首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of a Dab1/CrkL/C3G/Rap1 pathway in Reelin-stimulated neurons   总被引:1,自引:0,他引:1  
During brain development, many neurons migrate long distances before settling and differentiating. These migrations are coordinated to ensure normal development. The secreted protein Reelin controls the locations of many types of neurons, and its absence causes the classic "Reeler" phenotype. Reelin action requires tyrosine phosphorylation of the intracellular protein Dab1 by Src-family kinases. However, little is known about signaling pathways downstream of Dab1. Here, we identify several proteins in embryonic brain extract that bind to tyrosine-phosphorylated, but not non-phosphorylated, Dab1. Of these, the Crk-family proteins (CrkL, CrkI, and CrkII ), bind significant quantities of Dab1 when embryonic cortical neurons are exposed to Reelin. CrkL binding to Dab1 involves two tyrosine phosphorylation sites, Y220 and 232, that are critical for proper positioning of migrating cortical plate neurons. CrkL also binds C3G, an exchange factor (GEF) for the small GTPase Rap1 that is activated in other systems by tyrosine phosphorylation. We report that Reelin stimulates tyrosine phosphorylation of C3G and activates Rap1. C3G and Rap1 regulate adhesion of fibroblasts and other cell types. Regulation of Crk/CrkL, C3G, and Rap1 by Reelin may be involved in coordinating neuron migrations during brain development.  相似文献   

2.
BACKGROUND: The extracellular protein Reln controls neuronal migrations in parts of the cortex, hippocampus and cerebellum. In vivo, absence of Reln correlates with up-regulation of the docking protein Dab1 and decreased Dab1 tyrosine phosphorylation. Loss of the Reln receptor proteins, apolipoprotein receptor 2 and very low density lipoprotein receptor, results in a Reln-like phenotype accompanied by increased Dab1 protein expression. Complete loss of Dab1, however, recapitulates the Reln phenotype. RESULTS: To determine whether Dab1 tyrosine phosphorylation affects Dab1 protein expression and positioning of embryonic neurons, we have identified Dab1 tyrosine phosphorylation sites. We then generated mice in which the Dab1 protein had all the potential tyrosine phosphorylation sites mutated. This mutant protein is not tyrosine phosphorylated during brain development and is not upregulated to the extent observed in the Reln or the apoER2 and VLDLR receptor mutants. Animals expressing the non-phosphorylated Dab1 protein have a phenotype similar to the dab1-null mutant. CONCLUSIONS: Dab1 is downregulated by the Reln signal in neurons in the absence of tyrosine phosphorylation. Dab1 tyrosine phosphorylation sites and not downregulation of Dab1 protein are required for Reln signaling.  相似文献   

3.
The cytoplasmic adaptor protein Disabled-1 (Dab1) is necessary for the regulation of neuronal positioning in the developing brain by the secreted molecule Reelin. Binding of Reelin to the neuronal apolipoprotein E receptors apoER2 and very low density lipoprotein receptor induces tyrosine phosphorylation of Dab1 and the subsequent activation or relocalization of downstream targets like phosphatidylinositol 3 (PI3)-kinase and Nckbeta. Disruption of Reelin signaling leads to the accumulation of Dab1 protein in the brains of genetically modified mice, suggesting that Reelin limits its own action in responsive neurons by down-regulating the levels of Dab1 expression. Here, we use cultured primary embryonic neurons as a model to demonstrate that Reelin treatment targets Dab1 for proteolytic degradation by the ubiquitin-proteasome pathway. We show that tyrosine phosphorylation of Dab1 but not PI3-kinase activation is required for its proteasomal targeting. Genetic deficiency in the Dab1 kinase Fyn prevents Dab1 degradation. The Reelin-induced Dab1 degradation also depends on apoER2 and very low density lipoprotein receptor in a gene-dose dependent manner. Moreover, pharmacological blockade of the proteasome prevents the formation of a proper cortical plate in an in vitro slice culture assay. Our results demonstrate that signaling through neuronal apoE receptors can activate the ubiquitin-proteasome machinery, which might have implications for the role of Reelin during neurodevelopment and in the regulation of synaptic transmission.  相似文献   

4.
The cytoarchitecture of the hindbrain results from precise and co-ordinated sequences of neuronal migrations. Here, we show that reelin, an extracellular matrix protein involved in neuronal migration during CNS development, is necessary for an early, specific step in the migration of several hindbrain nuclei. We identified two cell populations not previously known to be affected in reeler mutants that show a common migratory defect: the olivocochlear efferent neurons and the facial visceral motor nucleus. In control embryos, these cells migrate first toward a lateral position within the neural tube, and then parallel to the glial cell processes, to a ventral position where they settle close to the pial surface. In reeler mutants, the first migration is not affected, but the neurons are unable to reach the pial surface and remain in an ectopic position. Indeed, this is the first evidence that the migration of specific hindbrain nuclei can be divided into two parts: a reelin-independent and a reelin-dependent migration. We also show that reelin is expressed at high levels at the final destination of the migratory process, while the reelin intracellular effector Dab1 was expressed by cell groups that included the two populations affected. Mice mutant at the Dab1 locus, called scrambler, exhibit the same phenotype, a failure of final migration. However, examination of mice lacking both reelin receptors, ApoER2 and VLDLR, did not reveal the same phenotype, suggesting involvement of an additional reelin-binding receptor. In the hindbrain, reelin signaling might alter the adhesive properties of efferent neurons and their ability to respond to directional cues, as has been suggested for the migration of olfactory bulb precursors.  相似文献   

5.
Reelin activates SRC family tyrosine kinases in neurons   总被引:16,自引:0,他引:16  
BACKGROUND: Reelin is a large signaling molecule that regulates the positioning of neurons in the mammalian brain. Transmission of the Reelin signal to migrating embryonic neurons requires binding to the very-low-density lipoprotein receptor (VLDLR) and the apolipoprotein E receptor-2 (apoER2). This induces tyrosine phosphorylation of the adaptor protein Disabled-1 (Dab1), which interacts with a shared sequence motif in the cytoplasmic tails of both receptors. However, the kinases that mediate Dab1 tyrosine phosphorylation and the intracellular pathways that are triggered by this event remain unknown. RESULTS: We show that Reelin activates members of the Src family of non-receptor tyrosine kinases (SFKs) and that this activation is dependent on the Reelin receptors apoER2 and VLDLR and the adaptor protein Dab1. Dab1 is tyrosine phosphorylated by SFKs, and the kinases themselves can be further activated by phosphorylated Dab1. Increased Dab1 protein expression in fyn-deficient mice implies a response to impaired Reelin signaling that is also observed in mice lacking Reelin or its receptors. However, fyn deficiency alone does not compound the neuronal positioning defect of vldlr- or apoer2-deficient mice, and this finding suggests functional compensation by other SFKs. CONCLUSIONS: Our results show that Dab1 is a physiological substrate as well as an activator of SFKs in neurons. Based on genetic evidence gained from multiple strains of mutant mice with defects in Reelin signaling, we conclude that activation of SFKs is a normal part of the cellular Reelin response.  相似文献   

6.
Poluch S  Juliano SL 《PloS one》2010,5(10):e13709
Radial glial cells play an essential role during corticogenesis through their function as neural precursors and guides of neuronal migration. Both reelin and neuregulin1 (NRG1) maintain the radial glial scaffold; they also induce expression of Brain Lipid Binding Protein (BLBP), a well known marker of radial glia. Although radial glia in normal ferrets express both vimentin and BLBP, this coexpression diverges at P3; vimentin is expressed in the radial glial processes, while BLBP appears in cells detached from the ventricular zone. Our lab developed a model of cortical dysplasia in the ferret, resulting in impaired migration of neurons into the cortical plate and disordered radial glia. This occurs after exposure to the antimitotic methylazoxymethanol (MAM) on the 24th day of development (E24). Ferrets treated with MAM on E24 result in an overall decrease of BLBP expression; radial glia that continue to express BLBP, however, show only mild disruption compared with the strongly disrupted vimentin expressing radial glia. When E24 MAM-treated organotypic slices are exposed to reelin or NRG1, the severely disrupted vimentin+ radial glial processes are repaired but the slightly disordered BLBP+ processes are not. The realignment of vimentin+ processes was linked with an increase of their BLBP expression. BLBP expressing radial glia are distinguished by being both less affected by MAM treatment and by attempts at repair. We further investigated the effects induced by reelin and found that signaling was mediated via VLDLR/Dab1/Pi3K activation while NRG1 signaling was mediated via erbB3/erbB4/Pi3K. We then tested whether radial glial repair correlated with improved neuronal migration. Repairing the radial glial scaffold is not sufficient to restore neuronal migration; although reelin improves migration of neurons toward the cortical plate signaling through ApoER2/Dab1/PI3K activation, NRG1 does not.  相似文献   

7.
Disabled1 regulates the intracellular trafficking of reelin receptors   总被引:8,自引:0,他引:8  
Reelin is a huge secreted protein that controls proper laminar formation in the developing brain. It is generally believed that tyrosine phosphorylation of Disabled1 (Dab1) by Src family tyrosine kinases is the most critical downstream event in Reelin signaling. The receptors for Reelin belong to the low density lipoprotein receptor family, most of whose members undergo regulated intracellular trafficking. In this study, we propose novel roles for Dab1 in Reelin signaling. We first demonstrated that cell surface expression of Reelin receptors was decreased in Dab1-deficient neurons. In heterologous cells, Dab1 enhanced cell surface expression of Reelin receptors, and this effect was mediated by direct interaction with the receptors. Moreover, Dab1 did not stably associate with the receptors at the plasma membrane in the resting state. When Reelin was added to primary cortical neurons, Dab1 was recruited to the receptors, and its tyrosine residues were phosphorylated. Although Reelin and Dab1 colocalized well shortly after the addition of Reelin, Dab1 was no longer associated with internalized Reelin. When Src family tyrosine kinases were inhibited, internalization of Reelin was severely abrogated, and Reelin colocalized with Dab1 near the plasma membrane for a prolonged period. Taken together, these results indicate that Dab1 regulates both cell surface expression and internalization of Reelin receptors, and these regulations may play a role in correct laminar formation in the developing brain.  相似文献   

8.
The study of mice with spontaneous and targeted mutations has uncovered a signaling pathway that controls neuronal positioning during mammalian brain development. Mice with disruptions in reelin, dab1, or both vldlr and apoER2 are ataxic, and they exhibit severe lamination defects within several brain structures. Reelin is a secreted extracellular protein that binds to the very low density lipoprotein receptor and the apolipoprotein E receptor 2 on the surface of neurons. Disabled-1 (Dab1), an intracellular adapter protein containing a PTB (phosphotyrosine binding) domain, is tyrosyl-phosphorylated during embryogenesis, but it accumulates in a hypophosphorylated form in mice lacking Reelin or both very low density lipoprotein receptor and apolipoprotein E receptor 2. Dab1 is rapidly phosphorylated when neurons isolated from embryonic brains are stimulated with Reelin, and several tyrosines have been implicated in this response. Mice with phenylalanine substitutions of all five tyrosines (Tyr(185), Tyr(198), Tyr(200), Tyr(220), and Tyr(232)) exhibit a reeler phenotype, implying that tyrosine phosphorylation is critical for Dab1 function. Here we report that, although Src can phosphorylate all five tyrosines in vitro, Tyr(198) and Tyr(220) represent the major sites of Reelin-induced Dab1 phosphorylation in embryonic neurons.  相似文献   

9.
Radial glial cells are characterized, besides their astroglial properties, by long radial processes extending from the ventricular zone to the pial surface, a crucial feature for the radial migration of neurons. The molecular signals that regulate this characteristic morphology, however, are largely unknown. We show an important role of the secreted molecule reelin for the establishment of radial glia processes. We describe a significant reduction in ventricular zone cells with long radial processes in the absence of reelin in the cortex of reeler mutant mice. These defects were correlated to a decrease in the content of brain lipid-binding protein (Blbp) and were detected exclusively in the cerebral cortex, but not in the basal ganglia of reeler mice. Conversely, reelin addition in vitro increased the Blbp content and process extension of radial glia from the cortex, but not the basal ganglia. Isolation of radial glia by fluorescent-activated cell sorting showed that these effects are due to direct signaling of reelin to radial glial cells. We could further demonstrate that this signaling requires Dab1, as the increase in Blbp upon reelin addition failed to occur in Dab1-/- mice. Taken together, these results unravel a novel role of reelin signaling to radial glial cells that is crucial for the regulation of their Blbp content and characteristic morphology in a region-specific manner.  相似文献   

10.
BACKGROUND: Disabled-1 (Dab1) is an intracellular adaptor protein that regulates migrations of various classes of neurons during mammalian brain development. Dab1 function depends on its tyrosine phosphorylation, which is stimulated by Reelin, an extracellular signaling molecule. Reelin increases the stoichiometry of Dab1 phosphorylation and downregulates Dab1 protein levels. Reelin binds to various cell surface receptors, including two members of the low-density lipoprotein receptor family that also bind to Dab1. Mutations in Dab1, its phosphorylation sites, Reelin, or the Reelin receptors cause a common phenotype. However, the molecular mechanism whereby Reelin regulates Dab1 tyrosine phosphorylation is poorly understood.RESULTS: We found that Reelin-induced Dab1 tyrosine phosphorylation in neuron cultures is inhibited by acute treatment with pharmacological inhibitors of Src family, but not Abl family, kinases. In addition, Reelin stimulates Src family kinases by a mechanism involving Dab1. We analyzed the Dab1 protein level and tyrosine phosphorylation stoichiometry by using brain samples and cultured neurons that were obtained from mouse embryos carrying mutations in Src family tyrosine kinases. We found that fyn is required for proper Dab1 levels and phosphorylation in vivo and in vitro. When fyn copy number is reduced, src, but not yes, becomes important, reflecting a partial redundancy between fyn and src.CONCLUSIONS: Reelin activates Fyn to phosphorylate and downregulate Dab1 during brain development. The results were unexpected because Fyn deficiency does not cause the same developmental phenotype as Dab1 or Reelin deficiency. This suggests additional complexity in the Reelin signaling pathway.  相似文献   

11.
There are two developmentally regulated alternatively spliced forms of Disabled-1 (Dab1) in the chick retina: an early form (Dab1-E) expressed in retinal precursor cells and a late form (Dab1-L) expressed in neuronal cells. The main difference between these two isoforms is the absence of two Src family kinase (SFK) recognition sites in Dab1-E. Both forms retain two Abl/Crk/Nck recognition sites implicated in the recruitment of SH2 domain-containing signaling proteins. One of the Dab1-L-specific SFK recognition sites, at tyrosine(Y)-198, has been shown to be phosphorylated in Reelin-stimulated neurons. Here, we use Reelin-expressing primary retinal cultures to investigate the role of the four Dab1 tyrosine phosphorylation sites on overall tyrosine phosphorylation, Dab1 phosphorylation, SFK activation and neurite formation. We show that Y198 is essential but not sufficient for maximal Dab1 phosphorylation, SFK activation and neurite formation, with Y232 and Y220 playing particularly important roles in SFK activation and neuritogenesis, and Y185 having modifying effects secondary to Y232 and Y220. Our data support a role for all four Dab1 tyrosine phosphorylation sites in mediating the spectrum of activities associated with Reelin-Dab1 signaling in neurons.  相似文献   

12.
Signaling through Disabled 1 requires phosphoinositide binding   总被引:4,自引:0,他引:4  
The Reelin signaling pathway plays a critical role in the correct positioning of neurons within the developing brain. Within this pathway, Disabled 1 (Dab1) serves as an intracellular adaptor that is tyrosine phosphorylated when Reelin, a secreted glycoprotein, binds to the lipoprotein receptors VLDLR and ApoER2 on the surface of neurons. The phosphotyrosine-binding (PTB) domain within its amino terminus enables Dab1 to recognize and bind to a conserved sequence motif within the cytoplasmic tails of the receptors. In addition, the PTB contains a Pleckstrin Homology-like subdomain that binds to phosphoinositides. Here, we show that the phosphoinositide-binding region within Dab1 PTB domain is required for membrane localization and basal tyrosine phosphorylation of Dab1 independently of VLDLR and ApoER2. Furthermore, receptor-independent membrane targeting of Dab1 is required for its interaction with Src and Crk, and disruption of phosphoinositide binding also blocks subsequent Reelin-induced tyrosine phosphorylation of Dab1.  相似文献   

13.
Dab2ip (DOC-2/DAB2 interacting protein) is a member of the Ras GTPase-activating protein (GAP) family that has been previously shown to function as a tumor suppressor in several systems. Dab2ip is also highly expressed in the brain where it interacts with Dab1, a key mediator of the Reelin pathway that controls several aspects of brain development and function. We found that Dab2ip is highly expressed in the developing cerebral cortex, but that mutations in the Reelin signaling pathway do not affect its expression. To determine whether Dab2ip plays a role in brain development, we knocked down or over expressed it in neuronal progenitor cells of the embryonic mouse neocortex using in utero electroporation. Dab2ip down-regulation severely disrupts neuronal migration, affecting preferentially late-born principal cortical neurons. Dab2ip overexpression also leads to migration defects. Structure-function experiments in vivo further show that both PH and GRD domains of Dab2ip are important for neuronal migration. A detailed analysis of transfected neurons reveals that Dab2ip down- or up-regulation disrupts the transition from a multipolar to a bipolar neuronal morphology in the intermediate zone. Knock down of Dab2ip in neurons ex-vivo indicates that this protein is necessary for proper neurite development and for the expression of several major neuronal microtubule associated proteins (MAPs), which are important for neurite growth and stabilization. Thus, our study identifies, for the first time, a critical role for Dab2ip in mammalian cortical development and begins to reveal molecular mechanisms that underlie this function.  相似文献   

14.
Reelin is a large secreted signaling protein that binds to two members of the low density lipoprotein receptor family, the apolipoprotein E receptor 2 and the very low density lipoprotein receptor, and regulates neuronal positioning during brain development. Reelin signaling requires activation of Src family kinases as well as tyrosine phosphorylation of the intracellular adaptor protein Disabled-1 (Dab1). This results in activation of phosphatidylinositol 3-kinase (PI3K), the serine/threonine kinase Akt, and the inhibition of glycogen synthase kinase 3beta, a protein that is implicated in the regulation of axonal transport. Here we demonstrate that PI3K activation by Reelin requires Src family kinase activity and depends on the Reelin-triggered interaction of Dab1 with the PI3K regulatory subunit p85alpha. Because the Dab1 phosphotyrosine binding domain can interact simultaneously with membrane lipids and with the intracellular domains of apolipoprotein E receptor 2 and very low density lipoprotein receptor, Dab1 is preferentially recruited to the neuronal plasma membrane, where it is phosphorylated. Efficient Dab1 phosphorylation and activation of the Reelin signaling cascade is impaired by cholesterol depletion of the plasma membrane. Using a neuronal migration assay, we also show that PI3K signaling is required for the formation of a normal cortical plate, a step that is dependent upon Reelin signaling.  相似文献   

15.
Dual functions of Dab1 during brain development   总被引:1,自引:0,他引:1  
Reelin coordinates the movements of neurons during brain development by signaling through the Dab1 adaptor and Src family tyrosine kinases. Experiments with cultured neurons have shown that when Dab1 is phosphorylated on tyrosine, it activates Akt and provides a scaffold for assembling signaling complexes, including the paralogous Crk and CrkL adaptors. The roles of Akt and Dab1 complexes during development have been unclear. We have generated two Dab1 alleles, each lacking two out of the four putative tyrosine phosphorylation sites. Neither allele supports normal brain development, but each allele complements the other. Two tyrosines are required for Reelin to stimulate Dab1 phosphorylation at the other sites, to activate Akt, and to downregulate Dab1 levels. The other two tyrosines are required to stimulate a Crk/CrkL-C3G pathway. The absence of Crk/CrkL binding sites and C3G activation causes an unusual layering phenotype. These results show that Reelin-induced Akt stimulation and Dab1 turnover are not sufficient for normal development and suggest that Dab1 acts both as a kinase switch and as a scaffold for assembling signaling complexes in vivo.  相似文献   

16.
Disabled-1 (Dab1) is a cytoplasmic adaptor protein that regulates neuronal migrations during mammalian brain development. Dab1 function in vivo depends on tyrosine phosphorylation, which is stimulated by extracellular Reelin and requires Src family kinases. Reelin signaling also negatively regulates Dab1 protein levels in vivo, and reduced Dab1 levels may be part of the mechanism that regulates neuronal migration. We have made use of mouse embryo cortical neuron cultures in which Reelin induces Dab1 tyrosine phosphorylation and Src family kinase activation. We have found that Dab1 is normally stable, but in response to Reelin it becomes polyubiquitinated and degraded via the proteasome pathway. We have established that tyrosine phosphorylation of Dab1 is required for its degradation. Dab1 molecules lacking phosphotyrosine are not degraded in neurons in which the Dab1 degradation pathway is active. The requirements for Reelin-induced degradation of Dab1 in vitro correctly predict Dab1 protein levels in vivo in different mutant mice. We also provide evidence that Dab1 serine/threonine phosphorylation may be important for Dab1 tyrosine phosphorylation. Our data provide the first evidence for how Reelin down-regulates Dab1 protein expression in vivo. Dab1 degradation may be important for ensuring a transient Reelin response and may play a role in normal brain development.  相似文献   

17.
Nucleokinesis has recently been suggested as a critical regulator of neuronal migration. Here we show that Disabled 1 (Dab1), which is required for neuronal positioning in mammals, regulates the nuclear position of postmitotic neurons in a phosphorylation-site dependent manner. Dab1 expression in the Drosophila visual system partially rescues nuclear position defects caused by a mutation in the Dynactin subunit Glued. Furthermore, we observed that a loss-of-function allele of amyloid precursor protein (APP)-like, a kinesin cargo receptor, enhanced the severity of a Dab1 overexpression phenotype characterized by misplaced nuclei in the adult retina. In mammalian neurons, overexpression of APP reduced the ability of Reelin to induce Dab1 tyrosine phosphorylation, suggesting an antagonistic relationship between APP family members and Dab1 function. This is the first evidence that signaling which regulates Dab1 tyrosine phosphorylation determines nuclear positioning through Dab1-mediated influences on microtubule motor proteins in a subset of neurons.  相似文献   

18.
Emx1 and Emx2, mouse orthologs of the Drosophila head gap gene, ems, are expressed during corticogenesis. Emx2 null mutants exhibit mild defects in cortical lamination. Segregation of differentiating neurons from proliferative cells is normal for the most part, however, reelin-positive Cajal-Retzius cells are lost by the late embryonic period. Additionally, late-born cortical plate neurons display abnormal position. These types of lamination defects are subtle in the Emx1 mutant cortex. In the present study we show that Emx1 and Emx2 double mutant neocortex is much more severely affected. Thickness of the cerebral wall was diminished with the decrease in cell number. Bromodeoxyuridine uptake in the germinal zone was nearly normal; moreover, no apparent increase in cell death or tetraploid cell number was observed. However, tangential migration of cells from the ganglionic eminence into the neocortex was greatly inhibited. The wild-type ganglionic eminence cells transplanted into Emx1/2-double mutant telencephalon did not move to the cortex. MAP2-positive neuronal bodies and RC2-positive radial glial cells emerged normally, but the laminar structure subsequently formed was completely abnormal. Furthermore, both corticofugal and corticopetal fibers were predominantly absent in the cortex. Most importantly, neither Cajal-Retzius cells nor subplate neurons were found throughout E11.5-E18.5. Thus, this investigation suggests that laminar organization in the cortex or the production of Cajal-Retzius cells and subplate neurons is interrelated to the tangential movement of cells from the ganglionic eminence under the control of Emx1 and Emx2.  相似文献   

19.
Tyrosine phosphorylated Disabled 1 recruits Crk family adapter proteins   总被引:5,自引:0,他引:5  
Disabled 1 (Dab1) functions as a critical adapter protein in the Reelin signaling pathway to direct proper positioning of neurons during brain development. Reelin stimulates phosphorylation of Dab1 on tyrosines 198 and 220, and phosphorylated Dab1 is likely to interact with downstream signaling proteins that contain Src homology 2 (SH2) domains. To search for such proteins, we used a Sepharose-conjugated peptide containing phosphotyrosine 220 (PTyr-220) of Dab1, as an affinity matrix to capture binding proteins from mouse brain extracts. Mass spectrometric analysis of bound proteins revealed that Crk family adapter proteins selectively associated with this phosphorylation site. We further show that Crk-I and Crk-II, but not CrkL, stimulate phosphorylation of Dab1 on tyrosine 220 in a Src-dependent manner. Our results suggest that Crk family adapter proteins may play an important role in the Reelin signaling pathway during brain development.  相似文献   

20.
Brain-derived neurotrophic factor (BDNF) activates a variety of signaling molecules to exert various functions in the nervous system, including neuronal differentiation, survival, and regulation of synaptic plasticity. Previously, we have suggested that BIT/SHPS-1 (brain immunoglobulin-like molecule with tyrosine-based activation motifs/SHP substrate 1) is a substrate of Shp-2 and is involved in BDNF signaling in cultured cerebral cortical neurons. To elucidate the biological function of BIT/SHPS-1 in cultured cerebral cortical neurons in connection with its role in BDNF signaling, we generated recombinant adenovirus vectors expressing the wild type of rat BIT/SHPS-1 and its 4F mutant in which all tyrosine residues in the cytoplasmic domain of BIT/SHPS-1 were replaced with phenylalanine. Overexpression of wild-type BIT/SHPS-1, but not the 4F mutant, in cultured cerebral cortical neurons induced tyrosine phosphorylation of BIT/SHPS-1 itself and an association of Shp-2 with BIT/SHPS-1 even without addition of BDNF. We found that BDNF-promoted survival of cultured cerebral cortical neurons was enhanced by expression of the wild type and also 4F mutant, indicating that this enhancement by BIT/SHPS-1 does not depend on its tyrosine phosphorylation. BDNF-induced activation of mitogen-activated protein kinase was not altered by the expression of these proteins. In contrast, BDNF-induced activation of Akt was enhanced in neurons expressing wild-type or 4F mutant BIT/SHPS-1. In addition, LY294002, a specific inhibitor of phosphatidylinositol 3-kinase, blocked the enhancement of BDNF-promoted neuronal survival in both neurons expressing wild-type and 4F mutant BIT/SHPS-1. These results indicate that BIT/SHPS-1 contributes to BDNF-promoted survival of cultured cerebral cortical neurons, and that its effect depends on the phosphatidylinositol 3-kinase-Akt pathway. Our results suggest that a novel action of BIT/SHPS-1 does not occur through tyrosine phosphorylation of BIT/SHPS-1 in cultured cerebral cortical neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号