首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fibrotic disease is a significant cause of mortality. CCN2 (connective tissue growth factor [CTGF]), a member of the CCN family of matricellular proteins, plays a significant role in driving the fibrogenic effects of cytokines such as transforming growth factor β (TGFβ). It has been proposed that other members of the CCN family can either promote or antagonize the action of CCN2, depending on the context. A recent elegant study published by Bruce Riser and colleagues (Am J Pathol. 174:1725–34, 2009) illustrates that CCN3 (nov) antagonizes the fibrogenic effects of CCN2. This paper, the subject of this commentary, raises the intriguing possibility that CCN3 may be used as a novel anti-fibrotic therapy.  相似文献   

2.
CCN2 (connective tissue growth factor (CTGF/CCN2)) is a matricellular protein that utilizes integrins to regulate cell proliferation, migration and survival. The loss of CCN2 leads to perinatal lethality resulting from a severe chondrodysplasia. Upon closer inspection of Ccn2 mutant mice, we observed defects in extracellular matrix (ECM) organization and hypothesized that the severe chondrodysplasia caused by loss of CCN2 might be associated with defective chondrocyte survival. Ccn2 mutant growth plate chondrocytes exhibited enlarged endoplasmic reticula (ER), suggesting cellular stress. Immunofluorescence analysis confirmed elevated stress in Ccn2 mutants, with reduced stress observed in Ccn2 overexpressing transgenic mice. In vitro studies revealed that Ccn2 is a stress responsive gene in chondrocytes. The elevated stress observed in Ccn2−/− chondrocytes is direct and mediated in part through integrin α5. The expression of the survival marker NFκB and components of the autophagy pathway were decreased in Ccn2 mutant growth plates, suggesting that CCN2 may be involved in mediating chondrocyte survival. These data demonstrate that absence of a matricellular protein can result in increased cellular stress and highlight a novel protective role for CCN2 in chondrocyte survival. The severe chondrodysplasia caused by the loss of CCN2 may be due to increased chondrocyte stress and defective activation of autophagy pathways, leading to decreased cellular survival. These effects may be mediated through nuclear factor κB (NFκB) as part of a CCN2/integrin/NFκB signaling cascade.

Electronic supplementary material

The online version of this article (doi:10.1007/s12079-013-0201-y) contains supplementary material, which is available to authorized users.  相似文献   

3.
The CCN (cyr61, ctgf, nov) family of modular proteins regulate diverse biological affects including cell adhesion, matrix production, tissue remodelling, proliferation and differentiation. Recent targeted gene disruption studies have demonstrated the CCN family to be developmentally essential for chondrogenesis, osteogenesis and angiogenesis. CCN2 is induced by agents such as angiotensin II, endothelin-1, glucocorticoids, HGF, TGFβ, and VEGF, and by hypoxia and biomechanical and shear stress. Dysregulated expression of CCN2 has also been widely documented in many fibroproliferative diseases. This mini-review will focus on CCN2, and the recent progress in understanding CCN2 gene regulation in health and disease. That CCN2 should be considered a novel and informative surrogate clinical bio-marker for fibroproliferative disease is discussed.  相似文献   

4.
5.
Wnt proteins elevate expression of the CCN family. For example, Wnt10b induces the fibrogenic pro-adhesive molecule connective tissue growth factor (CTGF, CCN2) in NIH 3T3 fibroblasts. Wnt10b activates the CCN2 minimal promoter. In this report, we map the Wnt10b response element in the CCN2 minimal promoter to the previously identified Smad response element. These results suggest that Wnts may cross-talk with the Smad signaling pathway to induce fibrotic responses in fibroblasts.  相似文献   

6.
CCN1 is a matricellular protein and a member of the CCN family of growth factors. CCN1 is associated with the development of various cancers including pancreatic ductal adenocarcinoma (PDAC). Our recent studies found that CCN1 plays a critical role in pancreatic carcinogenesis through the induction of EMT and stemness. CCN1 mRNA and protein were detected in the early precursor lesions, and their expression intensified with disease progression. However, biochemical activity and the molecular targets of CCN1 in pancreatic cancer cells are unknown. Here we show that CCN1 regulates the Sonic Hedgehog (SHh) signaling pathway, which is associated with the PDAC progression and poor prognosis. SHh regulation by CCN1 in pancreatic cancer cells is mediated through the active Notch-1. Notably, active Notch-1is recruited by CCN1 in these cells via the inhibition of proteasomal degradation results in stabilization of the receptor. We find that CCN1-induced activation of SHh signaling might be necessary for CCN1-dependent in vitro pancreatic cancer cell migration and tumorigenicity of the side population of pancreatic cancer cells (cancer stem cells) in a xenograft in nude mice. Moreover, the functional role of CCN1 could be mediated through the interaction with the αvβ3 integrin receptor. These extensive studies propose that targeting CCN1 can provide a new treatment option for patients with pancreatic cancer since blocking CCN1 simultaneously blocks two critical pathways (i.e. SHh and Notch1) associated with the development of the disease as well as drug resistance.  相似文献   

7.
CCN family member 2 (CCN2) has been shown to promote the proliferation and differentiation of chondrocytes, osteoblasts, osteoclasts, and vascular endothelial cells. In addition, a number of growth factors and cytokines are known to work in harmony to promote the process of chondrogenesis and chondrocyte differentiation toward endochondral ossification. Earlier we showed that CCN2 physically interacts with some of them, suggesting that multiple effects of CCN2 on various differentiation stages of chondrocytes may be attributed to its interaction with these growth factors and cytokines. However, little is known about the functional interaction occurring between CCN2 and other growth factors and cytokines in promoting chondrocyte proliferation and differentiation. In this study we sought to shed light on the binding affinities between CCN2 and other essential growth factors and cytokines known to be regulators of chondrocyte differentiation. Using the surface plasmon resonance assay, we analyzed the dissociation constant between CCN2 and each of the following: TGF-β1, TGF-β3, IGF-I, IGF-II, PDGF-BB, GDF5, PTHrP, and VEGF. We found a strong association between CCN2 and VEGF, as well as a relatively high association with TGF-β1, TGF-β3, PDGF-BB, and GDF-5. However, the sensorgrams obtained for possible interaction between CCN2 and IGF-I, IGF-II or PTHrP showed no response. This study underlines the correlation between CCN2 and certain other growth factors and cytokines and suggests the possible participation of such interaction in the process of chondrogenesis and chondrocyte differentiation toward endochondral ossification.  相似文献   

8.
The gene expression profile induced by Wnt 3a in NIH 3T3 fibroblasts   总被引:3,自引:2,他引:1  
Wnt proteins play important roles in regulating cell differentiation, proliferation and polarity. Wnts have been proposed to play roles in tissue repair and fibrosis, yet the gene expression profile of fibroblasts exposed to Wnts has not been examined. We use Affymetrix genome-wide expression profiling to show that a 6-h treatment of fibroblasts of Wnt3a results in the induction of mRNAs encoding known Wnt targets such as the fibrogenic pro-adhesive molecule connective tissue growth factor (CTGF, CCN2). Wnt3a also induces mRNAs encoding potent pro-fibrotic proteins such as TGFβ and endothelin-1 (ET-1). Moreover, Wnt3a promotes genes associated with cell adhesion and migration, vasculature development, cell proliferation and Wnt signaling. Conversely, Wnt3a suppresses gene associated with skeletal development, matrix degradation and cell death. Results were confirmed using real-time polymerase chain reaction of cells exposed to Wnt3a and Wnt10b. These results suggest that Wnts induce genes promoting fibroblast differentiation towards angiogenesis and matrix remodeling, at the expense of skeletal development.  相似文献   

9.
In proliferative diabetic retinopathy (PDR), vascular endothelial growth factor (VEGF) and CCN2 (connective tissue growth factor; CTGF) cause blindness by neovascularization and subsequent fibrosis. This angio-fibrotic switch is associated with a shift in the balance between vitreous levels of CCN2 and VEGF in the eye. Here, we investigated the possible involvement of other important mediators of fibrosis, tissue inhibitor of metalloproteinases (TIMP)-1 and transforming growth factor (TGF)-β2, and of the matrix metalloproteinases (MMP)-2 and MMP-9, in the natural course of PDR. TIMP-1, activated TGF-β2, CCN2 and VEGF levels were measured by ELISA in 78 vitreous samples of patients with PDR (n = 28), diabetic patients without PDR (n = 24), and patients with the diabetes-unrelated retinal conditions macular hole (n = 10) or macular pucker (n = 16), and were related to MMP-2 and MMP-9 activity on zymograms and to clinical data, including degree of intra-ocular neovascularization and fibrosis. TIMP-1, CCN2 and VEGF levels, but not activated TGF-β2 levels, were significantly increased in the vitreous of diabetic patients, with the highest levels in PDR patients. CCN2 and the CCN2/VEGF ratio were the strongest predictors of degree of fibrosis. In diabetic patients with or without PDR, activated TGF-β2 levels correlated with TIMP-1 levels, whereas in PDR patients, TIMP-1 levels, MMP-2 and proMMP-9 were associated with degree of neovascularization, like VEGF levels, but not with fibrosis. We confirm here our previous findings that retinal fibrosis in PDR patients is significantly correlated with vitreous CCN2 levels and the CCN2/VEGF ratio. In contrast, TIMP-1, MMP-2 and MMP-9 appear to have a role in the angiogenic phase rather than in the fibrotic phase of PDR.  相似文献   

10.
We recently show that CCN3 is a counter-regulatory molecule for the pro-fibrotic protein CCN2, and a potentially novel fibrosis therapy. The goal of this study was to assess the role of CCN3 in fibroproliferative/fibrotic responses in human dermal fibroblasts exposed to Omniscan, one of the gadolinium-based contrast agents associated with development of nephrogenic systemic fibrosis (NSF) a rare but life-threatening disease thought to be complication of NMR diagnostics in renal impaired patients. Human dermal fibroblasts were exposed to Omniscan; or to platelet-derived growth factor (PDGF) and transforming growth factor-β (TGF-β) as controls. Proliferation was assessed along with matrix metalloproteinase-1, tissue inhibitor of metalloproteinases-1 and type 1 procollagen in the absence and presence of CCN3. In parallel, CCN3 production was assessed in control and Omniscan-treated cells. The results showed that PDGF stimulated fibroblast proliferation, production of Timp-1 and MMP-1 whereas exogenous CCN3 inhibited, in a dose response manner, cell proliferation (approx. 50 % max.) and production of MMP-1 (approx 35 % max.) but had little effect on TIMP-1. TGF-β stimulated type 1 procollagen production but not proliferation, Timp-1 or MMP-1 compared to non-TGF-ß treated control cells, and CCN3 treatment blocked (approx. 80 % max.) this up-regulation. Interestingly, untreated, control fibroblasts produced high constitutive levels of CCN3 and concentrations of Omniscan that induced fibroproliferative/fibrogenic changes in dermal fibroblasts correspondingly suppressed CCN3 production. The use of PDGF and TGF-β as positive controls, and the study of differential responses, including that to Omniscan itself, provide the first evidence for a role of fibroblast-derived CCN3 as an endogenous regulator of pro-fibrotic changes, elucidating possible mechanism(s). In conclusion, these data support our hypothesis of a role for fibroblast-derived CCN3 as an endogenous regulator of pro-fibrotic changes in these cells, and suggest that CCN3 may be an important regulatory molecule in NSF and a target for treatment in this and other fibrotic diseases.  相似文献   

11.

Introduction

Osteoarthritis (OA) is the most common degenerative joint disease that is involved in the degradation of articular cartilage. The exact etiology of OA is not completely understood. CCN4 is related to up-regulation in the cartilage of patients with osteoarthritis. Previous studies have shown that CCN4 might be associated with the pathogenesis of OA, but the exact signaling pathways in CCN4-mediated IL-6 expression in synovial fibroblasts (SF) are largely unknown. Therefore, we explored the intracellular signaling pathway involved in CCN4-induced IL-6 production in human synovial fibroblast cells.

Methods

CCN4-induced IL-6 production was assessed with quantitative real-time qPCR and ELISA. The mechanisms of action of CCN4 in different signaling pathways were studied by using Western blotting. Neutralizing antibodies of integrin were used to block the integrin signaling pathway. Luciferase assays were used to study IL-6 and NF-κB promoter activity. Immunocytochemistry was used to examine the translocation activity of p65.

Results

Osteoarthritis synovial fibroblasts (OASFs) showed significant expression of CCN4 and the expression was higher than in normal SFs. OASF stimulation with CCN4 induced concentration- and time-dependent increases in IL-6 production. Pretreatment of OASFs with αvβ5 but not α5β1 and αvβ3 integrin antibodies reduced CCN4-induced IL-6 production. CCN4-mediated IL-6 production was attenuated by PI3K inhibitor (LY294002 and Wortmannin), Akt inhibitor (Akti), and NF-κB inhibitor (PDTC and TPCK). Stimulation of cells with CCN4 also increased PI3K, Akt, and NF-κB activation.

Conclusions

Our results suggest that CCN4 activates αvβ5 integrin, PI3K, Akt, and NF-κB pathways, leading to up-regulation of IL-6 production. According to our results, CCN4 may be an appropriate target for drug intervention in OA in the future.  相似文献   

12.
By providing a source of α-smooth muscle actin (α-SMA)-expressing myofibroblasts, microvascular pericytes contribute to the matrix remodeling that occurs during tissue repair. However, the extent to which pericytes may contribute to the fibroblast phenotype post-repair is unknown. In this report, we test whether pericytes isolated from human placenta can in principle become fibroblast-like. Pericytes were cultured in vitro for 11 passages. The Affymetrix mRNA expression profile of passage 2 and passage 11 pericytes was compared. The expression of type I collagen, thrombospondin and fibronectin mRNAs was induced by passaging pericytes in culture. This induction of a fibroblast phenotype was paralleled by induction of connective tissue growth factor (CTGF/CCN2) and type I collagen protein expression and the fibroblast marker ASO2. These results indicate that, in principle, pericytes have the capacity to become fibroblast-like and that pericytes may contribute to the population of fibroblasts in a healed wound.  相似文献   

13.
We searched for miRNAs that were down-regulated in chondrocytic cells and predicted to target CCN2/connective tissue growth factor (CCN2/CTGF) that promotes endochondral ossification. Among them, expression of miR-18a was most strongly repressed in chondrocytic cells. Reporter gene analysis confirmed the functionality of an miR-18a target in the 3′-untranslated region of Ccn2 mRNA, which was predicted in silico. Indeed, introduction of miR-18a efficiently repressed the CCN2 production from chondrocytic cells. Finally, transfected miR-18a significantly repressed the mature chondrocytic phenotype. Our present study revealed a regulatory role for miR-18a in chondrocytic differentiation through CCN2.  相似文献   

14.
Fibrosis is a major cause of end-stage renal disease (ESRD) a progressive loss in renal function that occurs over a period of months or years, is characterized by a decreased capability of the kidneys to excrete waste products. There is no specific treatment unequivocally shown to slow the worsening of chronic kidney disease. Plasma levels of CCN2, a fibrogenic agent, is a predictor of ESRD and mortality in patients with type 1 diabetic nephropathy. CCN3 has been hypothesized to have antagonistic effects to CCN2 both in vitro and in vivo, including in cultured mesangial cells. In a recent study, van Roeyen and colleagues (Am J Pathol in press, 2012) showed that in vivo overexpression of CCN3 in a model of anti-Thy1.1-induced experimental glomerulonephritis resulted in decreased albuminuria, glomerulosclerosis and reduced cortical collagen type I accumulation. CCN3 enhanced angiogenesis yes suppressed mesangial cell proliferation. Thus CCN3 protein may represent a novel therapeutic approach to help repair glomerular endothelial damage and mesangioproliferative changes and hence prevent renal failure, glomerulosclerosis and tubulointerstitial fibrosis.  相似文献   

15.
CCN2 consists of 4 distinct modules that are conserved among various CCN family protein members. From the N-terminus, insulin-like growth factor binding protein (IGFBP), von Willebrand factor type C repeat (VWC), thrombospondin type 1 repeat (TSP1) and C-terminal cysteine-knot (CT) modules are all aligned tandem therein. The multiple functionality of CCN2 is thought to be enabled by the differential use of these modules when interacting with other molecules. In this study, we independently prepared all 4 purified module proteins of human CCN2, utilizing a secretory production system with Brevibacillus choshinensis and thus evaluated the cell biological effects of such single modules. In human umbilical vascular endothelial cells (HUVECs), VWC, TSP and CT modules, as well as a full-length CCN2, were capable of efficiently activating the ERK signal transduction cascade, whereas IGFBP was not. In contrast, the IGFBP module was found to prominently activate JNK in human chondrocytic HCS-2/8 cells, while the others showed similar effects at lower levels. In addition, ERK1/2 was modestly, but significantly activated by IGFBP and VWC in those cells. No single module, but a mixture of the 4 modules provoked a significant activation of p38 MAPK in HCS-2/8 cells, which was activated by the full-length CCN2. Therefore, the signals emitted by CCN2 can be highly differential, depending upon the cell types, which are thus enabled by the tetramodular structure. Furthermore, the cell biological effects of each module on these cells were also evaluated to clarify the relationship among the modules, the signaling pathways and biological outcomes. Our present results not only demonstrate that single CCN2 modules were potent activators of the intracellular signaling cascade to yield a biological response per se, while also providing new insight into the module-wise structural and functional relationship of a prototypic CCN family member, CCN2.  相似文献   

16.
Fibrotic diseases are a significant cause of mortality. It is being increasingly appreciated that the cellular microenvironment plays a key role in promoting pathological fibrosis. A previous Bits and Bytes described an elegant series of experiments published by Bruce Riser and colleagues (Am J Pathol. 2009: 174:1725–34) that showed that CCN3 (nov) antagonizes the fibrogenic effects of CCN2.and hence could represent a novel anti-fibrotic therapy. They have continued their excellent work and have recently used the ob/ob mouse as a model of obesity and diabetic nephropathy to show that CCN3 could block the induction of profibrotic gene expression, fibrosis and loss of kidney function (Am J Pathol. 2014;184:2908–21). Also, reversal of fibrosis was observed. Thus this paper provides strong evidence that CCN3 may be used as a novel therapy to treat diabetes caused by obesity.  相似文献   

17.
18.
Liver fibrosis represents the consequences of a sustained wound healing response to chronic liver injury, and activation of quiescent hepatic stellate cells (HSCs) into a myofibroblast-like phenotype is considered as the central event of liver fibrosis. RACK1, the receptor for activated C-kinase 1, is a classical scaffold protein implicated in numerous signaling pathways and cellular processes; however, the role of RACK1 in liver fibrosis is little defined. Herein, we report that RACK1 is up-regulated in activated HSCs in transforming growth factor beta 1 (TGF-β1)-dependent manner both in vitro and in vivo, and TGF-β1 stimulates the expression of RACK1 through NF-κB signaling. Moreover, RACK1 promotes TGF-β1 and platelet-derived growth factor (PDGF)-mediated activation of pro-fibrogenic pathways as well as the differentiation, proliferation and migration of HSCs. Depletion of RACK1 suppresses the progression of TAA-induced liver fibrosis in vivo. In addition, the expression of RACK1 in fibrogenic cells also positively correlates well with the stage of liver fibrosis in clinical cases. Our results suggest RACK1 as a downstream target gene of TGF-β1 involved in the modulation of liver fibrosis progression in vitro and in vivo, and propose a strategy to target RACK1 for liver fibrosis treatment.  相似文献   

19.
Joint capsule fibrosis caused by excessive inflammation results in post-traumatic joint contracture (PTJC). Transforming growth factor (TGF)-β1 plays a key role in PTJC by regulating fibroblast functions, however, cytokine-induced TGF-β1 expression in specific cell types remains poorly characterized. Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine involved in inflammation- and fibrosis-associated pathophysiology. In this study, we investigated whether MIF can facilitate TGF-β1 production from fibroblasts and regulate joint capsule fibrosis following PTJC. Our data demonstrated that MIF and TGF-β1 significantly increased in fibroblasts of injured rat posterior joint capsules. Treatment the lesion sites with MIF inhibitor 4-Iodo-6-phenylpyrimidine (4-IPP) reduced TGF-β1 production and relieved joint capsule inflammation and fibrosis. In vitro, MIF facilitated TGF-β1 expression in primary joint capsule fibroblasts by activating mitogen-activated protein kinase (MAPK) (P38, ERK) signaling through coupling with membrane surface receptor CD74, which in turn affected fibroblast functions and promoted MIF production. Our results reveal a novel function of trauma-induced MIF in the occurrence and development of joint capsule fibrosis. Further investigation of the underlying mechanism may provide potential therapeutic targets for PTJC.  相似文献   

20.

Background

Connective tissue growth factor (CTGF; also known as CCN2) is an inflammatory mediator, and shows elevated levels in regions of severe injury and inflammatory diseases. CTGF is abundantly expressed in osteoarthritis (OA). However, the relationship between CTGF and IL-6 in OA synovial fibroblasts (OASFs) is mostly unknown.

Methodology/Principal Findings

OASFs showed significant expression of CTGF, and expression was higher than in normal SFs. OASFs stimulation with CTGF induced concentration-dependent increases in IL-6 expression. CTGF mediated IL-6 production was attenuated by αvβ5 integrin neutralized antibody and apoptosis signal-regulating kinase 1 (ASK1) shRNA. Pretreatment with p38 inhibitor (SB203580), JNK inhibitor (SP600125), AP-1 inhibitors (Curcumin and Tanshinone IIA), and NF-κB inhibitors (PDTC and TPCK) also inhibited the potentiating action of CTGF. CTGF-mediated increase of NF-κB and AP-1 luciferase activity was inhibited by SB203580 and SP600125 or ASK1 shRNA or p38 and JNK mutant.

Conclusions/Significance

Our results suggest that CTGF increased IL-6 production in OASFs via the αvβ5 integrin, ASK1, p38/JNK, and AP-1/NF-κB signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号