations lead us to the opposite conclusion and suggest that these results were actually due to the presence, in the cytosol, of one or several macromolecules which inhibited the binding to nuclei of steroid · receptor complexes. The mechanism of this inhibition was examined. It appeared to be due not to a competition between both molecules for the same nuclear acceptor site but to an interaction in the cytosol between teh inhibitor and the steroid · receptor complex which prevented the binding of the latter to the nuclei. The search for high affinity specific acceptor sites was also negative for physiological saline conditions and for the non-salt-extractable fraction of the nuclear receptor. When 940-fold purified receptor · steroid complexes were used, very high concentrations of complexes could be achieved and saturation of nuclei was then observed, but only under physiological ionic strength conditions. However, the interaction was of relatively low affinity (KA = 3.8 · 107 M?1) and to a great number of acceptor sites (N = 26.2 pmol/mg DNA), largely exceeding the cellular concentration of receptor (5.8 pmol/mg DNA).These results suggested that saturation of nuclei by steroid · receptor complexes should not occur in the intact liver cell. They were confirmed by studies on the distribution of steroid · receptor complexes in liver slices incubated with various concentrations of [3H]dexamethasone. For all hormone concentrations a constant proportion (90%) of the complexes was found in the nuclei, thus showing no saturation of the nuclear acceptor sites.  相似文献   

18.
Electron microscopic and biochemical studies revealed a salient difference in the response to toxic doses of ouabain by cultured cardiac muscle and non-muscle cells from neonatal rats. Progressive cellular injury in myocytes incubated with 1 · 10?4–1 · 10?3 M ouabain ultimately leads to swelling and necrosis. The morphological damage in myocytes was accompanied by a drastic decrease in 14CO2 formation from 14C-labeled stearate or acetate but not glucose. Neither morphological nor biochemical impairments were observed in non-muscle cells. The interaction between ouabain and the cultured cells, using therapeutic doses of ouabain (i.e., <1 · 10?7 M), was characterized. Two binding sites were described in both classes of cells, one site is a saturable K+-sensitive site whereas the other is non-saturable and K+-insensitive. The complexes formed between the sarcolemma receptor(s) and ouabain, at low concentrations of the drug (e.g., 7.52 · 10?9 M), had Kd values of 8.9 · 10?8 and 2.3 · 10?8 M for muscle and non-muscle cells, respectively. The formation and dissociation of the complexes were affected by temperature and potassium ions.  相似文献   

19.
Ventilation was measured directly in the hagfish, Myxine glutinosa L., by means of an electro-magnetic blood flowmeter. Ventilatory flow and frequency increased from 0.86 ± 0.27 ml·min?, and 18.2 ± 5.1·min?, respectively, at 7°C to 1.70 ± 0.20 ml·min?, and 70.1 ± 9.5·min? at 15 ·C.Standard oxygen consumption,V?O2, was measured in non-buried hagfish. V?O2 was 0.57 ± 0.17μl O2·g?1·min?1 at 7°C, and 0.85 ± 0.12μl O2·g?1·min?1 at 15°C.  相似文献   

20.
Cultured Ehrlich ascites tumor cells equilibrate d-glucose via a carrier mechanism with a Km and V of 14 mM and 3 μmol/s per ml cells, respectively. Cytochalasin B competitively inhibits this carrier-mediated glycose transport with an inhibition constant (Ki) of approx. 5·10?7 M. Cytochalasin E does not inhibit this carrier function. With cytochalasin B concentrations up to 1·10?5 M, the range where the inhibition develops to practical completion, three discrete cytochalasin B binding sites, namely L, M and H, are distinguished. The cytochalasin B binding at L site shows a dissociation constant (Kd) of approx. 1·10-6 M, represents about 30% of the total cytochalasin B binding of the cell (8·106 molecules/cell), is sensitively displaced by cytochalasin E but not by d-glucose, and is located in cytosol. The cytochalasin B binding to M site shows a Kd of 4–6·10?7 M, represents approx. 60% of the total saturable binding (14·106 molecules/cell), is specifically displaced by d-glucose with a displacement constant of 15 mM, but not by l-glucose, and is insensitive to cytochalasin E. The sites are membrane-bound and extractable with Triton X-100 but not by EDTA in alkaline pH. The cytochalasin B binding at H site shows a Kd of 2–6 · 10?8 M, represents less than 10% of the total sites (2 · 106 molecules/cell), is not affected by either glucose or cytochalasin E and is of non-cytosol origin. It is concluded that the cytochalasin B binding at M site is responsible for the glucose carrier inhibition by cytochalasin B and the Ehrlich ascites cell is unique among other animal cells in its high content of this site. Approx. 16-fold purification of this site has been achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号