首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The histidine residue essential for the catalytic activity of pancreatic cholesterol esterase (carboxylester lipase) has been identified in this study using sequence comparison and site-specific mutagenesis techniques. In the first approach, comparison of the primary structure of rat pancreatic cholesterol esterase with that of acetylcholinesterase and cholinesterase revealed two conserved histidine residues located at positions 420 and 435. The sequence in the region around histidine 420 is quite different between the three enzymes. However, histidine 435 is located in a 22-amino acid domain that is 47% homologous with other serine esterases. Based on this sequence homology, it was hypothesized that histidine 435 is the histidine residue essential for catalytic activity of cholesterol esterase. The role of His435 in the catalytic activity of pancreatic cholesterol esterase was then studied by the site-specific mutagenesis technique. Substitution of the histidine in position 435 with glutamine, arginine, alanine, serine, or aspartic acid abolished the ability of cholesterol esterase to hydrolyze p-nitrophenyl butyrate and cholesterol [14C]oleate. In contrast, mutagenesis of the histidine residue at position 420 to glutamine had no effect on cholesterol esterase enzyme activity. The results of this study strongly suggested that histidine 435 may be a component of the catalytic triad of pancreatic cholesterol esterase.  相似文献   

2.
Oligonucleotide-directed mutagenesis was carried out to replace glycine-24 of streptokinase with histidine, glutamic acid, or alanine. Substitutions with either histidine or glutamic acid resulted in almost complete loss of streptokinase activity but streptokinase replaced with alanine retained its activity. Although streptokinases with histidine-24 or glutamic acid-24 bound normally to human plasminogen, they were not able to generate active plasmin, whereas those with alanine-24 or glycine-24 (wild-type) could generate active plasmin. The results indicate that the small, uncharged alkyl group side-chain on the 24th amino acid residue of streptokinase is indispensable for the activity of the human plasminogen-streptokinase complex.  相似文献   

3.
For chemical synthesis of a gene coding for human tumor necrosis factor alpha (TNF-alpha), DNA sequence predicted by the amino acid sequence of human TNF molecule was prepared. Codons were chosen according to the codon usage in Escherichia coli (E. coli). The 490 bp gene was assembled by enzymic ligation of 42 oligonucleotides and was cloned into a vector (pKK223-3) for high expression of active TNF-alpha in E. coli. With use of site-directed mutagenesis on this DNA, five different muteins of TNF-alpha were synthesized. TNF-M1 and TNF-M4 have deletions of His-73 and Gln-102, respectively. These deletions didn't cause loss of the cytotoxic activity against L929 cells. TNF-M5, which has a substitution of Asp-10 to Arg, had the similar cytotoxic activity to that of TNF-alpha. The cytotoxic spectra against several tumor cells were not changed by this substitution. TNF-M3 has an amino acid substitution of Glu-116 to His which occupies this position in human TNF-beta. This substitution didn't change the cytotoxicity. In addition, evidence was presented that the change of the carboxyl terminal residue doesn't always influence the cytotoxic activity of TNF-alpha. Many different muteins were also isolated by random mutagenesis with hydroxylamine-HCl. One of the muteins, which carries a mutation of His-15 to Tyr, lost the cytotoxic activity almost completely.  相似文献   

4.
Deiodination is required for conversion of thyroxine, the inactive prohormone secreted by the thyroid gland, to 3,5,3'-triiodothyronine, the biologically active thyroid hormone. The principal enzyme catalyzing this reaction, Type I iodothyronine 5' deiodinase, was shown recently to contain the amino acid, selenocysteine, and site-directed mutagenesis showed that this amino acid confers the biochemical properties characteristic of this enzyme. Previous studies suggest that a histidine residue may also be critical for activity. To further our understanding of the biochemical mechanism of this reaction, we have used in vitro mutagenesis to examine the contribution of each of the 4 histidines in this enzyme to the deiodination process. Two of the histidines (185 and 253) are not involved in deiodination, as their removal had no effect on activity. Mutagenesis of histidine 158 resulted in complete loss of activity, suggesting a role in either protein conformation or catalysis. The most informative results were obtained from the studies of histidine 174. Mutagenesis of this histidine to asparagine or glutamine altered reactivity with substrate and reduced inhibition by diethylpyrocarbonate and rose bengal. These results demonstrate that histidine 174 is critical to function and appears to be involved in binding of hormone.  相似文献   

5.
IgASE1, a C18-Delta9-polyunsaturated fatty acid-specific fatty acid elongase component from Isochrysis galbana, contains a variant histidine box (his-box) with glutamine replacing the first histidine of the conserved histidine-rich motif present in all other known equivalent proteins. The importance of glutamine and other variant amino acid residues in the his-box of IgASE1 was determined by site-directed mutagenesis. Results showed that all the variation in amino acid sequence between this motif in IgASE1 and the consensus sequences of other elongase components was required for optimum enzyme activity. The substrate specificity was shown to be unaffected by these changes suggesting that components of the his-box are not directly responsible for substrate specificity.  相似文献   

6.
For chemical synthesis of a gene coding for human necrosis factor α (TNF-α), DNA sequence predicted by the amino acid sequence of human TNF molecule was prepared. Codons were chosen according to the codon usage in Escherichia coli (E. coli). The 490 hp gene was assembled by enzymic ligation of 42 oligonucleotides and was cloned into vector (]KK223-3) for high expression of active TNF-α in E. coli. With use of site-directed mutagenesis on this DNA, five different muteins of TNF-α were synthesized. TNF-M1 and TNF-M4 have deletions of His-73 and Gln-102, respectively. These deletions didn't cause loss of the cytotoxic activity against L929 cells. TNF-M5, which has a substitution of Asp-10 to Arg, had the similar cytotoxic activity to that of TNF-α. The cytotoxic spectra against several tumor cells were not changed by this substitution. TNF-M3 has an amino acid substitution of Glu-116 to His which occupies this position in human TNF-β. This substitution didn't change the cytotoxicity. In addition, evidence was presented that the change of the carboxyl terminal residue doesn't always influence the cytotoxic activity of TNF-α. Many different muteins were also isolated by random mutagenesis with hydroxylamine-HCl. One of the muteins, which carries a mutation of His-15 to Tyr, lost the cytotoxic activity almost completely.  相似文献   

7.
Several mutant cDNAs of elongation factor 2 (EF-2) were constructed by site-directed mutagenesis and their products expressed in mouse cells were investigated. Amino acid substitution for the histidine residue of codon 715, which is modified post-translationally to diphthamide, resulted in non-functional EF-2 and this substitution did not render EF-2 resistant to Pseudomonas aeruginosa exotoxin A, which inactivates EF-2 transferring ADP-ribose to the diphthamide residue. These non-functional EF-2s with replacements of the histidine-715 residue showed various extents of inhibition of protein synthesis by competing with functional EF-2 in vivo. These results suggest that histidine-715 is essential for the translocase activity of EF-2 and that the region around diphthamide functions in recognition of, and/or binding to ribosomes. Substitution of proline for the alanine-713 residue and substitution of glutamine for the glycine-717 residue converted EF-2 to partially toxin-resistant forms. Two-dimensional gel analysis with fragment A of diphtheria toxin of these toxin-resistant EF-2s revealed that their ADP-ribosylations by toxin were much less than that of wild-type EF-2.  相似文献   

8.
The effect of different nitrogen compounds on the induction of reduced nicotinamide adenine dinucleotide phosphate-nitrate reductase was examined in Neurospora crassa. Whereas in the wild-type strain several amino acids and ammonia inhibit the formation of nitrate reductase, only glutamine, cysteine, and histidine are shown to inhibit the synthesis of nitrate reductase in a glutamine-requiring auxotroph. None of the amino acids inhibited nitrate reductase activity in vitro. The effects of cysteine and histidine are nonspecific, these amino acids being inhibitory of the growth of the organism. The effect of glutamine on the induction of nitrate reductase is not due to an inhibition of the uptake of the inducer nitrate. By the use of histidine-, pyrimidine-, and arginine-requiring auxotrophs, it was shown that glutamine appears to act per se and does not seem to be converted to another product in order to be effective in repression. The repression of nitrate reductase by ammonia appears, from the results described herein, to be indirect; ammonia has to be converted first to glutamine in order to be effective in repression.  相似文献   

9.
EnvZ and OmpR are the sensor and response regulator proteins of a two-component system that controls the porin regulon of Escherichia coli in response to osmolarity. Three enzymatic activities are associated with EnvZ: autokinase, OmpR kinase, and OmpR-phosphate (OmpR-P) phosphatase. Conserved histidine-243 is critical for both autokinase and OmpR kinase activities. To investigate its involvement in OmpR-P phosphatase activity, histidine-243 was mutated to several other amino acids and the phosphatase activity of mutated EnvZ was measured both in vivo and in vitro. In agreement with previous reports, we found that certain substitutions abolished the phosphatase activity of EnvZ. However, a significant level of phosphatase activity remained when histidine-243 was replaced with certain amino acids, such as tyrosine. In addition, the phosphatase activity of a previously identified kinase- phosphatase+ mutant was not abolished by the replacement of histidine-243 with asparagine. These data indicated that although conserved histidine-243 is important for the phosphatase activity, a histidine-243-P intermediate is not required. Our data are consistent with a previous model that proposes a common transition state with histidine-243 (EnvZ) in close contact with aspartate-55 (OmpR) for both OmpR phosphorylation and dephosphorylation. Phosphotransfer occurs from histidine-243-P to aspartate-55 during phosphorylation, but water replaces the phosphorylated histidine side chain leading to hydrolysis during dephosphorylation.  相似文献   

10.
1. When ribonuclease T1 [EC 3.1.4.8] (0.125% solution) was treated with a 760-fold molar excess of iodoacetamide at pH 8.0 and 37 degrees, about 90% of the original activity was lost in 24 hr. The half-life of the activity was about 8 hr. The binding ability for 3'-GMP was lost simultaneously. Changes were detected only in histidine and the amino-terminal alanine residues upon amino acid analyses of the inactivated protein and its chymotryptic peptides. The inactivation occurred almost in parallel with the loss of two histidine residues in the enzyme. The pH dependences of the rate of inactivation and that of loss of histidine residues were similar and indicated the implication of a histidine residue or residues with pKa 7.5 to 8 in this reaction. 3'-GMP and guanosine showed some protective effect against loss of activity and of histidine residues. The reactivity of histidine residues was also reduced by prior modification of glutamic acid-58 with iodoacetate, of lysine-41 with maleic or cis-aconitic anhydride or 2,4,6-trinitrobenzenesulfonate or of arginine-77 with ninhydrin. 2. Analyses of the chymotryptic peptides from oxidized samples of the iodoacetamide-inactivated enzyme showed that histidine-92 and histidine-40 reacted with iodoacetamide most rapidly and at similar rates, whereas histidine-27 was least reactive. Alkylation of histidine-92 was markedly slowed down when the Glu58-carboxymethylated enzyme was treated with iodoacetamide. On the other hand, alkylation of histidine-40 was slowed down most in the presence of 3'-GMP. These results suggest that histidine-92 and histidine-40 are involved in the catalytic action, probably forming part of the catalytic site and part of the binding site, respectively, and that histidine-27 is partially buried in the enzyme molecule or interacts strongly with some other residue, thus becoming relatively unreactive.  相似文献   

11.
The bioactivity of tumor necrosis factor (TNF) is mediated by two TNF receptors (TNF-Rs), more particularly TNF-RI and TNF-RII. Although human TNF (hTNF) and murine TNF (mTNF) are very homologous, hTNF binds only to mTNF-RI. By measuring the binding of a panel of mTNF/hTNF chimeras to both mTNF-R, we pinpointed the TNF region that mediates the interaction with mTNF-RII. Using site-specific mutagenesis, we identified amino acids 71-73 and 89 as the main interacting residues. Mutein hTNF-S71D/T72Y/H73 Delta/T89E interacts with both types of mTNF-R and is active in CT6 cell proliferation assays mediated by mTNF-RII. Mutein mTNF-D71S/Y72T/Delta 73H/E89T binds to mTNF-RI only and is no longer active on CT6 cells. However, the L929s cytotoxicity of this mutein (an effect mediated by mTNF-RI triggering) was also 100-fold lower than that of wild-type mTNF due to enhanced dissociation during incubation at subnanomolar concentrations. The additional mutation of amino acid 102, resulting in the mutein mTNF-D71S/Y72T/Delta 73H/E89T/P102Q, restored the trimer stability, which led to an enhanced specific activity on L929s cells. Hence the specific activity of a TNF species is governed not only by its receptor binding characteristics but also by its trimer stability after incubation at subnanomolar concentrations. In conclusion, the mutation of TNF amino acids 71-73, 89, and 102 is sufficient to obtain a mTNF mutein selective for mTNF-RI and a hTNF mutein that, unlike wild-type hTNF, also acts on mTNF-RII.  相似文献   

12.
The response regulator VirR and its cognate sensor histidine kinase, VirS, are responsible for toxin gene regulation in the human pathogen Clostridium perfringens. The C-terminal domain of VirR (VirRc) contains the functional FxRxHrS motif, which is involved in DNA binding and is conserved in many regulatory proteins. VirRc was cloned, purified, and shown by in vivo and in vitro studies to comprise an independent DNA binding domain. Random and site-directed mutagenesis was used to identify further amino acids that were required for the functional integrity of the protein. Random mutagenesis identified a unique residue, Met-172, that was required for biological function. Site-directed mutagenesis of the SKHR motif (amino acids 216 to 219) revealed that these residues were also required for biological activity. Analysis of the mutated proteins indicated that they were unable to bind to the DNA target with the same efficiency as the wild-type protein.  相似文献   

13.
The literature data on the activity of histidine-15 modified hen egg white lysozyme are conflicting: the modified enzyme is reported to have more activity, similar activity or less activity by different authors. Amino acid analysis had shown modification of the single His-15. Detailed activity studies on His-15-modified (by iodoacetic acid or diethyl pyrocarbonate) lysozyme have shown that the contradicting reports are due to the specific choices of ionic strengths and cell wall substrate concentrations and can be attributed to the substrate being negatively charged. Our analysis suggests that even though histidine-15 is far removed from the active site of lysozyme, its chemical modification or binding of the negatively-charged substrate near it, changes the conformation around the active site. However, the change in the optimum activity on chemically modifying His-15 is small.  相似文献   

14.
Phorbol ester-inducible mouse 8S-lipoxygenase (8-LOX) and its human homologue, 15S-lipoxygenase-2 (15-LOX-2), share 78% identity in amino acid sequences, yet there is no overlap in their positional specificities. In this study, we investigated the determinants of positional specificity using a random chimeragenesis approach in combination with site-directed mutagenesis. Exchange of the C-terminal one-third of the 8-LOX with the corresponding portion of 15-LOX-2 yielded a chimeric enzyme with exclusively 15S-lipoxygenase activity. The critical region was narrowed down to a cluster of five amino acids by expression of multiple cDNAs obtained by in situ chimeragenesis in Escherichia coli. Finally, a pair of amino acids, Tyr(603) and His(604), was identified as the positional determinant by site-directed mutagenesis. Mutation of both of these amino acids to the corresponding amino acids in 15-LOX-2 (Asp and Val, respectively) converted the positional specificity from 8S to 90% 15S without yielding any other by-products. Mutation of the corresponding residues in 15-LOX-2 to the 8-LOX sequence changed specificity to 50% oxygenation at C-8 for one amino acid substitution and 70% at C-8 for the double mutant. Based on the crystal structure of the reticulocyte 15-LOX, these two amino acids lie opposite the open coordination position of the catalytic iron in a likely site for substrate binding. The change from 8 to 15 specificity entails a switch in the head to tail binding of substrate. Enzymes that react with substrate "head first" (5-LOX and 8-LOX) have a bulky aromatic amino acid and a histidine in these positions, whereas lipoxygenases that accept substrates "tail first" (12-LOX and 15-LOX) have an aliphatic residue with a glutamine or aspartate. Thus, this positional determinant of the 8-LOX and 15-LOX-2 may have significance for other lipoxygenases.  相似文献   

15.
Membrane-bound microsomal fatty acid desaturases are known to have three conserved histidine boxes, comprising a total of up to eight histidine residues. Recently, a number of deviations from this consensus have been reported, with the substitution of a glutamine for the first histidine residue of the third histidine box being present in the so called 'front end' desaturases. These enzymes are also characterized by the presence of a cytochrome b5 domain at the protein N-terminus. Site-directed mutagenesis has been used to probe the functional importance of a number of amino acid residues which comprise the third histidine box of a 'front end' desaturase, the borage Delta6-fatty acid desaturase. This showed that the variant glutamine in the third histidine box is essential for enzyme activity and that histidine is not able to substitute for this residue.  相似文献   

16.
Triplex-forming oligonucleotides (TFOs) bind specifically to duplex DNA and provide a strategy for site-directed modification of genomic DNA. Recently we demonstrated TFO-mediated targeted gene knockout following systemic administration in animals. However, a limitation to this approach is the requirement for a polypurine tract (typically 15-30 base pairs (bp)) in the target DNA to afford high affinity third strand binding, thus restricting the number of sites available for effective targeting. To overcome this limitation, we have investigated the ability of chemically modified TFOs to target a short (10 bp) site in a chromosomal locus in mouse cells and induce site-specific mutations. We report that replacement of the phosphodiester backbone with cationic phosphoramidate linkages, either N,N-diethylethylenediamine or N,N-dimethylaminopropylamine, in a 10-nucleotide, psoralen-conjugated TFO confers substantial increases in binding affinity in vitro and is required to achieve targeted modification of a chromosomal reporter gene in mammalian cells. The triplex-directed, site-specific induction of mutagenesis in the chromosomal target was charge- and modification-dependent, with the activity of N,N-diethylethylenediamine > N,N-dimethylaminopropylamine phosphodiester, resulting in 10-, 6-, and <2-fold induction of target gene mutagenesis, respectively. Similarly, N,N-diethylethylenediamine and N,N-dimethylaminopropylamine TFOs were found to enhance targeting at a 16-bp G:C bp-rich target site in a chromatinized episomal target in monkey COS cells, although this longer site was also targetable by a phosphodiester TFO. These results indicate that replacement of phosphodiester bonds with positively charged N,N-diethylethylenediamine linkages enhances intracellular activity and allows targeting of relatively short polypurine sites, thereby substantially expanding the number of potential triplex target sites in the genome.  相似文献   

17.
18.
Menaquinol-fumarate oxidoreductase of Escherichia coli is a four-subunit membrane-bound complex that catalyzes the final step in anaerobic respiration when fumarate is the terminal electron acceptor. The enzyme is structurally and catalytically similar to succinate dehydrogenase (succinate-ubiquinone oxidoreductase) from both procaryotes and eucaryotes. Both enzymes have been proposed to contain an essential cysteine residue at the active site based on studies with thiol-specific reagents. Chemical modification studies have also suggested roles for essential histidine and arginine residues in catalysis by succinate dehydrogenase. In the present study, a combination of site-directed mutagenesis and chemical modification techniques have been used to investigate the role(s) of the conserved histidine 232, cysteine 247, and arginine 248 residues of the flavorprotein subunit (FrdA) in active site function. A role for His-232 and Arg-248 of FrdA is shown by loss of both fumarate reductase and succino-oxidase activities following site-directed substitution of these particular amino acids. Evidence is also presented that suggests a second arginine residue may form part of the active site. Potential catalytic and substrate-binding roles for arginine are discussed. The effects of removing histidine-232 of FrdA are consistent with its proposed role as a general acid-base catalyst. The fact that succinate oxidation but not fumarate reduction was completely lost, however, might suggest that alternate proton donors substitute for His-232. The data confirm that cysteine 247 of FrdA is responsible for the N-ethylmaleimide sensitivity shown by fumarate reductase but is not required for catalytic activity or the tight-binding of oxalacetate, as previously thought.  相似文献   

19.
Reduced nicotinamide adenine dinucleotide phosphate (NADPH)-nitrate reductase from Neurospora crassa was purified and found to be stimulated by certain amino acids, citrate, and ethylenediaminetetraacetic acid (EDTA). Stimulation by citrate and the amino acids was dependent upon the prior removal of EDTA from the enzyme preparations, since low quantities of EDTA resulted in maximal stimulation. Removal of EDTA from enzyme preparations by dialysis against Chelex-containing buffer resulted in a loss of nitrate reductase activity. Addition of alanine, arginine, glycine, glutamine, glutamate, histidine, tryptophan, and citrate restored and stimulated nitrate reductase activity from 29- to 46-fold. The amino acids tested altered the Km of NADPH-nitrate reductase for NADPH but did not significantly change that for nitrate. The Km of nitrate reductase for NADPH increased with increasing concentrations of histidine but decreased with increasing concentrations of glutamine. Amino acid modulation of NADPH-nitrate reductase activity is discussed in relation to the conservation of energy (NADPH) by Neurospora when nitrate is the nitrogen source.  相似文献   

20.
The isoform 1 of cyclodextrin glycosyltransferase (CGTase, EC 2.4.1.19) from Paenibacillus sp. A11 was purified by a preparative gel electrophoresis. The importance of histidine, tryptophan, tyrosine, and carboxylic amino acids for isoform 1 activity is suggested by the modification of the isoform 1 with various group-specific reagents. Activity loss, when incubated with diethylpyrocarbonate (DEP), a histidine modifying reagent, could be protected by adding 25 mM methyl-beta-cyclodextrin substrate prior to the modification. Inactivation kinetics of isoform 1 with DEP resulted in second-order rate constants (k(inactivation)) of 29.5 M(-1)s(-1). The specificity of the DEP-modified reaction for the histidine residue was shown by the correlation between the loss of isoform activity and the increase in the absorbance at 246 nm of N-carbethoxyhistidine. The number of histidines that were modified by DEP in the absence and presence of a protective substrate was estimated from the increase in the absorbance using a specific extinction coefficient of N-carbethoxyhistidine of 3,200 M(-1)cm(-1). It was discovered that methyl-beta-CD protected per mole of isoform 1, two histidine residues from the modification by DEP. To localize essential histidines, the native, the DEP-modified, and the protected forms of isoform 1 were digested by trypsin. The resulting peptides were separated by HPLC. The peptides of interest were those with R(t) 11.34 and 40.93 min. The molecular masses of the two peptides were 5,732 and 2,540 daltons, respectively. When the data from the peptide analysis were checked with the sequence of CGTase, then His-140 and His-327 were identified as essential histidines in the active site of isoform 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号