首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Following electrophoresis or isoelectric focusing in gels of polyacrylamide the protein band of interest is cut out and placed above a sucrose gradient column, containing carrier ampholytes (Pharmalyte). By electrophoresis, isoelectric focusing or displacement electrophoresis the proteins migrate out of the gel slice and into the isoelectric focusing column for concentration and further purification. From this column, the proteins can be withdrawn and their isoelectric points determined. Even after staining with Coomassie Brilliant Blue at least some proteins can be recovered by this technique and used for further analyses, for instance amino acid determinations. The focusing in a pH gradient by carrier ampholytes can be replaced by an electrophoresis in a conductivity gradient column. However, in comparison with isoelectric focusing, this concentration technique has the drawback of not permitting further purification of the eluted protein.  相似文献   

2.
Two-dimensional polyacrylamide gel electrophoresis of membrane proteins   总被引:2,自引:0,他引:2  
Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) is one of the most powerful separation techniques for complex protein solutions. The proteins are first separated according to their isoelectric point, driven by an electric field across a pH gradient. The pH gradient necessary for the separation according to isoelectric point (pL) is usually established by electrophoresing carrier ampholytes prior to and/or concomitantly with the sample. The second dimension is usually a separation according to molecular size. Mostly this separation is performed after complete denaturation of the proteins by sodium dodecyl sulfate and 2-mercaptoethanol (SDS-PAGE). This standard method has considerable disadvantages when relatively hydrophobic membrane proteins are to be separated: cathodic drift, resulting in nonreproducible separation, and the denaturation of the protein, mostly making it impossible to detect native properties of the proteins after separation (e.g., enzymatic activity, antigenicity, intact multimers, and so on). The protocols presented here take care of most of these obstacles. However, there is probably no universal procedure that can guarantee success at first try for any mixture of membrane proteins; some experimentation will be necessary for optimization. Two procedures are each presented: a denaturing (with urea) and a nondenaturing method for IEF in immobilized pH gradient gels using Immobilines, and a denaturing (with SDS and 2-mercaptoethanol) and a nondenaturing technique (with CHAPS) for the second dimension. Essential tips and tricks are presented to keep frustrations of the newcomer at a low level.  相似文献   

3.
A method for preparative isoelectric focusing of 0.1-10 g amounts of proteins is described. For anticonvective stabilization of the pH gradient, layers of granulated gels (E.G. Sephadex or Bio-Gel) of variable length, width and thickness were used either on glass plates or in troughs. Load capacity, defined as the amount of protein per ml gel suspension, was determined to be 5-10 mg per ml for total protein, irrespective of the pH range of the carrier ampholytes. For single proteins load capacities of 0.25-1 mg per ml were found for pH 3-10 carrier ampholytes, and 2-4 mg per ml for narrow pH range ampholytes. Experiments on a quartz plate followed by densitometric evaluation in situ at 280 nm have demonstrated that it is possible to proceed from analytical thin-layer isoelectric focusing to preparative separations without loss of resolution, just by changing the dimension of the gel layer and increasing the protein load. Improved resolution which facilitates isolation of isoelectrically homegenious components could be achieved on a 40 cm long separation distance. The geometry of a layer is favourable to heat dissipation and this permits the use of high voltage gradients. Recovery of the focused proteins is high an elution simple. The efficiency of the method is illustrated by examples showing separations of single proteins and protein mixtures.  相似文献   

4.
The evolution of isoelectric focusing is traced back over the years, from a somewhat shaky origin to present-day immobilized pH gradients. Four generations of methodology are classified and discussed: (A) Kolin's approach, consisting of a two-step technique, generation of a pH gradient by diffusion followed by a rapid electrokinetic protein separation; (B) Svensson-Rilbe's approach, consisting of creating a pH gradient in an electric field by utilizing as buffers a multitude of carrier ampholytes, i.e. of amphoteric species possessing good buffering capacity and conductivity at their pI; (C) immobilized pH gradients, by which non-amphoteric buffers and titrants (acrylamido weak acids and bases), titrated around their pK values, are grafted (insolubilized) onto a polyacrylamide gel matrix and (D) mixed-bed carrier ampholyte-Immobiline gel, by which a soluble, carrier ampholyte generated pH gradient coexists in the same matrix with an insoluble, Immobiline generated, pH gradient.  相似文献   

5.
Görg A  Boguth G  Köpf A  Reil G  Parlar H  Weiss W 《Proteomics》2002,2(12):1652-1657
Due to their heterogeneity and huge differences in abundance, the detection and identification of all proteins expressed in eukaryotic cells and tissues is a major challenge in proteome analysis. Currently the most promising approaches are sample prefractionation procedures prior to narrow pH range two-dimensional gel electrophoresis (IPG-Dalt) to reduce the complexity of the sample and to enrich for low abundance proteins. We recently developed a simple, cheap and rapid sample prefractionation procedure based on flat-bed isoelectric focusing (IEF) in granulated gels. Complex sample mixtures are prefractionated in Sephadex gels containing urea, zwitterionic detergents, dithiothreitol and carrier ampholytes. After IEF, up to ten gel fractions alongside the pH gradient are removed with a spatula and directly applied onto the surface of the corresponding narrow pH range immobilized pH gradient (IPG) strips as first dimension of two-dimensional (2-D) gel electrophoresis. The major advantages of this technology are the highly efficient electrophoretic transfer of the prefractionated proteins from the Sephadex IEF fraction into the IPG strip without any sample dilution, and the full compatibility with subsequent IPG-IEF, since the prefactionated samples are not eluted, concentrated or desalted, nor does the amount of the carrier ampholytes in the Sephadex fraction interfere with subsequent IPG-IEF. Prefractionation allows loading of higher protein amounts within the separation range applied to 2-D gels and facilitates the detection of less abundant proteins. Also, this system is highly flexibile, since it allows small scale and large scale runs, and separation of different samples at the same time. In the current study, this technology has been successfully applied for prefractionation of mouse liver proteins prior to narrow pH range IPG-Dalt.  相似文献   

6.
作为一种新型的速效局部止血药和工具酶,凝血酶在临床和生物学研究中的应用十分广泛,牛血浆是其重要的来源之一。等电点沉淀是提取牛凝血酶首要和关键的步骤,测定其等电点后,再用此法时将得到更纯的凝血酶粗制品。本实验的目的是采用载体两性电解质pH梯度等电聚焦电泳的方法,结合SDS-PAGE测定牛凝血酶的等电点。经双向电泳后,SDS聚丙烯酰胺凝胶中出现了4个清晰的斑点,分别测定它们的分子量和等电点, 其中一个斑点与牛凝血酶B链的分子量一致为32kDa,其等电点为5.19.  相似文献   

7.
It was shown that pH gradients in thin-layer polyacrylamide gel isoelectric focusing can be extended by decreasing the gel thickness in the region of interest, thickness modified pH gradients, or by using a relatively lower concentration of carrier ampholytes in the same region, concentration modified pH gradients. The two new methods for gradient expansion were compared with gradient expansion by the use of a so-called “chemical spacer,” β-alanine. All three methods were found to give pH gradient flattening around pH 7 and increased resolution of hemoglobins AI and AIc. The effect of the three methods on field strength distribution was also compared. As expected the concentration modified gradient and the thickness modified gradient methods were found to give an increased field strength in the region of interest. An additional advantage with the two new methods is their general applicability to any desired pH region.  相似文献   

8.
The feasibility of purifying subcellular membranes, especially plasma membranes, from oat roots using isoelectric focusing has been examined. Membranes from oat (Avena sativa L. cv Garry) root homogenates were fractionated using discontinuous sucrose density gradient centrifugation and then electrofocused using a microanalytical isoelectric focusing column. The column contained either a broad-range (pH 3-10) or narrow-range (pH 3-6) pH gradient stabilized by a 5 to 15% Ficoll gradient. Results from the broad-range columns confirmed that the isoelectric pH (pI) values of the membranes were in the acidic range, with pI values ranging from 3.9 to 5.2. Using narrow-range pH gradients, it was possible to fractionate further plasma membrane-enriched material obtained from a sucrose density gradient. We had no success at fractionating crude membrane preparations from oat roots. Narrow-range pH gradients generated by commercial ampholytes were more successful than those generated by acetate/acetic acid mixtures.  相似文献   

9.
Horseradish peroxidase has been fractionated by preparative isoelectric focusing in a density gradient and in a layer of granulated gel using pH-3-10 and narrow-pH-range carrier ampholytes at different total enzyme loads. The resolution of peroxidase isoenzymes in preparative-layer isoelectric focusing was comparable to that obtained by analytical thin-layer isoelectric focusing. Isoelectrically homogeneous isoenzymes could be isolated with good recovery in a single fractionation step. Despite the excellent separation of the individual isoenzymes by isoelectric focusing in gel layers, an effective purification, indicated by the absorbance ratio A403mn/A278nm, could not be achieved by focusing applied as a single step. By different fractionation sequences combining gel chromatography, ion-exchange chromatography, and isoelectric focusing, individual isoenzymes with a high purity and homogeneous with respect to their size and charge properties have been isolated.  相似文献   

10.
A rapid and sensitive method for the detection of carrier ampholyte contamination in electrofocused proteins is described. Samples containing proteins and carrier ampholytes were applied to cellulose thin-layer chromatographic sheets and developed in 10% trichloroacetic acid. Proteins and large-molecular-weight carrier ampholytes were precipitated at the origin while 10% trichloroacetic acid-soluble carrier ampholytes migrated as a diffuse ninhydrin (nitrogen)-positive area at an Rf greater than 0.50. We found that 1.25 μg of carrier ampholytes contained enough 10% trichloroacetic acid-soluble components to be detected by thinlayer chromatography. Using this assay, we investigated techniques designed to remove carrier ampholytes from an electrofocused protein. Removal of large-molecular-weight components from carrier ampholytes by dialysis through a 3500 Mr cutoff membrane did not facilitate separation of carrier ampholytes from streptococcal pyrogenic exotoxin type C by dialysis or gel chromatography. Also, this protein binds irreversibly to mixed-bed ion-exchange resin. The best method for separating carrier ampholytes from streptococcal pyrogenic exotoxin type C was by electrodialysis at pH 4.0. Following electrodialysis, estimated carrier ampholyte contamination in this protein was less than 1 part in 500 parts (by weight).  相似文献   

11.
Amino acids with a largepI -pKp difference are known to be poor carrier ampholytes in electrofocusing, exhibiting isoelectric zones with poor conductivity across as many as 4 pH units. Accordingly, radioactive amino acids of this type, e.g., glycine, are found to be distributed over the entire pH gradient formed by Ampholine in electrofocusing gels, while radioactive amino acids like histidine or glutamic acid with small pI - pKp differences form single peaks at or near their pI's. When poor carrier ampholyte amino acids are subjected to gel electrofocusing in 0.1 KCl, their distribution sharpens into single peaks, at or near the pI, indistinguishable from those of the good carrier ampholyte amino acids. At an intermediate stage of peak coalescence of the original broad distributions of poor carrier ampholyte amino acids, in 0.01 KCl, acidic and basic peaks of amino acid can be observed, possibly analogous to acidie and basic distributions previously observed with labeled Ampholine. The rate of peak coalescence of anionic amino acids seems higher than that of the cationic species. The mechanism by which high ionic strength facilitates the condensation of poor carrier ampholyte amino acids at their pI remains unknown. Possibly, the current within zones of poor carrier ampholyte amino acids is insufficient, or poor carrier ampholyte amino acids are not sufficiently charged, to allow for electrophoretic migration of the bulk of loaded amino acid to its isoelectric position, unless the current density is increased by electrofocusing at high ionic strength. Alternatively, 0.1 KCl may interfere with electrovalent interactions between amino acids and isoelectric carrier ampholyte zones, analogous to the action of urea in preventing the interaction between polyanions and carrier ampholytes.  相似文献   

12.
In mixed-bed, carrier ampholyte-Immobiline gels, a primary, insolubilized pH gradient is admixed with a secondary, soluble pH gradient generated by amphoteric buffers. The latter are the standard carrier ampholytes (e.g. Ampholine, Pharmalyte, Biolyte, Servalyte), used in conventional isoelectric focusing, admixed to Immobiline gels in levels of approximately 0.5-1%. It is here shown that polybuffers 96 (covering the pH 6-9 range) and 74 (covering the pH 4-7 interval) used as eluents in chromatofocusing, can effectively substitute the standard carrier ampholytes with considerable savings (they are 1/16th as expensive as the latter chemicals).  相似文献   

13.
Ultrathin layers of polyacrylamide gel bound to glass can be washed, air-dried, and stored for at least 1 year before rewetting in ampholyte solutions for isoelectric focusing. Short-term drying affects neither fluorescent banding of the ampholytes (not evident in conventional gels) nor resolution of complex protein mixtures while prolonged storage seems to have no deleterious effects. Layers are fully functional after soaking for 10 min in solutions that may contain 8 M urea and 10% sorbitol. Rewetting allows the rapid survey of different ampholytes, gradient stabilizers, separator compounds, or protein reagents and is adaptable to concentration modification of the pH gradient (alone or with a gel overlay), to focusing in a transverse urea gradient, and to electrophoresis across a preformed pH gradient. The procedure avoids protein modification by residual polymerizing reagents while adding to the convenience and economy of using ultrathin layers in relatively small formats.  相似文献   

14.
Fractionation of highly purified Cl. perfringens type A enterotoxin by scanning isoelectric focusing (SIF) and isotachophoresis (IT) in polyacrylamide gels is described for the first time. The use of 2% ampholytes pH 3–6 allowed the separation of enterotoxin into 2 species. The major component had an isoelectric point of 4·5 and possessed antigenic as well as functional activity. The minor component of enterotoxin, at equivalent concentrations, was devoid of any demonstrable biological activity had an isoelectric point of 4·6 and appeared to represent approximately 15% of the purified enterotoxin. With ampholytes pH 3·5–10 the minor and major components were focused at different times than when ampholine pH 3–6 was employed. Electrofocusing of enterotoxin in the presence of 6 M-urea did not alter the SIF pattern. During IT the major component of enterotoxin migrated ahead of the minor component. The 2 proteins were completely separated. Isotachophoretic separations required 0·023 M-phosphate pH 6·0 as the leading ion, 0·079 M-Tris as the counter-ion, 0·2 M-glycine (in Tris pH 8·1) as the terminating ion, 30 γ carrier ampholytes pH 3·5–10, 263 μg enterotoxin, 4% acrylamide and a current of 5 mA per gel column.  相似文献   

15.
A novel free-flow protein purification technique based on isoelectric electrophoresis is presented, where the proteins are purified in solution without the need of carrier ampholytes. The gist of the method is to flow protein solutions under an immobilised pH gradient gel (IPG) through which an electric field is applied perpendicular to the direction of the flow. Due to the buffering capacity of the IPG gel, proteins with an isoelectric point (pI) close to pH of the gel in contact with the flow chamber stay in solution because they are neutral and therefore not extracted by the electric field. Other proteins will be charged when approaching the IPG gel and are extracted into the gel by the electric field. Both a demonstration experiment with pI markers and a simulation of the electric field distribution are presented to highlight the principle of the system. In addition, an isoelectric fractionation of an Escherichia coli extract is shown to illustrate the possible applications.  相似文献   

16.
Products of the copolymerization of acrylic acid with oligoethylene oligoamines were used to establish natural pH gradients for the isoelectric fractionation of protein mixtures by polyacrylamide gel electrophoresis. The unfractionated synthesized ampholytes were compared with the commercially available ampholytes with respect to the number of ampholyte components, the pH gradient and the resolution of protein mixtures. The performance of the ampholytes prepared employing the more highly substituted ethylene amines was found to be comparable to that of the commercial ampholytes over the pH range 4 to 8.  相似文献   

17.
A method for protein determination in one- and two-dimensional electrophoresis sample buffer is presented. Accurate quantitation of protein in two-dimensional electrophoresis sample buffer (9.5 M urea, 2% Nonidet P-40, 2% carrier ampholytes, and 5% 2-mercaptoethanol) required removal of carrier ampholytes prior to the assay. This was made possible by taking advantage of the mutual solubility/insolubility of carrier ampholytes/proteins in saturated ammonium sulfate solution. In addition, improvement of protein determination in denaturing electrophoresis sample buffer containing the anionic detergent sodium dodecyl sulfate and the reducing agent 2-mercaptoethanol was achieved. The assay covers a range of sensitivity from 40 ng to 20 micrograms of protein. The procedure is applicable to large numbers of samples.  相似文献   

18.
A simple procedure for obtaining useful narrow-pH-range ampholytes from inexpensive laboratory-synthesized ampholytes by preparative isoelectric focusing in Pevikon is described. The narrow range ampholytes prepared in this way are comparable to commercial ampholyte preparation as judged by conductivity, buffer capacity, pH gradient formation, and resolving power. These inexpensive narrow-range ampholytes are particularly well suited to preparative isoelectric focusing applications requiring large quantities of ampholytes.  相似文献   

19.
The technique of isoelectric focusing on immobilized pH gradients (IPG) has been applied to the analysis of tryptic digests of alpha- and beta-chains of human hemoglobin. Using peptides purified by RP-HPLC as a reference, it was possible to create a peptide map in the single IEF dimension. Unfortunately, it was not possible to find experimental conditions (medium for migration and staining) which would allow the detection of peptides of less than 10-12 residues. Almost all the bands visible on the gel could be assigned to known peptides. In order to obtain these results the IPG runs were performed in 8 M urea containing 0.5% carrier ampholytes and the gel stained with colloidal Coomassie brilliant blue G-250, in the presence of a high-salt concentration and at acidic pH.  相似文献   

20.
The surface charge of plant protoplasts has been measured by a new technique, isoelectric focusing. The protoplasts were loaded in a dextran density gradient over which a pH gradient was superimposed. When voltage was applied, protoplasts moved to a point in the gradient corresponding to their isoelectric point (pI). The pI of the protoplasts varied with the compounds used for pH gradient generation. Using commercial ampholytes for pH gradient formation, the pI of all protoplasts tested was 4.4 ± 0.2, and viability following electrophoresis was low. Using an acetate/acetic acid mixture to generate the pH gradient, the pI of protoplasts varied from 3.7 to 5.3 depending on the species and tissue type of the parental cells. Postelectrophoresis viability was high. Using isoelectric focusing techniques, it was possible to separate mixtures of protoplasts derived from different species of plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号