共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The gene teashirt is required for the development of Drosophila embryonic trunk segments and encodes a protein with widely spaced zinc finger motifs. 总被引:15,自引:0,他引:15
We have discovered a reporter gene insertion that is expressed in the trunk region of Drosophila embryos. Genetic and molecular details of a new regulatory gene neighboring the reporter gene insertion, which we call teashirt (tsh), are described. In situ hybridization of a tsh probe to embryos shows that this gene is expressed in a way similar to the reporter gene. Mutations of tsh show that the gene is required for normal development of the ventral trunk region of embryos, which correlates with the spatial expression of the gene in the anteroposterior axis but not in the dorsoventral axis. Sequencing of a tsh cDNA shows that the putative protein possesses three distantly spaced CX2CX12HX5H zinc finger motifs. 相似文献
3.
4.
5.
6.
Van Doren M Mathews WR Samuels M Moore LA Broihier HT Lehmann R 《Development (Cambridge, England)》2003,130(11):2355-2364
Gonad formation requires specific interactions between germ cells and specialized somatic cells, along with the elaborate morphogenetic movements of these cells to create an ovary or testis. We have identified mutations in the fear of intimacy (foi) gene that cause defects in the formation of the embryonic gonad in DROSOPHILA: foi is of particular interest because it affects gonad formation without affecting gonad cell identity, and is therefore specifically required for the morphogenesis of this organ. foi is also required for tracheal branch fusion during tracheal development. E-cadherin/shotgun is similarly required for both gonad coalescence and tracheal branch fusion, suggesting that E-cadherin and FOI cooperate to mediate these processes. foi encodes a member of a novel family of transmembrane proteins that includes the closely related human protein LIV1. Our findings that FOI is a cell-surface protein required in the mesoderm for gonad morphogenesis shed light on the function of this new family of proteins and on the molecular mechanisms of organogenesis. 相似文献
7.
8.
9.
10.
M Whiteley P D Noguchi S M Sensabaugh W F Odenwald J A Kassis 《Mechanisms of development》1992,36(3):117-127
Two independent P-element enhancer detection lines were obtained that express lacZ in a pattern of longitudinal stripes early in germband elongation. In this paper, molecular and genetic characterization of a gene located near these transposons is presented. Sequence analysis of a cDNA clone from the region reveals that this gene has a high degree of similarity with the Drosophila snail gene (Boulay et al., 1987). The sequence similarity extends over 400 nucleotides, and includes a region encoding five tandem zinc finger motifs (72% nucleotide identity; 76% amino acid identity). This region is also conserved in the snail homologue from Xenopus laevis (76% nucleotide identity; 83% amino acid identity) (Sargent and Bennett, 1990). We have named the Drosophila snail-related gene escargot (esg), and the region of sequence conservation common to all three genes the 'snailbox'. A number of Drosophila genomic DNA fragments cross-hybridize to a probe from the snailbox region suggesting that snail and escargot are members of a multigene family. The expression pattern of escargot is dynamic and complex. Early in germband elongation, escargot RNA is expressed in a pattern of longitudinal stripes identical to the one observed in the two enhancer detection lines. Later in development, escargot is expressed in cells that will form the larval imaginal tissues, escargot is allelic with l(2)35Ce, an essential gene located near snail in the genome. 相似文献
11.
The Drosophila melanogaster bristle is a highly polarized cell that builds specialized cytoskeletal structures. Whereas actin is required for increasing bristle length, microtubules are essential for bristle axial growth. To identify new proteins involved in cytoskeleton organization during bristle development, we focused on identifying and characterizing the javelin (jv) locus. We found that in a jv mutant, the bristle tip is swollen and abnormal organization of bristle grooves is seen over the entire bristle. Using confocal and electron microscopy, we found that in jv mutant bristles, actin bundles do not form properly due to a loss of actin filaments within the bundle. We show that jv is an allele of the predicted CG32397 gene that encodes a protein with no homologs outside insects. Expression of the Jv protein fused to a green fluorescent protein (GFP) shows that the protein is colocalized with actin bundles in the bristle. Moreover, expression of Jv-GFP within the germ line led to the formation of ectopic actin bundles that surround the nucleus of nurse cells. Thus, we report that Jv is a novel actin-associated protein required for actin assembly during Drosophila bristle development. 相似文献
12.
Weiler KS 《Genetics》2007,177(1):167-178
The importance of a gene's natural chromatin environment for its normal expression is poignantly illustrated when a change in chromosome position results in variable gene repression, such as is observed in position effect variegation (PEV) when the Drosophila melanogaster white (omega) gene is juxtaposed with heterochromatin. The Enhancer of variegation 3-9 [E(var)3-9] gene was one of over a hundred loci identified in screens for mutations that dominantly modify PEV. Haploinsufficiency for E(var)3-9 enhances omegam4 variegation, as would be expected from increased heterochromatin formation. To clarify the role of E(var)3-9 in chromosome structure, the gene has been cloned and its mutant alleles characterized. The involvement of E(var)3-9 in structure determination was supported by its reciprocal effects on euchromatic and heterochromatic PEV; E(var)3-9 mutations increased expression of a variegating heterochromatic gene in two tissue types. E(var)3-9 mutations also had a recessive phenotype, maternal effect lethality, which implicated E(var)3-9 function in an essential process during embryogenesis. Both phenotypes of E(var)3-9 mutations were consistent with its proposed function in promoting normal chromosome structure. The cloning of E(var)3-9 by classical genetic methods revealed that it encodes a protein with multiple zinc fingers, but otherwise novel sequence. 相似文献
13.
The Drosophila neuralized gene encodes a C3HC4 zinc finger. 总被引:4,自引:0,他引:4
14.
15.
16.
17.
ribbon encodes a novel BTB/POZ protein required for directed cell migration in Drosophila melanogaster 总被引:2,自引:0,他引:2
During development, directed cell migration is crucial for achieving proper shape and function of organs. One well-studied example is the embryonic development of the larval tracheal system of Drosophila, in which at least four signaling pathways coordinate cell migration to form an elaborate branched network essential for oxygen delivery throughout the larva. FGF signaling is required for guided migration of all tracheal branches, whereas the DPP, EGF receptor, and Wingless/WNT signaling pathways each mediate the formation of specific subsets of branches. Here, we characterize ribbon, which encodes a BTB/POZ-containing protein required for specific tracheal branch migration. In ribbon mutant tracheae, the dorsal trunk fails to form, and ventral branches are stunted; however, directed migrations of the dorsal and visceral branches are largely unaffected. The dorsal trunk also fails to form when FGF or Wingless/WNT signaling is lost, and we show that ribbon functions downstream of, or parallel to, these pathways to promote anterior-posterior migration. Directed cell migration of the salivary gland and dorsal epidermis are also affected in ribbon mutants, suggesting that conserved mechanisms may be employed to orient cell migrations in multiple tissues during development. 相似文献
18.
The Myxococcus xanthus asgA gene encodes a novel signal transduction protein required for multicellular development. 总被引:4,自引:5,他引:4 下载免费PDF全文
The Myxococcus xanthus asgA gene is one of three known genes necessary for the production of extracellular A-signal, a cell density signal required early in fruiting body development. We determined the DNA sequence of asgA. The deduced 385-amino-acid sequence of AsgA was found to contain two domains: one homologous to the receiver domain of response regulators and the other homologous to the transmitter domain of histidine protein kinases. A kanamycin resistance (Kmr) gene was inserted at various positions within or near the asgA gene to determine the null phenotype. Those strains with the Kmr gene inserted upstream or downstream of asgA are able to form fruiting bodies, while strains containing the Kmr gene inserted within asgA fail to develop. The nature and location of the asgA476 mutation were determined. This mutation causes a leucine-to-proline substitution within a conserved stretch of hydrophobic residues in the N-terminal receiver domain. Cells containing the insertion within asgA and cells containing the asgA476 substitution have similar phenotypes with respect to development, colony color, and expression of an asg-dependent gene. An analysis of expression of a translational asgA-lacZ fusion confirms that asgA is expressed during growth and early development. Finally, we propose that AsgA functions within a signal transduction pathway that is required to sense starvation and to respond with the production of extracellular A-signal. 相似文献
19.
Glutathione SH-transferase (GST) is a 25-kDa protein and a member of a large family that plays a critical role in the cellular homeostasis of all organisms. In this report, we describe a novel GST-containing protein identified and cloned from Drosophila. This 1045 amino acid protein possesses a zinc finger domain with a tandem array of four FLYWCH zinc finger motifs at its N-terminus and a C-terminal domain that shares a 46% homology with GST. The gene maps to chromosome 3 at position 84C6. Further characterization of this protein shows that it localizes to the cytoplasm of fly cells and is expressed through all stages of fly embryonic development. It binds to glutathione-S agarose beads in vitro. These results indicate that this new protein belongs to the GST family, thus named a Drosophila GST-containing FLYWCH zinc finger protein (dGFZF). 相似文献