首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Estimates of age derived from daily ring counts from otoliths and capture rates of larval June sucker Chasmistes liorus were used to determine the relationship between discharge rates of the Provo River and residence time and patterns of larval drift. During 1997, larval drift occurred over a 22 day period when discharge rates were low (mean ±s.d. 3·2 ± 0·0 m3 s?1). In 1998, larval drift occurred in two separate events over a 40 day period. Discharge was higher during the first larval drift period (19 days; 24·8 ± 1·3 m3 s?1) and lower during the second larval drift period (17 days; 7·0 ± 0·9 m3 s?1). In 1997, no larval fish were collected at the lowermost transect on the Provo River (nearest Utah Lake), and few larvae >21 days of age were found. During the first drift period of 1998, larval C. liorus were collected at all transects, and mean age of larvae collected between upstream and downstream transects increased by c. 7 days. During the second drift period of 1998, only a few were collected in the lowermost transects, and age did not increase with proximity to the lake. Patterns in catch and age distribution of larval C. liorus in the lower Provo River suggest that recruitment failure occurs during the larval drift period in years with insufficient discharge to transport larvae into the lake.  相似文献   

2.
The irreversible thermal denaturation of cytochrome cd1 oxidase from P.aeruginosa as a function of the oxidation-reduction states of its hemes was observed with a differential scanning calorimeter. Upon full reduction of the four hemes, the apparent denaturation temperature decreases by about 10° and the denaturation enthalpy decreases slightly: oxidized, 5.9 cal/gm; reduced, 5.4 cal/gm. At pH 7.5, the first order rate constants for denaturation at 90°C are: reduced, 33 × 10?3s?1; oxidized, 3 × 10?3s?1. Thus, oxidation of the hemes reuults in heat stabilization of the cytochrome oxidase. The activation energy for denaturation of fully reduced oxidase, 53 kcal/mol, is less than that for fully oxidized protein (73 kcal/mol).  相似文献   

3.
Optimum light, temperature, and pH conditions for growth, photosynthetic, and respiratory activities of Peridinium cinctum fa. westii (Lemm.) Lef were investigated by using axenic clones in batch cultures. The results are discussed and compared with data from Lake Kinneret (Israel) where it produces heavy blooms in spring. Highest biomass development and growth rates occurred at ca. 23° C and ≥50 μE· m?2·s1 of fluorescent light with energy peaks at 440–575 and 665 nm. Photosynthetic oxygen release was more efficient in filtered light of blue (BG 12) and red (RG 2) than in green (VG 9) qualities. Photosynthetic oxygen production occurred at temperatures ranging from 5° to 32° C in white fluorescent light from 10 to 105 μE·m?2·s?1 with a gross maximum value of 1500 × 10?12 g·cell?1·h?1 at the highest irradiance. The average respiration amounted to ca. 12% of the gross production and reached a maximum value of ca. 270·10?12 g·cell?1·h?1 at 31° C. A comparison of photosynthetic and respiratory Q10-values showed that in the upper temperature range the increase in gross production was only a third of the corresponding increase in respiration, although the gross production was at maximum. Short intermittent periods of dark (>7 min) before high light exposures from a halogen lamp greatly increased oxygen production. Depending on the physiological status of the alga, light saturation values were reached at 500–1000 μE·m?2·s?1 of halogen light with compensation points at 20–40 μE·m?2·s?1 and Ik-values at 100–200 μE·m?2·s?1. The corresponding values in fluorescent light in which it was cultured and adapted, were 25 to 75% lower indicating the ability of the alga to efficiently utilize varying light conditions, if the adaptation time is sufficient. Carbon fixation was most efficient at ca. pH 7, but the growth rates and biomass development were highest at pH 8.3.  相似文献   

4.
Growth responses of Pithophora oedogonia (Mont.) Wittr. and Spirogyra sp. to nine combinations of temperature (15°, 25°, and 35°C) and photon flux rate (50, 100, and 500 μmol·m?2·s?1) were determined using a three-factorial design. Maximum growth rates were measured at 35°C and 500 pmol·m?2·s?1 for P. oedogonia (0.247 d?1) and 25°C and 500 μmol·m?2·s?1 for Spirogyra sp. (0.224 d?1). Growth rates of P. oedogonia were strongly inhibited at 15°C (average decrease= 89%of maximum rate), indicating that this species is warm stenothermal. Growth rates of Spirogyra sp. were only moderately inhibited at 15° and 35°C (average decrease = 36 and 30%, respectively), suggesting that this species is eurythermal over the temperature range employed. Photon flux rate had a greater influence on growth of Spirogyra sp. (31% reduction at 50 pmol·m?2·s?1 and 25°C) than it did on growth of P. oedogonia (16% reduction at 50 μmol·m?2·s?1 and 35°C). Spirogyra sp. also exhibited much greater adjustments to its content of chlorophyll a (0.22–3.34 μg·mg fwt?1) than did P. oedogonia (1.35–3.08 μg·mg fwt?1). The chlorophyll a content of Spirogyra sp. increased in response to both reductions in photon flux rate and high temperatures (35°C). Observed species differences are discussed with respect to in situ patterns of seasonal abundance in Surrey Lake, Indiana, the effect of algal mat anatomy on the internal light environment, and the process of acclimation to changes in temperature and irradiance conditions.  相似文献   

5.
Microalgae growing within brine channels (85 psu salinity) of the surface ice layers of Antarctic pack ice showed considerable photosynthetic tolerance to the extreme environmental condition. Brine microalgae exposed to temperatures above ?5°C and at irradiances up to 350 μmol photons·m?2·s?1 showed no photosynthetic damage or limitations. Photosynthesis was limited (but not photoinhibited) when brine microalgae were exposed to ?10°C, provided the irradiance remained under 50 μmol photons·m?2·s?1. The highest level of photosynthetic activity (maximum relative electron transport rate [rETRmax]) in brine microalgae growing within the surface layer of sea ice was at approximately 18 μmol electrons·m?2·s?1, which occurred at ?1.8°C. Effective quantum yield of PSII and rETRmax of the halotolerant brine microalgae exhibited a temperature‐dependent pattern, where both parameters were higher at ?1.8°C and lower at ?10°C. Relative ETRmax at temperatures above ?5°C were stable across a wide range of irradiance.  相似文献   

6.
Using microcosm experiments, we investigated the interactive effects of temperature and light on specific growth rates of three species each of the phytoplanktonic genera Cryptomonas and Dinobryon. Several species of these genera play important roles in the food web of lakes and seem to be sensitive to high water temperature. We measured growth rates at three to four photon flux densities ranging from 10 to 240 μmol photon · m?2 · s?1 and at 4–5 temperatures ranging from 10°C to 28°C. The temperature × light interaction was generally strong, species specific, and also genus specific. Five of the six species studied tolerated 25°C when light availability was high; however, low light reduced tolerance of high temperatures. Growth rates of all six species were unaffected by temperature in the 10°C–15°C range at light levels ≤50 μmol photon · m?2 · s?1. At high light, growth rates of Cryptomonas spp. increased with temperature until the temperature optimum was reached and then declined. The Dinobryon species were less sensitive than Cryptomonas spp. to photon flux densities of 40 μmol photon · m?2 · s?1 and 200 μmol photon · m?2 · s?1 over the entire temperature range but did not grow under a combination of very low light (10 μmol photon · m?2 · s?1) and high temperature (≥20°C). Among the three Cryptomonas species, cell volume declined with temperature and the maximum temperature tolerated was negatively related to cell size. Since Cryptomonas is important food for microzooplankton, these trends may affect the pelagic carbon flow if lake warming continues.  相似文献   

7.
The growth characteristics of Haematococcus pluvialis Flotow were determined in batch culture. Optimal temperature for growth of the alga was between 25° and 28°C, at which the specific growth rate was 0.054 h?1. At higher temperatures, no cell division was observed, and cell diameter increased from 5 to 25 μm. The saturated irradiance for growth of the alga was 90 μmol quanta · m?2·s?1; under higher irradiances (e.g. 400 μmol quanta·m?2·s?1) astaxanthin accumulation was induced. Growth rate, cell cycle, and astaxanthin accumulation were significantly affected by growth conditions. Careful attention should be given to the use of optimal growth conditions when studying these processes.  相似文献   

8.
The effects of irradiance on the biochemical composition of the prymnesiophyte microalga, Isochrysis sp. (Parke; clone T-ISO), a popular species for mariculture, were examined. Cultures were grown under a 12:12 h light: dark (L:D) regime at five irradiances ranging from 50 to 1000 μE·m 2·s?1 and harvested at late-logarithmic phase for analysis of biochemical composition. Gross composition varied aver the range of irradiances. The highest levels of protein were present in cells from cultures grown at 100 and 250 μE·m 3·s1, and minimum levels of carbohydrate and lipid occurred at 50 μE·m?2·s?1. Because the cell dry weight was reduced at lower irradiances, different trends were evident when results were expressed as percentage of dry weights. Protein percentages were highest at Wand 100 μE·m?2·s?1 and carbohydrate at 100 μE·m?2·s?1. The composition of amino acids did not differ over the range of irradiances. Glutamate and aspartate were always present in high proportions (9.0–13.5%); histidine. methionine, tryptophan, cystine, and hydroxy-proline were minor constituents (0.0–2.6%). Glucose was the predominant sugar in all cultures, ranging from 23.0% (50 μE·m?2·s?1) to 45.0% (100 μE·m?2·s?1) of total polysaccharide. No correlation was found between the proportion of any of the sugars and irradiance. The proportions of the lipid class components and fatty acids showed little change with irradiance. The main fatty acids were 14:0, 16:0, 16:1(n-7), 18:1(n-9), 18:3(n-3). 18:4(n-3), 18:5(n-3), and 22:6(n-3). Proportions of 22: 6(n-3) increased, whereas l8:3(n-3). 18:3(n-6). and 18:4(n-3) decreased, with increasing irradiance. Pigment concentrations were highest in cultures grown at 50 μE·m?2·s?1, except for fucoxanthin and diadinoxanthin (100 μE·m?2·s?1). The concentrations of accessory pigments correlated with chlorophyll a, which decreased in concentration with increasing irradiance. On the basts of biochemical composition, an irradiance of 100 μE·m?1·s?1 (12:12 h L:D cycle)for the culture of Isochrysis sp. (clone T-ISO) may provide optimal nutritional value for maricultured animals, although feeding trials are now necessary to substantiate this.  相似文献   

9.
The electrophoretic mobility of L5178Y cells in 0.0145 M NaCl, 4.5% sorbitol, 0.6 mM NaHCO3, pH 7.2, at 25°C was — 1.78 μ·s?1·V?1·cm?1 while that of an L-asparaginase resistant subline, L5178Y/ASN, was — 1.11 μm·s?1·V?1·cm?1. Both cell lines were characterized by terminal sialic acid residues on their surfaces. Treatment of L5178Y cells for 90 min with 10 units of L-asparaginase per ml in saline decreased the electrophoretic mobility of the cells to — 1.65 μm·s?1·V?1·cm?1 while treatment in Fischer's medium decreased the mobility to — 1.25 μm·s?1·V?1·cm?1; neither treatment had a significant effect on the L5178Y/ASN electrophoretic mobility. The results suggest that L-asparaginase has an immediate and specific effect on synthesis of cell surface asparaginyl glycoproteins.  相似文献   

10.
Environmental variables such as temperature, salinity, and irradiance are significant drivers of microalgal growth and distribution. Therefore, understanding how these variables influence fitness of potentially toxic microalgal species is particularly important. In this study, strains of the potentially harmful epibenthic dinoflagellate species Coolia palmyrensis, C. malayensis, and C. tropicalis were isolated from coastal shallow water habitats on the east coast of Australia and identified using the D1‐D3 region of the large subunit (LSU) ribosomal DNA (rDNA). To determine the environmental niche of each taxon, growth was measured across a gradient of temperature (15–30°C), salinity (20–38), and irradiance (10–200 μmol photons · m?2 · s?1). Specific growth rates of Coolia tropicalis were highest under warm temperatures (27°C), low salinities (ca. 23), and intermediate irradiance levels (150 μmol photons · m?2 · s?1), while C. malayensis showed the highest growth at moderate temperatures (24°C) and irradiance levels (150 μmol photons · m?2 · s?1) and growth rates were consistent across the range of salinity levels tested (20–38). Coolia palmyrensis had the highest growth rate of all species tested and favored moderate temperatures (24°C), oceanic salinity (35), and high irradiance (>200 μmol photons · m?2 · s?1). This is the first study to characterize the environmental niche of species from the benthic harmful algal bloom genus Coolia and provides important information to help define species distributions and inform risk management.  相似文献   

11.
P.Muir Wood  D.S. Bendall 《BBA》1975,387(1):115-128
The rates of electron transfer to P700 from plastocyanin and cytochrome f have been compared with those from three other c-type cytochromes and azurin, a copper protein resembling plastocyanin. Three different disruptive techniques were used to expose P700; digitonin, Triton X-100 and sonication. The following rate constants were measured at 25 °C, pH 7.0, with digitonin-treated chloroplasts: plastocyanin, 8 · 107 M?1 · s?1; red-algal cytochrome c-553, 1.9 · 107 M?1 · s?1; Pseudomonas cytochrome c-551, 8 · 106 M?1 · s?1; azurin, ? 3 · 105 M?1 · s?1; cytochrome f, ? 2 · 104 M?1 · s?1; mammalian cytochrome c, ? 2 · 104 M?1 · s?1. For electron transfer from plastocyanin, the effects of ionic strength, pH and temperature were also studied, and saturation effects found in earlier work were avoided by a full consideration of the various secondary reactions and inclusion of superoxide dismutase. The relative rates are discussed in relation to photosynthetic electron transport.  相似文献   

12.
A compact, heat conduction, flow calorimeter for use in monitoring tissue response to metabolic regulators has been designed and constructed. The instrument operates as a perfusion apparatus. Heat production by tissue can be measured continuously, and nutrient and oxygen concentrations can be kept at optimum, constant levels. Introduction of substances of interest is made without production of attendant thermal mixing artifacts. The resolution time of events is less than 10 s. The thermal stability of the instrument is maintained by dynamic methods. The sensitivity of the instrument, 7.2 μW/μV, allows observation of changes in heat production as small as 3 × 10?4 to 5 × 10?4 cal/min, the equivalent of 3–5% of the heat production of a representative 1-g quantity of fresh tissue. The calorimeter was used to monitor changes in the steady-state heat production of 250-mg samples of corn coleoptile tissue in response to the plant growth substance, indoleacetic acid.  相似文献   

13.
The roles of temperature and light on grazing and photosynthesis were examined for Dinobryon sociale, a common freshwater mixotrophic alga. Photosynthetic rate was determined for D. sociale adapted to temperatures of 8, 12, 16, and 20°C under photosynthetically active radiation light irradiances of 25, 66, and 130 μmol photons · m?2 · s?1, with concurrent measurement of bacterial ingestion at all temperatures under medium and high light (66 and 130 μmol photons · m?2 · s?1). Rates of ingestion and photosynthesis increased with temperature to a maximum at 16°C under the two higher light regimes, and declined at 20°C. Although both light and temperature had a marked effect on photosynthesis, there was no significant difference in bacterivory at medium and high irradiances at any given temperature. At the lowest light condition (25 μmol photons · m?2 · s?1), photosynthesis remained low and relatively stable at all temperatures. D. sociale acquired the majority of carbon from photosynthesis, although the low photosynthetic rate without a concurrent decline in feeding rate at 8°C suggested 20%–30% of the carbon budget could be attributed to bacterivory at low temperatures. Grazing experiments in nutrient‐modified media revealed that this mixotroph had increased ingestion rates when either dissolved nitrogen or phosphorus was decreased. This work increases our understanding of environmental effects on mixotrophic nutrition. Although the influence of abiotic factors on phagotrophy and phototrophy in pure heterotrophs and phototrophs has been well studied, much less is known for mixotrophic organisms.  相似文献   

14.
In slow mainstream flows (<4–6 cm · s?1), the transport of dissolved nutrients to seaweed blade surfaces is reduced due to the formation of thicker diffusion boundary layers (DBLs). The blade morphology of Macrocystis pyrifera (L.) C. Agardh varies with the hydrodynamic environment in which it grows; wave‐exposed blades are narrow and thick with small surface corrugations (1 mm tall), whereas wave‐sheltered blades are wider and thinner with large (2–5 cm) edge undulations. Within the surface corrugations of wave‐exposed blades, the DBL thickness, measured using an O2 micro‐optode, ranged from 0.67 to 0.80 mm and did not vary with mainstream velocities between 0.8 and 4.5 cm · s?1. At the corrugation apex, DBL thickness decreased with increasing seawater velocity, from 0.4 mm at 0.8 cm · s?1 to being undetectable at 4.5 cm · s?1. Results show how the wave‐exposed blades trap fluid within the corrugations at their surface. For wave‐sheltered blades at 0.8 cm · s?1, a DBL thickness of 0.73 ± 0.31 mm within the edge undulation was 10‐fold greater than at the undulation apex, while at 2.1 cm · s?1, DBL thicknesses were similar at <0.07 mm. Relative turbulence intensity was measured using an acoustic Doppler velocimeter (ADV), and overall, there was little evidence to support our hypothesis that the edge undulations of wave‐sheltered blades increased turbulence intensity compared to wave‐exposed blades. We discuss the positive and negative effects of thick DBLs at seaweed surfaces.  相似文献   

15.
The seasonal abundance of epilithic algae was correlated with major physico-chemical parameters in a first-order, heavily shaded stream in northern Arizona. Diatoms made up over 85%, by numerical abundance, of the epilithon community Light energy, water temperature, and stream discharge were most highly correlated with seasonal abundance of epilithic diatom taxa when analyzed with stepwise multiple regression. None of the chemical variables measured in the study (NO3-N, O-PO4, SiO2, including PH) was found to be significantly correlated with the seasonal community structure of epilithic diatoms. Total diatom cell densities showed a significant negative correlation to stream bed light energy. Likewise, total diatom cell densities along a transect in the stream bed showed a negative correlation to current velocity during those months when base flow was low and stable, and current velocity was ≤25 cm·sec-1. Most diatom taxa had highest cell densities at temperatures < 16°C and at daily mean stream bed light levels < 400 μE·m?2·s?1. Highest cell densities of green algae occurred at temperatures between 6–16°C and at daily mean stream bed light levels of > 400 μE·m?2·s?1. Blue-green algae (cyanobacteria) grew best at the highest recorded water temperatures and daily mean stream bed light energy (16–20°C and 900–1200 μE·m?2·s?1). Abrupt increases in NO3-N coincided with a brief pulse of Nostoc pruniforme colonies during June, and leaf drop from Alnus oblongifolia during October.  相似文献   

16.
Small single‐celled Chaetoceros sp. are often widely distributed, but frequently overlooked. An estuarine diatom with an extremely high growth potential under optimal conditions was isolated from the Shinkawa‐Kasugagawa estuary in the eastern part of the Seto Inland Sea, western Japan. It was identified as Chaetoceros salsugineum based on morphological observations. This strain had a specific growth rate of 0.54 h?1 at 30°C under 700 μmol · m?2 · s?1 (about 30% of natural maximal summer light) with a 14:10 L:D cycle; there was little growth in the dark. However, under continuous light it grew at only 0.35 h?1 or a daily specific growth rate of 8.4 d?1. In addition, cell density, chlorophyll a, and particulate organic carbon concentrations increased by about 1000 times in 24 h at 30°C under 700 μmol · m?2 · s?1 with a 14:10 L:D cycle, showing a growth rate of close to 7 d?1. This very rapid growth rate may be the result of adaptation to this estuarine environment with high light and temperature. Thus, C. salsugineum can be an important primary producer in this estuary in summer and also an important organism for further physiological and genetic research.  相似文献   

17.
Gametophytes of Macrocystis pyrifera (L.) C. Ag. were cultured under a series of quantum irradiances in three photoperiod regimes. The quantum irradiances in each photoperiod were adjusted to provide equal daily irradiation dosages between photoperiods which allowed a critical examination of the interactions between quantum irradiance and quantum dose in determining gametophyte fertility. The lowest quantum irradiance which stimulated gametogenesis in more than 50% of the female gametophytes was 5 μE·m?2·s?1. The saturating irradiance was ca. 10 μE·m?2·s?1 at photoperiods of 12 h or greater. In terms of daily quantum dose, the lowest dose at which greater than 50% gametogenesis occurred was 0.2 E·m?2·d?1. However, this critical quantum dose was higher (0.4 E·m?2·d?1) when instantaneous irradiances were less than 5 μE·m?2·s?1. The saturation quantum dose was also affected by the rate at which the quantum dose was received and varied from 0.4 to 0.8 E·m?2·d?1. Gametophytes in all three photoperiods reached 100% fertility at quantum irradiances above 5 μE·m?2·s?1. Photoperiod effects were small and could be accounted for by quantum dosage effects.  相似文献   

18.
We present the energy and mass balance of cerrado sensu stricto (a Brazilian form of savanna), in which a mixture of shrubs, trees and grasses forms a vegetation with a leaf area index of 1·0 in the wet season and 0·4 in the dry season. In the wet season the available energy was equally dissipated between sensible heat and evaporation, but in the dry season at high irradiance the sensible heat greatly exceeded evaporation. Ecosystem surface conductance gs in the wet season rose abruptly to 0·3 mol m?2 s?1 and fell gradually as the day progressed. Much of the total variation in gs was associated with variation in the leaf-to-air vapour pressure deficit of water and the solar irradiance. In the dry season the maximal gs values were only 0·1 mol m?2 s?1. Maximal net ecosystem fluxes of CO2 in the wet and dry season were –10 and –15 μmol CO2 m?2 s?1, respectively (sign convention: negative denotes fluxes from atmosphere to vegetation). The canopy was well coupled to the atmosphere, and there was rarely a significant build-up of respiratory CO2 during the night. For observations in the wet season, the vegetation was a carbon dioxide sink, of maximal strength 0·15 mol m?2 d?1. However, it was a source of carbon dioxide for a brief period at the height of the dry season. Leaf carbon isotopic composition showed all the grasses except for one species to be C4, and all the palms and woody plants to be C3. The CO2 coming from the soil had an isotopic composition that suggested 40% of it was of C4 origin.  相似文献   

19.
Light intensity and temperature interactions have a complex effect on the physiological process rates of the filamentous bluegreen alga Anabaena variabilis Kütz. The optimum temperature for photosynthesis increased with increasing light intensity from 10°C at 42 μE·m?2·s?1 to 35°C at 562 μE·m?2·s?1. The light saturation parameter, IK, increased with increasing temperatures. The maximum photosynthetic rate (2.0 g C·g dry wt.?1·d?1) occurred at 35°C and 564 μE·m?2·s?1. At 15°C, the maximum rate was 1.25 g C·g dry wt.?1·d?1 at 332 μE·m?2·s?1. The dark respiration rate increased exponentially with temperature. Under favorable conditions of light intensity and temperature the percent of extracellular release of dissolved organic carbon was less than 5% of the total C fixed. This release increased to nearly 40% under combinations of low light intensity and high temperature. A mathematical model was developed to simulate the interaction of light intensity and temperature on photosynthetic rate. The interactive effects were represented by making the light-saturation parameters a function of temperature.  相似文献   

20.
Photosynthesis and respiration of three Alaskan Porphyra species, P. abbottiae V. Krishnam., P. pseudolinearis Ueda species complex (identified as P. pseudolinearis” below), and P. torta V. Krishnam., were investigated under a range of environmental parameters. Photosynthesis versus irradiance (PI) curves revealed that maximal photosynthesis (Pmax), irradiance at maximal photosynthesis (Imax), and compensation irradiance (Ic) varied with salinity, temperature, and species. The Pmax of Porphyra abbottiae conchocelis varied between 83 and 240 μmol O2 · g dwt?1 · h?1 (where dwt indicates dry weight) at 30–140 μmol photons · m?2 · s?1 (Imax) depending on temperature. Higher irradiances resulted in photoinhibition. Maximal photosynthesis of the conchocelis of P. abbottiae occurred at 11°C, 60 μmol photons · m?2·s?1, and 30 psu (practical salinity units). The conchocelis of P. “pseudolinearis” and P. torta had similar Pmax values but higher Imax values than those of P. abbottiae. The Pmax of P. “pseudolinearis” conchocelis was 200–240 μmol O2 · g dwt?1 · h?1 and for P. torta was 90–240 μmol O2 · g dwt?1 · h?1. Maximal photosynthesis for P. “pseudolinearis” occurred at 7°C and 250 μmol photons · m?2 · s?1 at 30 psu, but Pmax did not change much with temperature. Maximal photosynthesis for P. torta occurred at 15°C, 200 μmol photons · m?2 · s?1, and 30 psu. Photosynthesis rates for all species declined at salinities <25 or >35 psu. Estimated compensation irradiances (Ic) were relatively low (3–5 μmol · photons · m?2 · s?1) for intertidal macrophytes. Porphyra conchocelis had lower respiration rates at 7°C than at 11°C or 15°C. All three species exhibited minimal respiration rates at salinities between 25 and 35 psu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号