首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The chemical probes for amino compounds 2,4,6-trinitrobenzenesulfonate (TNBS) and 1-fluoro-2,4-dinitrobenzene (FDNB) were utilized to determine the localization of the amino phospholipids in the sarcoplasmic reticulum membranes. At low concentrations (<1 mM), TNBS does not penetrate the sarcoplasmic reticulum membrane, while FDNB readily penetrates it. The results show that about 70% of the total phosphatidylethanolamine is located on the external surface of the membrane, about 20% is on the internal surface and 10% is probably strongly interacting with the proteins since it is not accessible to the probes. In contrast, most of the phosphatidylserine is located on the inner surface of the membrane. This molecular distribution of the amino phospholipids supports a structural assymmetry of the sarcoplasmic reticulum membrane.  相似文献   

2.
The inactivation of glucose transport in human red cells by fluorodinitrobenzene is accelerated by 120 mM glucose outside the cell but retarded at least 50% by 120 mM glucose inside the cell. This suggests that the transport system is predominantly in one conformation when there is glucose inside the cell, and in another conformation when there is glucose outside the cell.  相似文献   

3.
Sheep kidney pyruvate carboxylase has been desensitized against its allosteric effector, acetyl CoA, by limited covalent modification with trinitrobenzene sulphonic acid.Trinitrophenylation of the enzyme resulted in a strong inhibition of the rate of the acetyl CoA-stimulated pyruvate carboxylation and enhancement of the rate of the acetyl CoA-independent reaction. A good correlation was found between the requirement for acetyl CoA of the exchange reactions catalysed by the enzyme and the extent of their inhibition by trinitrobenzene sulphonic acid modification.Spectrophotometric data indicated that one to two lysyl residues per monomer were trinitrophenylated. Modification had only a slight effect on the sedimentation properties of the enzyme.  相似文献   

4.
The asymetric arrangement of phospholipids in the human erythrocyte membrane   总被引:15,自引:0,他引:15  
In erythrocytes treated with 2,4,6-trinitrobenzenesulfonate (a non-penetrating probe) for 24 hours, a maximum of 33% of the phosphatidylethanolamine and none of the phosphatidylserine reacts with this reagent. In erythrocyte ghosts, however, 95% of the phosphatidylethanolamine and over 50% of the phosphatidylserine reacts in 90 minutes under the same conditions. When extracted erythrocyte lipids are treated with 2,4,6-trinitrobenzenesulfonate in either a chloroform-methanolbicarbonate or a sonicated aqueous bicarbonate system, both phosphatidylethanolamine and phosphatidylserine react essentially to completion within minutes. We interpret these results to indicate the localization of nearly all of the phosphatidylserine on the interior surface of the membrane thus demonstrating an asymmetric distribution of phospholipids in the erythrocyte membrane.  相似文献   

5.
N-ethylmaleimide and 1-fluoro-2,4-dinitrobenzene inactivate D-glucuronic acid transport in E. coli K12. The inactivation is highly enhanced by the two substrates of the transport system, D-glucuronate and D-galacturonate, or by inhibitors of respiratory energy production. The significance of these results is discussed in the framework of a model of a mobile carrier which can exist in two or more distinct conformational states.  相似文献   

6.
Recently we have shown that Salmonella typhimurium tester strains have high levels of the tripeptide glutathione (GSH) and activity of GSH S-transferases (Summer et al., 1979). In continuation of the GSH-dependent suppression of mutagenicity of 1-chloro-2,4-dinitrobenzene in presence of S9 fraction (Summer et al., 1979), this paper is focused on the GSH-dependent detoxifying capacity of the bacterial tester strains. 1-Fluoro-2,4-dinitrobenzene (FDNB), an electrophilic agent, which is used to identify terminal amino acids in proteins (Sanger reagent), readily reacts with GSH leading to a dose-dependent depletion of bacterial GSH. Additionally, FDNB is a strong mutagen for Salmonella typhimurium TA100, TA1538 and TA98 without metabolic activation.Presumably owing to conjugation with bacterial GSH, FDNB in concentrations which were lower or equal to those of bacterial GSH were found to be not mutagenic. Accordingly, increasing amounts of bacteria in the test system require increasing amounts of FDNB for expression of mutagenicity.  相似文献   

7.
Philip G. Koga  Richard L. Cross 《BBA》1982,679(2):269-278
1. Soluble beef-heart mitochondrial ATPase (F1) was incubated with [3H]pyridoxal 5′-phosphate and the Schiffbase complex formed was reduced with sodium borohydride. Spectral measurements indicate that lysine residues are modified and gel electrophoresis in the presence of detergent shows the tritium label to be associated with the two largest subunits, α and β. 2. In the absence of protecting ligands, the loss of ATP hydrolysis activity is linearly dependent on the level of pyridoxylation with complete inactivation correlating to 10 mol pyridoxamine phosphate incorporated per mol enzyme. Partial inactivation of F1 with pyridoxal phosphate has no effect on either the Km for ATP or the ability of bicarbonate to stimulate residual hydrolysis activity, suggesting a mixed population of fully active and fully inactive enzyme. 3. In the presence of excess magnesium, the addition of ADP or ATP, but not AMP, decreases the rate and extent of modification of F1 by pyridoxal phosphate. The non-hydrolyzable ATP analog, 5′-adenylyl-β, γ-imidodiphosphate, is particularly effective in protecting F1 against both modification and inactivation. Efrapeptin and Pi have no effect on the modification reaction. 4. Prior modification of F1 with pyridoxal phosphate decreases the number of exchangeable nucleotide binding sites by one. However, pyridoxylation of F1 is ineffective in displacing endogenous nucleotides bound at non-catalytic sites and does not affect the stoichiometry of Pi binding. 5. The ability of nucleotides to protect against modification and inactivation by pyridoxal phosphate and the loss of one exchangeable nucleotide site with the pyridoxylation of F1 suggest the presence of a positively charged lysine residue at the catalytic site of an enzyme that binds two negatively charged substrates.  相似文献   

8.
A procedure for the high-performance liquid chromatographic determination of vertilmicin in rat serum was described using pre-column derivatization. The serum proteins were precipitated with acetonitrile and vertilmicin in the supernatant was derivatized with 1-fluoro-2,4-dinitrobenzene. Etimicin was selected as the internal standard. The mobile phase consisted of methanol--20mM ammonium acetate (80:20, v/v), and flow-rate was 0.9 ml/min. Ultraviolet detection was set at 365 nm. The reaction products were chromatographed on a C(18) column kept at 40 degrees C. A good linearity was found in the range of 0.5-250 microg/ml. Both intra- and inter-day precisions of vertilmicin, expressed as the relative standard deviation, were less than 7.4%. Accuracy, expressed as the relative error, ranged from -0.1 to 3.6%. The mean absolute recovery of vertilmicin at three different concentrations was 92.5%. Serum volumes of 50 microl were sufficient for the determination of vertilmicin. The method was proved suitable for the pharmacokinetic study of vertilmicin in rats.  相似文献   

9.
The Z(cis)- and E(trans)-isomers of 1,3-dichloropropene (DCP), in confirmation of previous reports, caused dose-dependent increases in the numbers of reverse mutations in Salmonella typhimurium TA100 in the presence and absence of a 9000 X g supernatant fraction (S9) from the livers of Aroclor-treated rats. The relevance of these findings to mammals is uncertain, not least because of major differences in the metabolism of the DCPs in the microbial assay systems and in vivo. For example, (Z)-DCP is efficiently detoxified in mammals by the operation of a glutathione (GSH)-dependent S-alkyl transferase. It is possible that such detoxification could proceed only very slowly in the microbial assays because the concentrations of GSH could be severely rate-limiting even in those assays fortified by the addition of S9. The results obtained in the current study demonstrate a dramatic reduction in the microbial mutagenicity of both (Z)- and (E)-DCP when the concentration of GSH in the microbial assays was adjusted to a normal physiological concentration (5 mM). However, this protective action of GSH was at least as effective in the absence of S9 as in its presence, suggesting that it was not mediated by mammalian GSH transferase. There appears to be little or no GSH alkyl or aryl transferase in the cytosol of S. typhimurium TA100, but intracellular GSH is present at a concentration similar to that found in mammalian cells. Since the uncatalysed reaction between the DCPs and glutathione is relatively slow, the effect is not due simply to their destruction by GSH. It is possible that a physiological concentration of extracellular GSH maintains the intracellular GSH in a reduced form in which its nucleophilic thiol group competes effectively with the nucleophilic centres in the bacterial DNA for the haloalkenes. The current results highlight the efficiency of GSH-linked systems in affording protection against the genotoxic action of the DCPs. It may be presumed that their operation would exert a major limiting effect on the genotoxicity of (Z)- and (E)-DCP in mammals.  相似文献   

10.
E. coli cells were reacted with TNBS in bicarbonate-NaCl buffer, pH 8.5 (buffer A) and in phosphate-NaCl buffer, pH 7.0 (buffer B). In buffer A, DNP-GPE is the major product when FDNB is used. DNP-PE and DNP-LPE are formed in lesser amounts. Phospholipase A activity is high in buffer A. When TNBS is used, the labeling of the lipid components is less than with FDNB and more TNP-PE is formed relative to TNP-GPE. This data suggests that the phospholipases which are located primarily on the outer L-membrane of the cell wall act to a lesser extent on TNP-PE than on DNP-PE. E. coli cells were prelabeled with TNBS and FDNB in buffer A, washed and incubated in buffer A. The endogenous labeled DNP-PE gradually decreased with time with a concomitant increase in DNP-LPE and DNP-GPE due to phospholipase A activity. In contrast, the endogenous labeled TNP-PE also decreased with time as did the endogenous labeled TNP-LPE but a new orange lipid was produced. This lipid is believed to be a derivative of TNP-PE in which one of the nitro groups has been reduced to an amino group by nitroreductase. E. coli cells were prelabeled with TNBS and FDNB in buffer A, washed and incubated in buffer B. Under these conditions with both TNBS and FDNB there is an increase in TNP-PE and DNP-PE with a concomitant decrease in TNP-LPE, TNP-GPE, DNP-LPE and DNP-GPE. These results show that at neutral pH acylation occurs to regenerate TNP-PE and DNP-PE. E. coli cells were incubated with exogenous DNP-GPE or TNP-GPE in buffer A. The DNP-GPE and TNP-GPE were rapidly hydrolyzed by a phosphodiesterase to DNP-ethanolamine and TNP-ethanolamine. An orange derivative was formed which was provisionally identified as a derivative of DNP-ethanolamine or TNP-ethanolamine in which a nitro group has been reduced to an amino group by nitroreductase. The phospholipases and acylating enzymes present in the cell wall of E. coli are active on the dinitrophenyl and trinitrophenyl derivatives of PE and LPE and may act in concert to model and repair the plasma membrane.  相似文献   

11.
The major aims of this study were to determine the degree of phospholipid asymmetry and the neighbor analysis of phospholipids in different types of cell membranes. For this study a penetrating probe (FDNB), a non-penetrating probe (TNBS) and a cross-linking probe (DFDNB) were used. The reaction of hemoglobin, membrane protein and membrane PE and PS of erythrocytes with DFNB and TNBS was studied over a concentration range of 0.5 to 10 mM probe. TNBS reacts to an extremely small extend with hemoglobin over the concentration range 0.4 to 4 mM whereas FDNB reacts with hemoglobin to a very large extent (50 fold more than TNBS). The reaction of membrane protein of intact erythrocytes reaches a sharp plateau at 1 mM TNBS whereas the reaction of membrane protein goes to a much larger extent with FDNB with no plateau seen up to 4 mM FDNB. This data shows that TNBS does not significantly penetrate into the cell under our conditions whereas FDNB does penetrate into the cell. The results show that there are four fold more reactive sites on proteins localized on the inner surface of the erythrocyte membrane as compared to the outer surface. TNBS at 0.5 to 2 mM concentration does not label membrane PS and labels membrane PE to a small extent. The reaction of PE with TNBS shows an initial plateau at 2 mM probe and a second slightly higher plateau between 4 to 10 mM probe. TNBS from 0.5-2.0 mM does not react with PS, but between 3 to 10 mM concentration, a very small amount of PS reacts with TNBS. Hence above 2 mM TNBS or FDNB a perturbation occurs in the membrane such that more PE and PS are exposed and react with these probes. These results demonstrate that essentially no PS is localized on the outer surface of the membrane and only 5% of the total membrane PE is localized on the outer surface of the erythrocyte membrane. TNBS and FDNB were reacted with yeast, E. coli, and Acholeplasma cells. With yeast cells, FDNB reacts to a much larger extent with PE than does TNBS, indicating that FDNB penetrates into the cell and labels more PE molecules. With E. coli, but not with erythrocytes or yeast cells, phospholipase A activity was very pronounced at pH 8.5 giving rise to a large amount of DNP-GPE from DNP-PE. A phosphodiesterase was also present which hydrolyized DNP-GPE to DNP-ethanolamine. The multilayered structure of the E. coli cell envelop did not permit a definitive interpretation of the results. It is clear, however, that TNBS and FDNB react to a different extent with PE in this cell. The Acholeplasma membrane had no detectable PE or PS but contains amino acid esters of phosphatidylglycerol. The reaction of these components with TNBS and FDNB indicate that these aminoacyl-PG are localized on both surfaces of the membrane, with 31% being on the outer surface and 69% on the inner surface...  相似文献   

12.
The bifunctional fluorinated nitrobenzenes, 1,5-difluoro-2,4-dinitrobenzene (DFDNB) and 4,4'-difluoro-3,3'-dinitrodiphenyl sulfone (DFDNDPS), and the monofunctional 1-fluoro-2,4-dinitrobenzene (FDNB) inhibit chemotaxis, phagocytosis, exocytosis and the respiratory burst of rabbit polymorphonuclear leukocytes. Inhibition occurs in the micromolar concentration range; the bifunctional compounds are stronger inhibitory than the monofunctional one. The inhibitory effect can be counteracted by sulfhydryl compounds and not with amino-group containing compounds. The results suggest that an interaction with vulnerable sulfhydryl groups, located in a hydrophobic surrounding, is the basis of the inhibitory effect of the fluorinated nitrobenzenes.  相似文献   

13.
Analysis of the lipids of normal hamster embryo fibroblasts and polyoma virus transformed fibroblasts shows a decrease in phosphatidylcholine and phosphatidylethanolamine and a marked increase in a threonine phospholipid after transformation. Transformed cells also react differently with fluorodinitrobenzene and trinitrobenzenesulfonate. phosphatidylethanolamine of transformed cells reacts to a greater extent with both probes. Phosphatidylserine and the threonine phospholipid of both cells do not react with trinitrobenzenesulfonate. The threonine phospholipid is provisionally identified as phosphatidylthreonine.  相似文献   

14.
The relationship between the binding patterns of soybean agglutinin, peanut agglutinin (both in their native (unaggregated) form and in their polymerized form), and of Phaseolus vulgaris leucoagglutinin, to neuraminidase-treated lymphocytes from different sources, and the mitogenic activity of these lectins, was studied. In all cases investigated, binding of a lectin to lymphocytes which resulted in stimulation was a positive cooperative process. Our findings support the assumption that clustering of receptors and conformational changes in membrane structure are prerequisites for mitogenic stimulation.  相似文献   

15.
Laila Zaki 《FEBS letters》1984,169(2):234-240
The reaction of phenylglyoxal, a reagent specific for arginine residues, with erythrocyte membrane at pH 7.4 results in complete inhibition of sulfate equilibrium exchange across human red cells. The inactivation was found to be concentration and time depenent. The binding sites of this reagent in the anion transport protein (band 3) under these conditions were determined by using [14C]phenylglyoxal. The rate of incorporation of the radioactivity into band 3 gave a good correlation with the rate of inactivation. Under conditions where the transport is completely inhibited about 6 mol [14C]phenylglyoxal are incorporated into 1 mol band 3. Treating the [14C]phenylglyoxalated ghosts at different degrees of inactivation with extracellular chymotrypsin showed that about two-thirds of these binding sites are located on the 60 kDa fragment.  相似文献   

16.
A simple method for the determination of radioactivity of proline and hydroxyproline, particularly of small amounts, in hydrolysates of tissues is described. Specificity is assured by eliminating primary amino acids from the hydrolysates by deamination and then extraction before separation of proline from hydroxyproline by paper chromatography. Six to eight tissue samples may be compared simultaneously. The efficiency and reproducibility are good, as indicated by the use of labeled l-proline, labeled dl-hydroxyproline, a hydrolysate of a protein in which the amino acids (and proline) were labeled, and hydrolysates of tissues cultured in media containing radioactive l-proline. The method is particularly useful when ion-exchange column chromatography of amino acids is not in routine use.  相似文献   

17.
Summary Pentoses in aqueous acidic solutions were analysed by conversion to furfurals in a gas chromatograph containing a porous polymer packed column at 200°C. Hexoses, volatile fatty acids and fermentation media did not interfere with the measurement of pentoses.  相似文献   

18.
用高效液相色谱定量分析分支链氨基酸   总被引:3,自引:2,他引:3  
目的:周2,4-二硝基氟苯(DNFB)对分支链氨基酸衍生后,采用优化的高效液相色谱(HPLC)对其进行定量分析。方法:色谱柱为AgilentZORBAXEclipsAAA(4.6mm×150mm,5-Micron),流动相为乙酸盐缓冲液(pH6.4)-乙腈,流速1.0mL/min,检测波长360nm。结果:用HPLC法测定分支链氨基酸的浓度为20-200mg/L时线性关系良好,3种分支链氨基酸的R。均在0.9997以上,平均回收率高,RSD≤0.56%(n=6)。结论:此方法快速、准确、重现性好,适合于对发酵液中分支链氨基酸的定量分析。  相似文献   

19.
Salmonella typhimurium strains which are commonly used in the Ames test for screening potential carcinogens were examined for a number of drug-metabolizing systems. Neither cytochrome P-450 itself nor two activities catalyzed by the cytochrome P-450 system in mammalian cells, i.e., benzpyrene monooxygenase and ethoxycoumarin O-deethylation, could be detected. Nor do these bacterial strains demonstrate any ability to detoxify epoxides by hydrating them or to conjugate p-nitrophenol with glucuronic acid.On the other hand, S. typhimurium strains G46, TA1535, TA100, TA1538 and TA98 contain considerable amounts of acid-soluble thiols, approx. 5–10% of which is glutathione. These bacteria can also enzymatically conjugate glutathione with 1-chloro-2,4-dinitrobenzene (CDNB) and can reduce oxidized glutathione using NADPH as cofactor.Thus, enzymatic and non-enzymatic reaction of immediate carcinogens with thiol groups in S. typhimurium may have a significant effect on the outcome of the Ames test in certain cases.  相似文献   

20.
Purified glutathione(GSH)-S-transferases A, B and C from rat liver are inhibited by triethyltin (SnEt3). With 1-chloro-2,4-dinitro benzene (CDNB) as the limiting substrate the inhibition is competitive in each case. At a GSH concentration of 5 . 10(-3) M the inhibition constants for transferases A and C at 25 degrees C are similar and very low, 3.2 . 10(-8) M and 5.6 . 10(-8) M respectively, whereas for transferase B the inhibition constant is 3.5 . 10(-5) M. Equilibrium-dialysis experiments carried out at 4 degrees C in the absence of GSH give apparent dissociation constants of 7.1 . 10(-4) M and 3.4 . 10(-4) M for transferases A and B respectively, but if 5 . 10(-3) M glutathione is included in the dialysis solutions these values fall to 2.0 . 10(-7) M and 2.6 . 10(-5) M, which are within an order of magnitude of the kinetic Ki-values. Chromatographic experiments with Sephadex G-10 show that GSH and SnEt3 interact in aqueous solution under the conditions of the enzyme-kinetic and equilibrium-dialysis experiments. It is suggested that the inhibited enzymes are in the form of ternary complexes, enzyme-GSH-SnEt3, in which GSH and SnEt3 may or may not interact directly; or are possibly quaternary complexes, enzyme-(GSH)2-SnEt3. SnEt3 could be valuable as a selective inhibitor of transferases A and C in mixtures of the three transferases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号